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Abstract
In zebrafish developmentally exposed to ambient ethanol (20mM-50mM) 1–9 days post fer-

tilization (dpf), the cortisol response to stress has been shown to be significantly attenuated

in larvae, juveniles and 6 month old adults. These data are somewhat at variance with simi-

lar studies in mammals, which often show heightened stress responses. To test whether

these cortisol data correlate with behavioural changes in treated animals, anxiety-like

behaviour of zebrafish larvae (9dpf and 10dpf) and juveniles (23dpf) was tested in locomo-

tor assays designed to this end. In open field tests treated animals were more exploratory,

spending significantly less time at the periphery of the arena. Behavioural effects of devel-

opmental exposure to ethanol were sustained in 6-month-old adults, as judged by assess-

ment of thigmotaxis, novel tank diving and scototaxis. Like larvae and juveniles,

developmentally treated adults were generally more exploratory, and spent less time at the

periphery of the arena in thigmotaxis tests, less time at the bottom of the tank in the novel

tank diving tests, and less time in the dark area in scototaxis tests. The conclusion that etha-

nol-exposed animals showed less anxiety-like behaviour was validated by comparison with

the effects of diazepam treatment, which in thigmotaxis and novel tank diving tests had simi-

lar effects to ethanol pretreatment. There is thus a possible link between the hypophyseal-

pituitary-interrenal axis and the behavioural actions of developmental ethanol exposure.

The mechanisms require further elucidation.

Introduction
The damaging effects of ethanol exposure during development in humans have been amply
described, and its subsequent behavioural consequences, are part of a range of symptoms col-
lectively known as Fetal Alcohol Spectrum Disorder [1]. Some of these symptoms, like growth
and facial defects, are apparent at an early age [2,3]. Others become clear in later life, for exam-
ple children from alcoholic mothers are more likely to become drug addicts in adolescence or
in adulthood, and may develop personality and psychotic disorders [4,5].
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The mechanisms underlying such sustained effects of prenatal ethanol exposure in humans
are still obscure, but it is now widely believed that the hypophyseal–pituitary–adrenal (HPA)
axis is involved [6,7] since prenatal ethanol exposure frequently results in increased HPA tone
and heightened HPA responsiveness in infancy which persists through adolescence into adult-
hood [6,8,9]. In rats too, animals prenatally exposed to ethanol show differences in HPA tone,
revealed by elevated plasma ACTH and corticosterone levels in response to acute and chronic
stressors.[10–15]. Additionally, both in humans and rats developmental exposure to ethanol
evokes changes in behavioural measures of stress-reactivity in later life [16–24].

Effects of ethanol on the HPA axis are not only seen during development. In post-natally
treated animals the HPA is invariably perturbed by alcohol, with severity depending on several
factors including age of the animal, dose and duration of exposure [25–27]. These and other
studies have led to the widely accepted hypothesis that prenatal ethanol exposure induces long
lasting adaptation at multiple levels within the HPA axis, resulting in alterations in both HPA
drive and feedback regulation [17,28,29]. All of this raises many interesting questions, most nota-
bly what is the precise nature of the link between developmental alcohol exposure and the HPA?

It is clear that animal models replicate many of the human findings [30–32]. While much
value has been obtained from the study of various mammals, mostly rodents, others have
sought answers in the zebrafish, in which tractability and transparency, conferring relative ease
of use, are key advantages [33–37]. However, in marked contrast to the previous studies in
humans and mammalian models, in zebrafish it was found that after developmental exposure
to ambient ethanol (20mM-50mM) 1–9 days post fertilization (dpf), the cortisol response to
stress was not heightened but significantly attenuated in larvae, juveniles and 6 month old
adults [38]. Accordingly, it is appropriate to determine whether this unexpected finding of a
decreased cortisol response to stress is accompanied with reduced anxiety-like behaviour, as
the concept of a linkage between the HPA and behaviour would suggest.

Several behavioural measures have been developed to assess stress or “anxiety” levels in zeb-
rafish, including thigmotaxis (time spent at the edge of apparatus), scototaxis (time spent at the
bright side of tanks), “freezing” and novel tank diving (time spent at the bottom of tanks) [39–
41], as well as tests for social interaction, or shoaling. Here we exploit established assays thought
to reflect stress-related responses, to determine whether the clear effects of developmental etha-
nol exposure on the cortisol response of the HPI are associated with changes in behaviour.

Materials and Methods

Animal maintenance
All animal work was carried out following approval from the Queen Mary Research Ethics
Committee, and under license from the Animals (Scientific Procedures) Act 1986. Care was
taken to minimize the numbers of animals used in this experiment in accordance with the
ARRIVE guidelines (http://www.nc3rs.org.uk/page.asp?id=1357). All behavioural experiments
were carried out with systematic variation and randomization of housing allocation by treat-
ment, as suggested by Parker [42]. Where relevant animals were sacrificed using terminal anae-
thesia with tricaine or other approved anaesthetic.

