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Abstract: Osteoarthritis (OA) is a progressive, deteriorative disease of articular joints. Although
traditionally viewed as a local pathology, biomarker exploration has shown that systemic changes
can be observed. These include changes to cytokines, microRNAs, and more recently, metabolites.
The metabolome is the set of metabolites within a biological sample and includes circulating amino
acids, lipids, and sugar moieties. Recent studies suggest that metabolites in the synovial fluid and
blood could be used as biomarkers for OA incidence, prognosis, and response to therapy. However,
based on clinical, demographic, and anthropometric factors, the local synovial joint and circulating
metabolomes may be patient specific, with select subsets of metabolites contributing to OA disease.
This review explores the contribution of the local and systemic metabolite changes to OA, and their
potential impact on OA symptoms and disease pathogenesis.
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1. Introduction

Osteoarthritis (OA) is a degenerative joint disease characterized by cartilage degradation,
synovitis, subchondral bone thickening, and ectopic bone formation in the form of osteophytes [1].
The etiology of OA is unknown. Current approved therapies only provide symptom relief and are
not disease-modifying. Ultimately, patients with OA will need joint replacement therapy once pain,
function, and quality of life are no longer satisfactory or adequately controlled. A large proportion
of patients who undergo joint replacement surgery continue to feel pain and thus have limited
improvement to quality of life and function [2]. Thus, defining patients who are good candidates for
surgery is important for providing precision care to each individual.

Traditionally, OA has been viewed as a single disease carrying with it a “one size fits all” approach
to treatment. However, a number of different patient phenotypes have been determined based on
clinical, demographic, and anthropometric characteristics. Risk factors for OA include age, body mass
index (BMI), and sex, among others. Individuals over the age of 50, with a body mass index >30 kg/m2,
and of the female sex have an increased incidence and risk of OA [3–7]. In addition, individuals with
comorbidities such as diabetes have increased incidence and risk of developing OA and may also
have accelerated joint pathogenesis as a result [8,9]. Furthermore, some patients present in the clinic
with reduced mobility and are pain free, while others can experience severe pain but exhibit limited
structural joint disease [10–12]. Based on these multiple patient characteristics, it is likely that there are
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underlying biological differences that can be detected within each patient that would provide insights
into tailored care plans.

Considerable effort has been placed into identifying biomarkers of disease incidence and prognosis
that could potentially help in identifying new targets for disease modification. The most common
biomarkers investigated to date include circulating microRNAs, cytokines, and metabolites. A total
of 690 papers can be identified in PubMed up to the end of November 2018 using the search-string
“(microRNA OR metabolite OR cytokine) AND osteoarthritis AND biomarker NOT review.” Of them,
646 relate to cytokines, 32 pertain to microRNAs, and 20 focus on metabolites, with some articles
having keyword overlap between biomarker types. One of the 20 articles focused on metabolite
biomarkers in OA is a non-English review article, two are in vitro studies only, one is a study on
healthy individuals, and one discusses cleavage products of cartilage in equine synovial fluid and
plasma in response to recombinant equine growth hormone injection. The 15 remaining articles are
summarized in Table 1. Overall, this indicates that metabolite research in OA is in a relatively early
but growing exploratory state, as the majority of articles (11/15) were published between 2015–2018.
As metabolites can be used as biomarkers, circulating metabolites or those in urine may be indicative
of underlying pathologies. There are a vast number of metabolite changes that have been identified
in both blood and synovial fluid of OA patients [13], suggesting that metabolites could influence the
various OA pathological features or associated comorbidities in both the local disease environment
and in distant organs.

Table 1. Summary of curated publications found in PubMed using the search string “metabolite AND
biomarker AND osteoarthritis NOT review.”

Author Year Fluid/Tissue for
Metabolite Detection Species Study Groups Metabolite

Detection Method Reference

Anderson et al. 2018 synovial fluid equine septic vs. non-septic joint
pathologies

1H-NMR [14]

Carlson et al. 2018 synovial fluid human OA vs. RA vs. healthy LC-MS [15]

Hinata et al. 2018 synovial fluid rat
control vs. MIA-induced
OA, sham vs.
meniscectomy-induced OA LC-MS/MS [16]

human OA only

Zhang et al. 2016 plasma human primary OA at TKR vs.
healthy control LC-MS/MS [17]

Jin et al. 2016 synovial fluid human
degenerative vs. traumatic
vs. infectious vs.
inflammatory OA

In vivo 1H-MRS [18]

Loeser et al. 2016 urine human OA progression vs. stable 1H-NMR [19]

Mickiewicz et al. 2016 serum mouse
sham vs. DMM; wild type
vs. Integrin 1α-null;
erlotinib vs. vehicle

