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ABSTRACT

We recently proposed to classify proteins by their
functional surfaces. Using the structural attributes
of functional surfaces, we inferred the pairwise re-
lationships of proteins and constructed an expand-
able database of protein surface classification
(PSC). As the functional surface(s) of a protein is
the local region where the protein performs its
function, our classification may reflect the func-
tional relationships among proteins. Currently,
PSC contains a library of 1974 surface types that
include 25 857 functional surfaces identified from
24 170 bound structures. The search tool in
PSC empowers users to explore related surfaces
that share similar local structures and core func-
tions. Each functional surface is characterized
by structural attributes, which are geometric,
physicochemical or evolutionary features. The attri-
butes have been normalized as descriptors and
integrated to produce a profile for each functional
surface in PSC. In addition, binding ligands are
recorded for comparisons among homologs. PSC
allows users to exploit related binding surfaces to
reveal the changes in functionally important
residues on homologs that have led to functional
divergence during evolution. The substitutions
at the key residues of a spatial pattern may deter-
mine the functional evolution of a protein. In
PSC (http://pocket.uchicago.edu/psc/), a pool of
changes in residues on similar functional surfaces
is provided.

INTRODUCTION

Characterizing protein function and classifying proteins
into proper families are two major goals in the study of
proteins. The commonly accepted definition of a protein
family is a group of proteins that share similar sequences,
structures and functions that are derived from a common

ancestor. Well-known classifications, such as Pfam (1),
COG (2), structural classification of proteins (SCOP) (3)
and class, architecture, topology, homologous superfamily
(CATH) (4) have provided biological insights into protein
structure, function and evolution. However, two proteins
may have diverged so much, such that their homology is
no longer evident at the sequence or global structural
level, making it challenging to decide if the two proteins
are functionally related. This underscores the importance
of identifying local structural regions that are well
conserved in evolution (5,6).
Protein classification has important missions, such as

the identification of binding sites involved in biochemical
reactions, characterization of related proteins that share
common core functions and identification of the evolu-
tionary forces that affect functional divergence during
protein evolution. Using protein functional surfaces as
the basis for classification may achieve these purposes
(7). Functional surfaces are local structures which may
give immediate clues to functionally important protein
regions. Most importantly, they are central units in
proteins and provide site-specific information as to how
a protein interacts with small molecules and other
proteins. Evolutionarily, they tend to be better conserved
than primary sequences. Therefore, they can be used to
classify more distantly related proteins (8). Indeed, func-
tional surfaces can even reveal relationships among
proteins that belong to different folds (8–10). On the
other hand, functional surfaces can also be used to
detect subtle functional differences among proteins with
the same fold. For example, oxophytodienoate reductase
and NADPH dehydrogenase have the same fold identifi-
cation of CATH 3.20.20.70 (Aldolase class I). However,
their Enzyme Commission (EC) annotations are EC
1.3.1.42 and EC 1.6.99.1, so they actually have different
enzymatic functions.
Our approach relies on pairwise surface structural

similarities (7,8,11,12). As the computational cost is ex-
tremely heavy for an exhaustive pairwise comparison of
all local putative surfaces, we focused on the functional
surfaces of bound forms (i.e. proteins with ligands),
because they provide not only abundant biological
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information but also fixed binding shapes. We first carried
out a coarse classification by pairwise local RMSD
measures and grouped approximately 24 000 bound struc-
tures into approximately 2000 surface types. Each surface
type was then refined into surface subtypes by structural
attributes. A major strength of our approach is that we
consider the characteristics of spatial patterns, physio-
chemical texture and evolutionary conservation. We
called it protein surface classification (PSC). PSC
includes the largest database of protein functional
surface classification and it has been expandable. Each
surface in PSC includes geometric measurements and
structural attributes, which form a profile (i.e. a surface
signature). We calculated the local structural relationships
of functional homologs in protein families using a func-
tional inference technique. These features can be used to
exploit similar functional surfaces for revealing inter-
changeability between functionally important residues
(see an example below). In addition, the binding ligands
of homologs can provide structural information as to how
a protein potentially interacts with a variety of ligands,
which may give a clue for developing therapeutic drugs.
Finally, PSC provides a framework for classifying
unbound structures.

PSC LIBARAY AND DATA ACCESS

The PSC database was constructed as follows. First, we
collected the bound structures from 24 170 entries of
Protein Data Bank (PDB) (13), which included a total of
25 857 chains. Then, using an automated pipeline, we
identified the binding surfaces of each bound form (9,14)
and calculated their geometric measurements, including
the composition of a spatial pattern, solvent accessible
area and molecular volume. In addition, we provided bio-
logical annotations via cross-links to UniProt (15).
Enzyme annotations from EC (16) and fold terms from
CATH are provided. We also allow users to access all
putative binding surfaces along with their corresponding
evolutionary conservation and geometric measurements.
Most importantly, structurally similar or functionally
related binding surfaces across species are associated
with each other and characterized by structural attributes.
PSC is freely accessible at http://pocket.uchicago.edu/

psc/ and the detailed file format is also provided.