Zebrafish (Danio rerio) (Tuebingen wild type) were kept on a constant 14h:10h light:dark
cycle at 28°C and fed 3 times a day with flake food and brine shrimp. All fish were bred and
reared in the aquarium facility at Queen Mary University of London, licensed by the UK Home
Office. Fish water used was prepared by dissolving sodium bicarbonate (0.9mM), calcium sul-
phate (0.05mM) and marine salts (0.018g/l)(Sigma, Poole, UK).

Embryos were separated from unfertilized ova and selected at the 8-cell stage to minimise
age differences. For further accuracy embryos were staged using head-trunk angle and the
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optic vesicle length at 24 hours post fertilisation (hpf) [43]. They were then grouped in Petri
dishes (Sterilin, Newport Gwent, UK) containing 50 embryos in 40ml of fish water for each
treatment (ethanol or control) and reared in an incubator set at 28°. Embryos were collected
and treated on 3 separate days.

Larvae were fed with Zmsystems ZM-000 high protein food particles (Tecniplast UK, Lon-
don) from 5dpf-10dpf, ZM-100 and paramecium from 11dpf-14dpf, and ZM-200 and brinesh-
rimp from 14dpf-30dpf. At one month of age, animals were transferred into aquaria where
they were fed ZMsystems flake food and brineshrimp. For developmental ethanol exposure,
treated larvae were exposed from 1–9dpf to 20mM or 50mM GPR ethanol (VWR, Lutterworth
UK). Controls were handled similarly, but ethanol was omitted. For each experiment, control
and experimental larvae were age and size matched: adults were sex matched in addition.

Image collection
For zebrafish larval and juvenile thigmotaxis assays, a high-throughput imaging system for
automated analysis was used. This comprises a 15-megapixel infrared Imaginsource digital
camera DMK21AF04 attached to the lower shelf of an acrylic cabinet to allow filming from
below the testing plate placed on the upper shelf. Either a 12-well plate (for 9dpf and 10dpf lar-
vae) or a 6-well plate (for 23dpf juveniles) was used for this assay.

For the automated analysis of zebrafish adult behaviour a 15-megapixel SONY digital cam-
era was used to film from above the tank, except in the case of the novel tank diving assay in
which filming was from the side. Captured footage was automatically analysed using EthoVi-
sion XT 10 (Noldus, Wageningen).

Thigmotaxis
Larvae and juveniles. Methods followed those of Richendrfer et al [44]. Larvae or juveniles

were raised in Petri dishes or nursery tanks. One hour prior to the assay, animals were trans-
ferred in 6-well plates by pipetting with no more than 12 larvae or 3 juveniles per well. Wells
were filled with 10ml of fish water. Experimental animals were transferred by pipetting them
individually to a well in a 12-well plate (22mm diameter, used for 9dpf larvae) or a 6-well plate
(34mm diameter, used for 23dpf juveniles), and immediately placed on the recording apparatus
as described above.

The automated software (EthoVision) analyses the time spent at the outer zone of the well
in the 6-well plate. The outer zone was defined as the region 4mm (average body length of a
9dpf larva) or 8mm (average body length of a 23dpf juvenile) from the edge of the well. Larvae
were filmed for 5–10min, and juveniles for 5min. For characterization of the effects of diaze-
pam on thigmotaxis, larvae were pretreated with 0.1mg/l diazepam (cf. reference [44]) for 6
minutes prior to thigmotaxis assessment. Diazepam was present at the same concentration
throughout the thigmotaxis assay.

Adults. Experimental and control adults were housed in adjacent compartments of the
same tank for 2 weeks prior to the start of the assay. Thigmotaxis was assayed using white
opaque polypropylene circular tanks (410mm height x 320mm diameter) filled with 2l of fish
water. The outer zone was defined as the region 4cm (the average length of an adult fish) from
the edge of the tank, and the time spent in this zone was determined.

Tests were performed during the light phase at least 2 hours after lights on and feeding,
between the hours of 11.00am and 5.00pm. Animals were carefully transferred into the tanks
using hand-nets and immediately filmed for 6 minutes. Ethanol treated and control groups
were tested alternately in four identical tanks. For characterization of the effects of diazepam
on adult thigmotaxis, zebrafish were pre-incubated in 5mg/l diazepam (cf reference [45]) for 6
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minutes prior to thigmotaxis assessment. Diazepam was present at the same concentration
throughout the thigmotaxis assay.