1H-NMR [20]

Hu et al. 2016 plasma human primary OA at TKR vs.
healthy control LC-MS/MS [21]

Zhang et al. 2016 plasma human primary OA at TKR vs.
healthy control LC-MS/MS [22]

Tufts et al. 2015 knee articular cartilage human primary OA at TKR HRMAS-NMR [23]

Zhang et al. 2015 plasma, synovial fluid human primary OA at TKR LC-MS/MS [24]

Zhai et al. 2010 serum human OA vs. healthy control LC-MS/MS [25]

Davies et al. 2009 synovial fluid, serum,
cartilage human active OA, inactive OA,

post-mortem controls HPLC [26]

Lamers et al. 2005 urine human radiographic OA vs.
non-OA controls

1H-NMR [27]

Basu et al. 2001 serum, synovial fluid human control (serum only) vs. OA
vs. RA vs. ReA vs. PsA radioimmunoassay [28]

1H-MRS; proton magnetic resonance spectroscopy, 1H-NMR, proton nuclear magnetic imaging; DMM,
destabilization of the medial meniscus; HPLC, high performance liquid chromatography; HRMAS, high-resolution
magnetic angle spinning; LC, liquid chromatography; MIA; mono-iodoacetate; MS, mass spectrometry; OA,
osteoarthritis; PsA, psoriatic arthritis; RA, rheumatoid arthritis; ReA, reactive arthritis; TKR, total knee replacement.
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This review aims to summarize the changes to the metabolome, determined both locally as well
as systemically, in relation to OA and associated pathologies. In addition, this review will explore the
various OA phenotypes that have been identified and how demographic, anthropometric, and clinical
variables can affect not only OA disease incidence and prognosis, but how these variables can modify
the metabolome and contribute to symptoms and biological pathologies associated with OA.

2. The Local and Systemic Metabolomes of Osteoarthritis

In the local environment, the joint is bathed in synovial fluid, which contains factors that
accumulate through release from local tissues and from the systemic circulation through blood vessels
found in the synovium. Changes to the nutrient levels in the synovial fluid, including various
metabolites, may directly contribute to inflammatory responses in OA leading to joint pathologies [29].
Metabolomic analysis of human synovial fluid has uncovered a variety of metabolites altered in
OA compared to healthy controls. These include concentration-dependent changes to select lipid,
sugar, and amino acid derivatives, which are associated with OA diagnosis or grade [30–32]. In
synovial fluid, a variety of metabolites including amino acids, sugars, and metabolites involved in
energy production, measured by proton nuclear magnetic resonance (1H-NMR), could differentiate
horses with septic vs. non-septic joint pathologies [14]. Similarly, in an ovine model of early
OA, metabolomic analysis of synovial fluid uncovered six significantly altered metabolites, namely
isobutyrate, glucose, uridine, serine, asparagine, and hydroxyproline, which could be used as early
OA biomarkers [33]. Two contradictory studies have indicated that human rheumatoid arthritis (RA)
and OA are indistinguishable [34] or dipartite [35], based on 1H-NMR spectra. However, alternate
metabolite detection platforms confirm differences in metabolites from OA and RA synovial fluid [36],
suggesting that the OA metabolome could be used for differential diagnosis. Furthermore, patients
with low-grade versus high-grade radiographic OA severity (Kellgren Lawrence (KL)1/2 versus
KL3/4 [37]) can be discriminated based on a signature of 28 metabolites in synovial fluid as determined
by gas chromatography/time of flight mass spectrometry (GC/TOF-MS) [38]. This suggests that the
methods of metabolite detection as well as cohorts used are likely to impact biomarker discovery.

Although OA is primarily considered a localized disease, it has become abundantly clear
that systemic effects could contribute to OA symptoms and pathology [39]. A subset of eight
metabolites that include three branched chain amino acids (BCAAs), three phospholipids, glycine, and
creatinine are highly correlated by concentration in the synovial fluid and plasma of OA patients [24],
suggesting some degree of potential interaction between the circulating metabolome and the local
joint metabolome. Recent metabolomic studies have uncovered a number of metabolites that are
dysregulated in the systemic circulation. For instance, in one of the first serum-based metabolomics
study of OA in humans, the ratios of individual branched chain amino acids or total BCAAs to
histidine concentrations were determined to be significantly different between OA patients and
healthy controls [17,25], and subsequently total BCAAs:histidine was found to be predictive of
individuals with OA [17]. Further studies show changes to a variety of different lipid species including
phosphatidylcholines (PCs), lysophosphatidylcholines (lysoPCs), sphingolipids, and select amino
acids including arginine [17,22]. A study of a cohort from Newfoundland, Canada, found that the ratio
of total lysoPCs to PCs is predictive of advanced OA leading to total knee replacement in a 10-year
follow-up [17]. Sustained changes to the plasma metabolome, particularly selected lysoPC and PC
analogues, were also identified in mice fed a high-fat diet compared to a lean or normal chow-fed
diet, correlating with acceleration of surgically-induced OA [40]. Furthermore, in overweight and
obese individuals, urinary metabolomics was able to distinguish individuals whose OA progressed
versus those with stable disease over a span of 18 months [19]. In rat models of OA, changes to
amino acid metabolism are also observed in urine [41]. Again in rats, a longitudinal metabolomic
analysis of plasma showed that there are significant and time-dependent changes in products of lysine
metabolism after surgical induction of OA [42]. This further suggests that amino acid metabolism
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may contribute to OA pathology or that select amino acid levels could be used as biomarkers of OA
incidence and progression.