CLUSTERING METHOD BASED ON AN
AGGLOMERATIVE APPROACH

To establish PSC, we applied a clustering analysis on these
25 857 identified binding surfaces by an agglomerative
approach (7). We first conducted exhaustive pairwise
local surface comparisons. We then grouped similar
surfaces into a surface type at a threshold of structural
similarity based on the local RMSD P� 10�4. Each
surface type is uniquely represented by a center which is
the member with the highest degree of connections and
with the smallest mean RMSD that possesses the most
generic spatial pattern for the surface type. As a result,
we classified these 25 857 binding surfaces into 1974
surface types by clustering local structures.

DISCOVERING STRUCTURAL HOMOLOGS IN A
SURFACE TYPE

A user can submit a PDB code as a query to
PSC. A functional surface hit will be displayed on the
pre-computed result page and can be visualized inter-
actively through the JMOL plugin (17). For example, it
is fully customized for selecting site-specific residues on a
spatial pattern. Each surface in PSC contains the detailed
geometric measurements and structural attributes,
including the residue composition, polar solvent accessible
area, apolar solvent accessible area, sphericity, aniso-
tropic, surface density, skewness and kurtosis. These
selected structural attributes are extracted and integrated
to produce a profile for the query.

PSC can also compute the local structural relation-
ships among the homologs within a surface type. These
pre-computed structural homologs contain both their EC
annotations and CATH identifications. Users may launch
a new browser window to reconstruct a structural phyl-
ogeny and compute pairwise distances based on RMSD
measures with P-values for statistical evaluation.
Importantly, these local pairwise relationships allow
building a structural phylogeny to understand protein
functional divergence.

We use a familiar protein, human alcohol dehydrogen-
ase (ADH, PDB1htb with chain A), as an example to
show what information PSC provides. PSC first gives an
overview of geometric measurements and produces a
structural visualization as shown in Figure 1. ADH inter-
acts with a cofactor nicotinamide adenine dinucleotide
(NAD). The identified functional surface contains a
spatial pattern of 38 residues, a solvent accessible area
of 676.95 Å2 and a molecular volume of 827.54 Å3. R47,
T48, H51 and L57 are the catalytic residues involved in the
reactivity of ADH, which is annotated with EC 1.1.1.1
and a fold identification of CATH 3.90.180.10 and
3.40.50.720. The detailed biological annotation from
UniProt can be accessed through the accession number
of P00325. The R47H mutant of ADH destabilizes the
interaction with the cofactor NAD and affects the
ability of catalyzing alcohol. This phenotypic mutant
explains a low risk of alcoholism (18). Moreover, the
mass center of the functional surface is located at
(�5.76, 11.59, �28.48), while the global mass center of
the protein is located at (1.21, 11.13, �26.71). The
distance between the two centers, called the anisotropic
distance, is 7.2 Å (19). Previous studies (7,19) have
shown that protein binding sites tend to be close to the
mass center of a protein. In a large-scale computation, we
found that a functional surface has an average anisotropic
distance of 10.28 Å with a standard deviation of 5.15 Å.
This well-characterized distance, therefore, is useful for
predicting the binding site of a protein.

PSC also provides a surface signature for a query.
In Figure 2, it contains a profile from the structural attri-
butes in terms of geometric features, physicochemical
textures and evolutionary conservation. These structural
attributes have been normalized to be between �1 and 1 to
serve as descriptors. This computed profile captures the
surface characteristics of a protein. For example, the
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shape of the whole ADH structure with a sphericity of
0.51 is almost the same as that of its binding pocket
despite of different orientations. However, the distribution
of the atoms of ADH has a perfect symmetric shape with a
skewness of 0, while that of its binding pocket has a
skewness of 0.3. We also found that the apolar solvent
accessible area of 1172.54 Å2 in the binding pocket is
much wider than the polar area of 601.49 Å2, which
may give favorable hydrophobic interaction with the
cofactor NAD. By comparing the two computed
profiles, one may make a functional inference in shape
analysis through the assessment of similarity between
two binding surfaces and determine whether their
surface types have come from a common ancestor.
We have set our goal to achieve a better understanding

of protein molecular function and structural evolution.
Therefore, PSC provides a pre-computed list of related
members from the same surface type. For example, the
surface type of ADH includes 75 structural homologs
across many species including human, horse, mouse,
Gadus callarias (fish), Rana perezi (frog), Scaptodrosophila
lebanonensis (fly), Arabidopsis thaliana (plant), Sulfolobus
solfataricus (archaea) and Pseudomonas aeruginosa
(bacteria). These homologs share a core function which
was already present in their common ancestor. The core
function contains EC annotation(s) and CATH identifica-
tion if it is identified. One may follow the link to access the
profile of a member. We recorded their spatial patterns