Novel tank diving
Methods followed those of Parker et al. [37]. Experimental and control adults were housed in
adjacent compartments of the same tank, for 2 weeks prior to the start of the assay. Novel tank
diving was then assayed using trapezoid tanks (152mm height, 279mm top length/225mm bot-
tom length, 71mm width) filled with 1.5l fish water.

Tests were performed during the light phase (9am-5pm). Animals were transferred to the
novel tanks using hand-nets and immediately filmed for 5 minutes. Ethanol treated and control
groups were tested alternately in identical tanks. Diving was assessed as the time spent in the
lower third of the tank (approx. 50mm). For characterization of the effects of diazepam on
novel tank diving, zebrafish were pre-incubated in 5mg/l diazepam (cf reference [45]) for 6
minutes prior to transfer to the novel tank environment. Diazepam was present at the same
concentration throughout the novel tank diving assay.

Scototaxis
Methods followed those of [46]. Experimental and control adults were housed in adjacent com-
partments of the same tank for 2 weeks prior to the start of the assay. White opaque tanks
(330mm length x 160mm width x 130mm height) containing 2l fish water were used. They
were divided into two compartments by a black opaque acrylic divider, with a square hole in
the middle (50 x 50mm). One side of the tank was exposed to light and the other side was
darkened.

Animals were transferred using hand-nets into the lit side of the tanks and immediately
filmed for 9 minutes on the lit side. Treated and control groups were tested alternately in iden-
tical tanks.

Statistics
Stress reactivity data were fitted to a linear mixed effects model [47] with fixed effects that
included ‘ethanol dose’ and ‘time’ using R software (R Development Team). ‘Fish ID’ nested in
‘housing tank’ was included as a random effect. Distance travelled was entered as a covariate in
all models to account for immobility and darting periods. The dependent variables were the
period of time spent in the designated zones. Post-hoc Student’s T-tests were applied to charac-
terise simple main effects and interactions.

Results

Thigmotaxis
Larvae and juveniles. Control and treated animals were tested at 9dpf, 10dpf and 23dpf

stages for differences in thigmotaxis, thus during ethanol treatment, and, their siblings, at
10dpf and 23dpf, one day or two weeks after treatment had ended. Decreased time spent at the
periphery of the wells was observed at all stages (Fig 1), although there was no obvious dose
relationship at the two concentrations of ethanol used. Zebrafish 9dpf larvae acutely exposed to
diazepam (0.1mg/L) exhibited reduced time spent at the edge of wells (Fig 1G and 1H). There
were no differences between the groups in the distances travelled. Experiments were repeated
on 3 separate occasions using approximately 50 animals in each treatment group on each
occasion
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Fig 1. Stress-related behaviour assessed by thigmotaxis in zebrafish larvae A,B) 9dpf, C,D) 10dpf, E,F)
23dpf juveniles. G,H) Effect of diazepam on larval stress-reactivity assessed by thigmotaxis. Time course of
average time spent each minute at the edge of the apparatus (A, C, E), overall average time spent per minute
at the edge of the apparatus (B, D, F). (A-D) Developmental ethanol exposure decreased thigmotaxis at both
9dpf (A,B: F 2,105 = 4.76, P<0.05) and 10dpf (C,D: F 2, 285 = 6.69, P<0.05), with the greatest difference
between 20mM ethanol treatment and the control. Siblings of the same animals were raised for another 2
weeks and tested as 23 dpf juveniles (E,F). These juveniles exhibited a similar thigmotaxis response as at
9dpf, with decreased thigmotaxis in ethanol treated animals compared to controls (F 2,146 = 2.93, P<0.05).
(G-H) Larvae acutely treated with diazepam for 6 minutes exhibited significantly reduced time spent at the
edges of the wells compared to controls (F 1, 259 = 5.47, P<0.01). There were no significant differences in
distance travelled. Post-hoc t-test: *** P<0.001, ** P<0.01.

doi:10.1371/journal.pone.0148425.g001
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Adults. Adult zebrafish that had been treated developmentally with 20mM ethanol exhib-
ited a decrease in time spent at the edge of the circular tank compared to controls (Fig 2), how-
ever, animals treated with 50mM ethanol showed no change. Zebrafish 6-month old adults
acutely exposed to diazepam (5mg/L) exhibited reduced time spent at the edge of the tanks
(Fig 2D). There were no differences between the groups in the distances travelled. Experiments
were repeated on 6 separate occasions using approximately 20 animals in each treatment group
on each occasion

Novel tank diving
Adults treated with ethanol during development exhibited decreased bottom dwelling in the
novel tank. There were no differences between the groups in the distances travelled. (Fig 3C).
Zebrafish 6-month old adults acutely exposed to diazepam (5mg/L) exhibited reduced time
spent at the bottom of the tanks (Fig 3D). Experiments were repeated on 3 separate occasions
using approximately 20 animals in each treatment group on each occasion