As there are a large number of metabolic changes that occur systemically in response to OA,
it is not surprising that some of these changes also correlate to functional changes in other organs.
For instance, select medium- and long-chain acylcarnitine moieties are systemically reduced in patients
with OA compared to healthy controls, possibly a result of increased energy demands and/or reduced
β-oxidation from impaired carnitine palmitoyltranferase enzyme function, the rate-limiting enzyme for
long-chain β-oxidation. These changes also correlate to arterial stiffness, a pathology associated with
cardiovascular disease [43] and a comorbidity whose risk is increased in individuals with OA [44–49]. OA
also increases the risk of developing type 2 diabetes [50], a metabolic disorder on its own. Interestingly,
individuals with OA and comorbidities such as diabetes, cardiovascular disease, and obesity, or who
have high consumption of fats, have accelerated cartilage degeneration [8,51,52]. In fact, diabetes is an
independent risk factor for OA incidence and surgery [53,54]. There is an abundance of information
linking diabetes to an increased risk of cardiovascular disease [55]; however, to our knowledge, there is
no published literature that has explored whether cardiovascular disease increases the risk of incident
OA. Overall, there is a link between and across these diseases that could be explained, in part, by changes
in lifestyle associated with each disease. However, underlying biochemical changes in the circulating
metabolome are also likely to be altered and could profoundly affect both incidence and progression
of each disease. Understanding metabolome links between co-morbidities may help to understand
underlying pathologies and provide novel therapeutic avenues to treat multiple diseases concurrently.

3. Osteoarthritis Phenotypes and Impact on Metabolome

OA is a heterogeneous disease and incorporates a number of disease phenotypes with similar
pathologies. From independent cohort studies, common clinical and anthropometric variables stand
out as being key to defining the risk of OA incidence and potential clinical outcomes. These include
age, sex, and BMI. Each of these variables can also carry its own metabolic “signature,” which
could complicate subsequent analysis. For instance, age, when adjusted for BMI, has a specific
serum metabolite signature that differs in males and females [56], confounding how metabolites
may be identified in large population-based studies. In addition, a study comparing plasma from
individuals with obesity to those with metabolic syndrome identified a signature of metabolites that
could differentiate these individuals, which included branched chain amino acids (BCAAs) such as
leucine and isoleucine [57]. This suggests that BCAAs from individuals with metabolic syndrome
could contribute to OA symptoms or pathologies; however, no such studies, to our knowledge, have
investigated this link. Our recent research has determined that stratification of cohorts based on sex and
BMI is necessary to uncover the differential plasma metabolite signatures between healthy control and
OA patients at TKR, which are heavily biased towards males [58]. This study also identified that select
metabolite signatures composed of individual lysoPC and PC analogues are better at predicting OA
incidence compared to total aggregates of lysoPCs and PC analogue types. Furthermore, metabolites in
plasma alone can classify different OA phenotypes into two major subgroups without any confounders
including age, sex, or BMI [59] suggesting that OA disease may have multiple metabolite signatures
that could prove useful in precision medicine applications.

Clinical phenotypes have also been identified which include, but are not limited to, pain
sensitization or neuropathic pain, muscle strength, BMI, and level of depression [10–12]. How each
of these phenotypes could influence the metabolome is described below and articles related to each
phenotype are summarized in Table 2.



Metabolites 2018, 8, 92 5 of 19

Table 2. Selected publications indicating metabolite changes in phenotypes related to osteoarthritis.