Figure 1. Identification and characterization of the functional surface of human alcohol dehydrogenase (ADH). The geometric features and func-
tional, fold and biological annotations are highlighted. The binding pocket with the cofactor NAD (red) was predicted using the SplitPocket
algorithm (10). The pocket contains a cluster of 38 binding residues (green) with catalytic residues (pink) such as R47, T48, H51 and L57. Among
the pocket residues, the halo-gold color means a selected residue and halo-blue indicates the currently selected residue, for example, R47. The UniProt
and EC annotations, and the CATH terms are also provided.
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Figure 2. The surface signature of human alcohol dehydrogenase
(PDB1htb.A). The structural attributes as descriptors have been
normalized, so that their values are between 1 and �1. The selected
descriptors include global polar solvent accessible area (a), global
apolar solvent accessible area (b), local polar solvent accessible area
(�), local apolar solvent accessible area (d), global sphericity (e), local
sphericity (j), local surface density (g), global skewness (Z), global
kurtosis (i), local skewness (r) and local kurtosis (k). From this
profile, one can see that the symmetric shape (Z=0) of the whole
structure is similar to that of its functional surface (e=j& 0.51),
which also contains a much wider apolar solvent accessible area
(d=0.66) than the polar area (�=0.34).
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and functionally important residues as shown Figure 3, so
that users can enumerate possible combinatory compos-
itions of a binding shape similar to the query. That is,
geometric considerations are taken for mapping spatial
patterns to the diverse shapes of binding sites produced
by evolution. Such geometric and physicochemical
features are invaluable for users who are interested in
drug design and directed enzyme evolution. This is
because these related surfaces provide cheminformatic
clues of actual binding sites from structural homologs
under physicochemical constraints that have been acting
on functionally important residues. The immediate benefit
is to exploit similar binding surfaces to reveal the inter-
changeability between important residues and the patterns
of how a protein surface type with essential biological
functions has evolved. From these related patterns, for
example, one can find the residue variants of R47 in
ADH: H, P, and G (Figure 3), which have been identified
in fish (H), mouse (P) and frog (G), respectively. Residue
preference is also observed across species. Through

screening evolutionary variants, one can effectively
engineer a protein to gain a desired function, and design
drugs or inhibitors in a rational manner. Moreover, this
site-specific analysis gives a potential mean to study
human disease associated non-synonymous single nu-
cleotide polymorphisms (nsSNPs) through the Online
Mendelian Inheritance in Man (OMIM, http://www.
ncbi.nlm.nih.gov/omim/), if their geometric locations
could be structurally identified. The spatial patterns
provide a set of residue variants to study functional diver-
sification and disease-associated nsSNPs (20,21). Finally,
a comparison of surface members with EC annota-
tions and CATH identifications allows users to gain struc-
tural insights into the relationship between shape and
function.

FUTURE DEVELOPMENTS

In the near future, we intend to apply the framework to
unbound structures in order to establish a comprehensive
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Figure 3. Multiple surface alignment of eight ADH orthologs by the first 14 binding residues of spatial pattern. The structural orthologs: (a) human
(PDB1htb.A), (b) horse (PDB1a71.A), (c) mouse (PDB1e3e.A), (d) fish (PDB1cdo.A), (e) frog (PDB1p0f.A), (f) plant (PDB2cf6.A), (g) archaea
(PDB1r37.A) and (h) bacteria (PDB1llu.A) with their binding cofactors (red) are shown immediately below. Their identified binding residues are
colored in green, while their catalytic residues are colored in pink. In PSC, a surface type gives a collection of binding surfaces similar to a query to
reveal the change in the functionally important residue variants. For example, R47 in human can potentially mutate to H, P and G as shown in
(a) R47, (b) R47, (c) P47, (d) H47, (e) G1047, (f) H48, (g) H45 and (h) H39. Among them, their aligned residues are indicated in halo-blue color.
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surface classification. For this purpose, we have been de-
veloping a surface matching algorithm (7,8,22) to do the
task of surface alignment between a bound and an
unbound form. The new development will allow users to
use a surface alignment method with a P-value statistical
evaluation. This development should invite further explor-
ation of structural insights into protein function, classifi-
cation and evolution.
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