Phenotype Author Year Fluid/Tissue for
Metabolite Detection Species Study Groups Metabolite Detection

Method Reference

Pain

Finco et al. 2016 urine human nociceptive pain vs. neuropathic pain vs. pain free 1H-NMR [60]

Hadrevi et al. 2015 serum human women with chronic neck pain, chronic widespread pain vs. healthy control GS-MS [61]

Um et al. 2009 urine rat celecoxib vs. indomethacin vs. ibuprofen vs. vehicle; gastric damaged vs. undamaged 1H-NMR [62]

Muscle
Strength

Srivastava et al. 2018 skeletal muscle human Duchenne muscular dystrophy vs. Becker muscular dystrophy vs. facioscapulohumeral dystrophy vs. limb girdle muscular
dystrophy vs. healthy control

1H-NMR [63]

Cieslarova et al. 2017 plasma human ALS vs. healthy control CE-MS/MS [64]

Patin et al. 2017 Muscle and brain
(mouse only), plasma

human and
mouse mSOD1*G39A-transgenic mice vs. WT mice; ALS vs. healthy control 1H-NMR [65]

Files et al. 2016 skeletal muscle mouse adult vs. old; sham vs. acute lung injury-induced muscle wasting GS-MS [66]

Moaddel et al. 2016 plasma human low vs. high muscle quality in older men and women LC-MS/MS [67]

Wuolikainen et
al. 2016 CSF and Plasma human ALS and Parkinson’s disease vs. healthy control GC-MS; LC-MS [68]

Sengupta et al. 2014 serum human myasthenia gravis prednisone treated vs. baseline UPLC-ESI-QTOF-MS [69]

Obesity

Cirulli et al. 2018 serum, plasma human metabolically obese vs. metabolically overweight vs. metabolically healthy LC-MS/MS [70]

Libert et al. 2018 plasma human lean metabolically well vs. obese metabolically well vs. obese metabolically unwell vs. obese metabolically unwell with
type II diabetes LC-MS/MS [71]

Moore et al. 2018 serum human correlation of BMI and breast cancer risk to circulating metabolites in postmenopausal women LC-MS/MS [72]

Munlandy et al. 2018 plasma human correlation of metabolites to cardiometabolic risk factors (including BMI, % body fat, visceral fat, subcutaneous fat) in
monozygotic twins LC-MS/MS [73]

Baek et al. 2017 plasma human low vs. high visceral fat area in a Korean cohort LC-MS [74]

Carayol et al. 2017 serum, plasma human correlation of BMI to circulating metabolites LC-MS/MS [75]

Okekunle et al. 2017 serum human obese vs. type II diabetes vs. metabolic syndrome vs. healthy control UPLC-TQ/MS [76]

Zhong et al. 2017 plasma human obese vs. metabolic syndrome LC-MS/MS [57]

Bogl et al. 2016 serum human correlation of phenotypic and obesity-related measures to metabolite levels in dizygotic and monozygotic twins 1H-NMR [77]

Dugas et al. 2016 serum human normal vs. obese; black women from U.S. vs. South Africa vs. Ghana GC-TOF/MS [78]

Gao et al. 2016 serum human metabolically unhealthy centrally obese vs. metabolically healthy peripherally obese LC-MS/MS [79]

Ho et al. 2016 plasma human correlation of BMI, waist circumference, and other metabolic traits to circulating metabolites LC-MS/MS [80]

Tulipani et al. 2016 serum human BMI-discordant non-diabetic vs. pre-diabetic monozygotic twins
LC-MS/MS;
FIA-MS/MS;
ESI-MS/MS

[81]

Zhao et al. 2016 plasma human correlation of metabolites to BMI and weight gain in Mexican American women LC-MS/MS [82]

Boulet et al. 2015 plasma human lean vs. overweight vs. obese women ESI-LC-MS/MS,
ESI-MS/MS [83]

Chen et al. 2015 serum human metabolic healthy obese vs. metabolic unhealthy obese LC-MS; GC-MS [84]

Gralka et al. 2015 serum human obese vs. normal weight 1H-NMR [85]

Floegel et al. 2014 serum human correlation of metabolite networks to different dietary, activity and anthropometric exposures (including BMI and waist
circumference) LC-MS/MS [86]

Moore et al. 2014 serum, plasma human correlation of metabolite levels to BMI LC-MS/MS;
GC-MS/MS [87]

Martin et al. 2013 plasma, urine human correlation of metabolites to body fat distribution in obese women LC-MS/MS [88]

Batch et al. 2013 plasma human lean vs. overweight vs. obese LC-MS/MS;
ESI-MS/MS [89]
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Table 2. Cont.

Phenotype Author Year Fluid/Tissue for
Metabolite Detection Species Study Groups Metabolite Detection

Method Reference

Depression

Ali-Sisto et al. 2018 serum human major depressive disorder vs. non-depressed controls, remitted vs. non-remitted patients with major depressive disorder LC-MS [90]

Kawamura et al. 2018 plasma human major depressive disorder vs. mentally healthy controls CE-TOF/MS [91]

Moaddel et al. 2018 plasma human major depressive disorder vs. healthy controls, ketamine vs. placebo LC-MS/MS [92]

Zheng et al. 2017 plasma human major depressive disorder vs. healthy controls 1H-NMR [93]

Ali-Sisto et al. 2016 serum human major depressive disorder vs. non-depressed controls LC-MS/MS [94]

Liu et al. 2016 plasma human healthy controls vs. major depressive disorder, melancholic depressed, anxious depressed LC-MS/MS, GC-MS [95]

Rotroff et al. 2016 plasma human baseline vs. post-treatment of patients with major depressive disorder treated with placebo, ketamine, or esketamine LC-MS/MS,
GC-TOF/MS [96]

Setoyama et al. 2016 plasma human correlation of metabolites to depression severity in patients with psychiatric disorders, drug-free major depressive disorder,
or bipolar disorders; medicated major depressive disorder and bipolar disorders LC-MS [97]

Zheng et al. 2016 urine human major depressive disorder vs. healthy controls, women vs. men 1H-NMR, GC-MS [98]

Woo et al. 2015 plasma human healthy controls vs. major depressive disorder patients baseline vs. major depressive disorder patients 6-weeks post SSRI
treatment LC-MS/MS [99]

Zheng et al. 2012 plasma human drug-naïve first episode depression vs. healthy controls 1H-NMR [100]

Paige et al. 2007 plasma human remitted depressed vs. non-remitted depressed vs. non-depressed older adults GC-MS [101]

1H-NMR, proton nuclear magnetic imaging; ALS, amyotrophic lateral sclerosis; BMI, body mass index; CE, capillary electrophoresis; CSF, cerebrospinal fluid, ESI, electrospray ionization;
FIA, flow injection analysis; GC, gas chromatography; LC, liquid chromatography; MS, mass spectrometry; QTOF, quadrupole time of flight; SSRI, selective serotonin reuptake inhibitor;
TOF, time of flight; UPLC, ultra-performance liquid chromatography; WT, wild-type.
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3.1. Pain

OA pain is typically classified into neuropathic (nerve damage associated) or nociceptive
(inflammatory or tissue damage associated) [102]. A pilot study of pain indicated that neuropathic pain,
nociceptive pain, and pain-free individuals can be differentiated using global metabolomic profiling of
urine; although, a preliminary signature for each classification was not provided [60]. Furthermore, in
a study of women with widespread pain compared to localized pain, distinct differences in circulating
serum metabolites can be identified compared to control subjects [61]. Various metabolites can
directly influence the perception of pain. Endocannabinoids are endogenously produced lipid-derived
compounds that act as analgesics [103]. OA patients have higher levels of select endocannabinoids
in the synovial fluid compared to normal individuals [104]. Thus, endocannabinoid production
could be beneficial for individuals with OA to reduce pain symptoms. However, there may also be
detrimental effects of increasing endocannabinoid production. Endocannabinoids use PCs as donors
for their biosynthesis, resulting in the production of lysoPCs [105]. LysoPCs could promote joint
pathology and ultimately pain due to metabolism to lysophosphatidic acid (LPA), an inflammatory
and pain-producing signal (described in the PC-lysoPC-LPA pathway below). This could be an
interesting therapeutic target for both OA symptoms and joint pathologies. Drugs used to treat pain
also have effects on the metabolome. Urine analysis of rats treated with non-steroidal anti-inflammatory
drugs (NSAIDs) showed altered components of the metabolome, as determined using 1H-NMR [62].
As NSAIDs are readily prescribed for the treatment of pain in OA, it will be necessary to evaluate how
specific metabolic pathways may be affected systemically to determine potential positive and negative
outcomes to NSAID use for OA.

3.2. Muscle Strength

Weak muscle strength is a risk factor for development and progression of knee OA [106,107].
In a mouse model of muscle wasting, gastrocnemius muscle showed changes in linoleic acid, lactate,
serine, alanine, and long-chain acyl-carnitines, as measured by gas chromatography-mass spectrometry,
compared to controls [66]. Several muscular dystrophy disorders also carry a variety of metabolite
differences in muscle tissue, as measured using 1H-NMR, including BCAAs, glutamine/glutamate,
histidine, acetate, propionate, fumarate, and tyrosine [63]. With regard to systemic metabolomics, a
study on serum from patients with myasthenia gravis, an autoimmune neuromuscular disease resulting
in muscle weakness, showed alterations of metabolite levels of a variety of glycerophospholipids
with prednisone treatment [69]. In addition, there is an abundance of studies investigating circulating
metabolite changes and their contributions to amyotrophic lateral sclerosis (ALS), which results in
muscle weakness and paralysis in response to motor neuron degeneration. For instance, cystine and
glutamic acid levels are elevated in the serum of ALS patients compared to normal subjects [64],
whereas 35 metabolites in plasma could differentiate between ALS patients and healthy controls [68].
Furthermore, metabolomics analysis of blood, muscle, and brain of mice and plasma of humans
suggests that arginine, proline, lysine, tryptophan, glutamate and BCAA metabolism are altered in
ALS patients across tissues/fluids and species studied [65]. Additional ALS metabolomics studies
are well-reviewed elsewhere [108,109]. However, muscle strength has not been well characterized
with regard to its contribution to circulating plasma metabolite levels in human subjects without
confounding comorbidities. In a study of a small cohort of individuals, the force exerted per muscle
area by the quadriceps had a direct relationship with the systemic metabolome. Differences in PCs,
lysoPCs, and various amino acids, including increased levels of leucine and isoleucine were found
in weak muscle vs. control individuals [67], suggesting a possible contribution of phospholipids and
BCAAs to the metabolome of OA patients with a weak muscle phenotype. Collectively, these studies
suggest that there could be a link between weak muscle strength and OA incidence and progression;
however, further research is needed to define metabolites from a weak muscle phenotype directly
contributing to OA.
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3.3. Obesity

There are numerous studies indicating differences in metabolite levels that are associated with
BMI. For instance, in a study of normal, overweight, and obese women, BCAA concentrations in
addition to kynurenine/tryptophan ratio were significantly increased in obese compared to lean and
overweight individuals [83]. In a separate study, obese individuals had 10 increased and 4 decreased
amino acids in circulating serum compared to healthy controls, which included BCAAs [76]. Visceral
fat likely plays a role in detected metabolites correlating with BMI, as evidenced from studies of
Korean individuals and women with varying levels of visceral fat [74,88]. Individuals with central
obesity can also be distinguished using metabolite signatures from peripheral obesity or normal
weight individuals based on serum increases in valine, isoleucine, leucine, alpha-aminoadipic acid,
and C3 acylcarnitine [79]. Waist circumference in populations of dizygotic and monozygotic twins also
correlates with a unique signature of serum metabolites, including valine, leucine and isoleucine [77].
Not surprisingly, BMI-based and waist circumference-based metabolite networks derived from serum
metabolomic measurements are strongly correlated [86], suggesting that waist circumference and
BMI could be interchangeable measures when it comes to circulating metabolites. Metabolomic
analysis of plasma in Mexican American women indicates that there are seven metabolites significantly
associated with BMI and six with further weight gain at a five-year follow-up [82]. In a study using
three separate cohorts in the U.S. and China, a signature of 37 metabolites made up primarily of
amino acids and lipids, including a variety of BCAAs, were found to be altered systemically with
BMI [87]. In another study, three lysoPC analogues were found to be inversely correlated with
BMI [81]. In larger cohort studies, alterations in multiple metabolites from plasma and serum were
found to be associated with BMI, including BCAAs, such as valine, leucine, and isoleucine, and various
lipids including lysoPC, PC, and sphingomyelins moieties [72,75,80]. Severely obese individuals
also show a metabolic signature in serum, which contains a number of aromatic and branched-chain
amino acids that are upregulated compared to non-obese controls [85]. Obese, metabolically-unwell
individuals who have characteristics of hypertension, hyperglycemia, and dyslipidemia, showed
more metabolite changes than obese, metabolically-well individuals, as compared to lean controls.
In addition, obese metabolically-disparate individuals can be differentiated based on select serum
metabolite levels [71,84]. Metabolic wellness, independent of BMI, can be measured by levels of
BCAAs and groups of other metabolites including select short and medium chain acylcarnitines [89].
Consistently, a signature of metabolites can also differentiate obesity from metabolic syndrome [57].
Although select abnormal metabolome signatures can be attributed to obese individuals, there are cases
where these signatures can also be found in normal weight subjects while some normal weight subjects
can have an obese metabolome signature. This suggests a degree of heterogeneity of metabolomes
of both healthy weight and obese individuals [70]. Even monozygotic twins have different plasma
metabolomes likely due to environment, lifestyle, and diet, which are independent of genetics and
linked to metabolic risk phenotypes [73]. The effect of environment is further supported by a study of
black women from the U.S., South Africa, and Ghana, which indicates a common signature of amino
acids, consisting in part of BCAAs, is present between populations while site specific obesity-related
metabolites are also detected [78]. Overall, these studies suggest that increasing BMI changes the
metabolome to favor metabolite patterns commonly associated with OA, possibly contributing to OA
symptoms and pathogenesis. However, BMI alone may not be a minimal criterion, and metabolite
levels may independently influence OA disease progression. Of particular interest, increased BCAA
levels associated with many obesity-related metabolic profiles may play a vital role both systemically
and locally during OA pathogenesis, as discussed below.

3.4. Depression

Depression contributes to the differential severity of symptoms reported by patients with OA,
including pain and physical function [110]. Metabolomic analysis of individuals with depression
show alterations in the serum or plasma levels of select sugars, amino acid, lipids, and purine
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metabolites, among others, compared to control individuals [91,93–95,97,99–101]. Sex is also a major
contributing factor to changes found in the metabolome of depressive individuals. In urine, there
are large differences in the metabolome between men and women with depression, with men having
a larger number of metabolites showing significant changes [98]. Consequently, therapies used to
treat depression can also have an impact on metabolites and change the landscape of the metabolome.
For instance, selective serotonin reuptake inhibitors (SSRIs), as well as ketamine, can treat severe
depression and change a variety of circulating amino acids in blood plasma, including increasing
arginine in drug responders [92,96,99]. Interestingly, like in OA, arginine is reduced in individuals
with depression [90]. Thus, depression may exacerbate OA symptoms or pathologies, in part, through
changes in arginine metabolism, as described below. In addition, drugs known to treat depression
may be valuable in OA therapy, consistent with pre-clinical animal studies showing that local injection
of the SSRI fluoxetine attenuates OA progression [111]. Whether this phenomenon could be partially
due to local changes to the OA metabolome requires further study.

4. Metabolites and Pathways Likely Contributing to Osteoarthritis

Based on clinical, anthropometric, and demographic parameters, it is clear that common metabolic
pathways are altered in OA and likely contribute to local and systemic disease pathologies. These
include (but are likely not limited to) arginine, lysoPC, and BCAA metabolism. A diagrammatic
overview of the molecules, major enzymes, and outcomes are found in Figure 1.
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analogues to lysoPC analogues. Subsequent metabolism of lysoPCs via autotaxin generates 
lysophosphatidic acid (LPA), a signaling molecule known to promote pain. Furthermore, generation 
of endocannabinoids from phosphatidylethanolamines requires PC analogues, also contributing to  
lysoPC production. Resulting endocannabinoids function to reduce pain. (C) Branched chain amino 
acids (BCAAs) induce mammalian target of rapamycin complex 1 (mTORC1), which inhibits 
intracellular autophagy, a mechanism that protects cartilage homeostasis. Overall this leads to 
cartilage destruction and increased chondrocyte cell death. (A–C) Text size indicates 
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Figure 1. Metabolic pathways likely contributing to symptoms and pathology in OA. (A) Nitric
oxide synthase (NOS) and arginase compete for arginine, which is reduced in the OA metabolome,
to generate nitric oxide (NO) and L-orninithe, contributors to inflammation and fibrosis, respectively.
(B) Secreted phospholipase A2 (sPLA2) catalyzes the conversion of phosphatidylcholine (PC) analogues
to lysoPC analogues. Subsequent metabolism of lysoPCs via autotaxin generates lysophosphatidic acid
(LPA), a signaling molecule known to promote pain. Furthermore, generation of endocannabinoids
from phosphatidylethanolamines requires PC analogues, also contributing to lysoPC production.
Resulting endocannabinoids function to reduce pain. (C) Branched chain amino acids (BCAAs)
induce mammalian target of rapamycin complex 1 (mTORC1), which inhibits intracellular autophagy,
a mechanism that protects cartilage homeostasis. Overall this leads to cartilage destruction and
increased chondrocyte cell death. (A–C) Text size indicates concentration/activity of individual factors.
Arrow/block arrow thickness indicates the likely relative contribution of each pathway in OA symptom
and pathology development.
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4.1. PC-lysoPC-LPA

PCs are converted into lysoPCs by phospholipase A1 or A2 (PLA1/2) [112]. In OA, there is an
increase in the expression of secreted PLA2 (sPLA2) in cells of the synovium [113], whereas human
chondrocytes constitutively express sPLA2 [114]. Subsequently, autotaxin is the main enzyme that
converts lysoPCs to LPA [115,116], a major contributor to pain and inflammation [117–123]. Increased
circulating and synovial fluid levels of autotaxin have been detected in patients with OA compared
to normal controls [124]. In rats, injection of LPA into the knee joint results in nerve demyelination
and increased pain [125]. In a rat model of OA pain, an autotaxin inhibitor was able to attenuate pain
sensitization, suggesting the activity of autotaxin and lysoPC production likely contribute to symptoms
of OA [126]. Leptin is a hormone that is increased in the serum and synovial fluid of OA patients and
positively correlates with BMI, increased cartilage degeneration, and female sex [127–130]. We showed
that leptin increases the release of lysoPC from chondrocytes, coinciding with increased expression
of autotaxin [40]. Furthermore, our in vitro data using human OA chondrocytes showed that an
autotaxin inhibitor attenuated the leptin-induced chondrocyte expression of matrix metalloproteinase
13, the major cartilage extracellular matrix catabolic enzyme. Thus, autotaxin may be an OA disease
and symptom-modifying target due, in part, to its ability to modify the local and systemic metabolome;
however, further investigation in appropriate in vivo models is necessary to verify autotoxin inhibitors
as potential multimodal therapeutics for OA. Similarly, clinical phenotypes such as obesity, muscle
strength, and pain may all be influenced by changes to lysoPCs, contributing to OA pathogenesis, as
described above.

4.2. BCAA-mTOR

Increases in the levels of valine, leucine, and isoleucine in the circulating plasma suggest
that there may be dysregulated metabolism in OA patients. BCAAs are normally converted into
acetyl-CoA and succinlyl-CoA, vital metabolites for energy production in the tricarboxycylic acid cycle.
Increases in BCAAs are known to influence autophagy [131], specifically through the activation of
mammalian target of rapamycin complex 1 (mTORC1) [132]. For instance, BCAAs increase migration of
mononuclear cells via activation of mTORC1 [133], suggesting the potential for increased inflammation,
an underlying pathology of OA [134]. In mouse models of OA, activation of mTOR promotes cartilage
degeneration, and treatment with rapamycin attenuates cartilage degeneration when administered
intra-articularly [135,136]. Altered levels of BCAAs may also contribute to insulin sensitivity and the
risk of developing type II diabetes [137], as observed in OA patients. Thus, evidence suggests that
an imbalance of BCAAs could lead to reduced autophagy, thereby changing cell survival and overall
tissue homeostasis both systemically and in the joint, contributing to overall OA pathophysiology.
Increases in BCAAs could also be contributing to or result from other clinical variables associated with
phenotypes of OA, including weak muscle strength and obesity, as described above.

4.3. Arginine-NO/ L-ornithine

There are competing metabolic pathways which utilize arginine as a substrate. Nitric oxide
synthase (NOS) catalyzes the production of citrulline and nitric oxide (NO) from L-arginine [138].
Arginase produces urea and L-ornithine, which, through further metabolism, contributes to collagen
synthesis and cell proliferation, factors involved in fibrosis [139,140], a pathology associated with OA.
Interestingly, ornithine is increased and the ratio of arginine to ornithine is decreased in patients with
OA compared to controls [22]. M2-like macrophages, typically thought of as anti-inflammatory, express
arginase and promote aortic fibrosis in a mouse model of hypertension [141] and skeletal muscle
fibrosis in aged mice [142]. This is in contrast to other studies that suggest that arginase-expressing
macrophages are necessary to prevent Th-2-mediated fibrosis and inflammation in the liver of a
schistosoma-induced fibrosis model [143]. This anti-inflammatory and anti-fibrotic role may be
Th2-selective [144]. As OA is primarily Th1-mediated [145–147], inflammation and NO production
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would likely contribute to disease progression [148]. However, inducible NOS (iNOS) knockout
mice have accelerated surgically-induced OA, suggesting that iNOS activity is protective against
pathogenesis of surgically-induced OA [149]. Overall, based on the link of OA to cardiovascular
disease, there may be a systemic push towards fibrosis while the local joint environment may have
both pro-inflammatory, NO-mediated destruction, and fibrosis via arginine catabolism. As arginine is
also decreased in depression, this would suggest that depression may be a consequence of changes in
the OA metabolome or could exacerbate OA pathologies including fibrosis, inflammation, and pain.

5. Conclusions

Based on changes in the circulating metabolome, it is apparent that OA can result from and
contribute to the overall systemic health of an individual. Multiple variables can contribute to changes
in the metabolome in OA, including age, sex, BMI, and various co-morbidities including diabetes,
depression, and cardiovascular disease. Thus, OA can be considered a complex, system-wide disease
with heterogeneous etiologies where multiple variables, including the metabolome, should be weighed
when caring for patients and treating the disease. Furthermore, therapies used to treat comorbidities
such as depression, diabetes, and cardiovascular disease, should also be evaluated for impact in the
local joint environment to determine whether local, in addition to systemic therapy, could alleviate
OA pathologies and symptoms. In particular, the effects of these therapies on the local and systemic
metabolome should be studied to define how these drugs influence the metabolites that cells and
tissues respond to, and what types of symptom-modifying or disease-modifying responses could
be expected. Further studies should concentrate on metabolic pathways known to be altered in OA
including PC-lysoPC-LPA, BCAA-mTOR, and arginine-NO/L-ornithine pathways and their links to
other comorbidities with common metabolite profile changes including diabetes, depression, and
cardiovascular disease.
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