Scototaxis
Early ethanol exposure caused an increase in time spent on the bright side of the tank com-
pared to controls (Fig 4). This effect was more prominent with animals that had been develop-
mentally exposed to 20mM ethanol. Due to assay limitations, animal tracking in the dark side
of the tanks was not recorded; therefore distance travelled for scototaxis was not assessed.
Experiments were repeated on 3 separate occasions using approximately 10 animals in each
treatment group on each occasion

Discussion
The HPA axis, and extrahypothalamic CRH, are thought to be involved in adult responses to
both acute and chronic ethanol exposure, and show characteristic responses to ethanol and
other substance abuse in humans and in mammalian models [48–50], and also in zebrafish
[33–37]. We recently demonstrated that developmental exposure to ethanol in zebrafish causes
a sustained effect on whole body cortisol. In these experiments, the cortisol response to stress
was dampened in both larvae and juveniles 1 day and 2 weeks after exposure, and also in adults,
6 months after treatment [38].

It is now clear from the present results that this change in cortisol response is accompanied
by behavioural changes. The behavioural characteristics studied here are often interpreted as
measures of fear or anxiety. Thus animals that are threatened by new surroundings show char-
acteristic responses in thigmotaxis, scototaxis and tank diving that can be interpreted as strate-
gies to minimise detection. In general, the ethanol-evoked changes shown in Figs 1–4 in
thigmotaxis, scototaxis and novel tank diving, show exploratory movement indicating relative
absence of stress, which fits well with the lower response to stress in the cortisol data [38]. This
interpretation is supported by data shown in Figs 1–3 indicating diazepam treatment has a sim-
ilar effect to reduce thigmotaxis, and tank diving as evoked by developmental ethanol exposure
(Figs 1–4).

The association between these two sets of data, cortisol and behavioural does not necessarily
imply causality. It is nevertheless striking how often these are linked.

Stress is a complex concept. It is impossible to quantitate, except through secondary indica-
tors. Of these, cortisol is perhaps the most frequently used (or corticosterone in rats or mice).
Caution must be exercised however, because its actual function in the response to stress
remains obscure, and its use as a measure of stress is confounded by its regulation by other fac-
tors not obviously stress-related, such as the time of day [51]. For this and other reasons it may
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Fig 2. Stress-reactivity of 6-month old zebrafish as assessed by thigmotaxis. A) Time course of average time spent per minute at the edge of the
apparatus, B) overall average time spent per minute at the edge of the apparatus,C) distance travelled during thigmotaxis, D) Effect of diazepam on adult
zebrafish stress-reactivity assessed by thigmotaxis. A,B) Adult zebrafish that had been experimentally exposed to ethanol spent decreased time at the edge
of the tank, (F 2, 127 = 3.09, P<0.05). There were no significant differences in distance travelled (C). Adults acutely exposed to diazepam exhibited reduced
time spent at the edges of the tanks compared to controls (F 1, 4.98 = 5.44, P<0.001) (D). Post-hoc t-test, * P<0.05.

doi:10.1371/journal.pone.0148425.g002
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be unwise to extrapolate from the human species (in which stress, though widespread, remains
a subjective phenomenon, not measurable by observers) to the zebrafish whose physiological
situation and demands are very different.

Nevertheless, the similarities between mammalian and zebrafish responses to stressful situa-
tions have been used to promote the view that the zebrafish can be used as a model for human
emotional states such as anxiety, resulting from stress [40,41,52]. This gains credibility from
the actions of drugs, especially known anxiolytics such as diazepam, on zebrafish behaviour in
response to stress [53,54] c.f. Figs 1–3. It is also supported by relating behavioural stress
responses to whole body cortisol [55,56].

Fig 3. Stress-reactivity measured by novel tank diving in 6-month old adult zebrafish. A) Time course of average time spent per minute at the bottom of
the tank, B) overall average time spent per minute at the bottom of the tank each minute,C)mean distance travelled per minute during novel tank diving.D)
Effect of diazepam on zebrafish stress-reactivity assessed by novel tank diving. A,B. Zebrafish that had been developmentally exposed to ethanol showed
reduced bottom dwelling (F 2, 682 = 3.47, P<0.05). There were no significant differences in distance travelled (C). D. Diazepam also significantly reduced
time spent by adults at the bottom of the tanks compared to controls (F 1, 408 = 5.45, P<0.001). Post hoc t-test, *** P<0.001.

doi:10.1371/journal.pone.0148425.g003
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Using this interpretation then, the present results suggest that developmental ethanol expo-
sure leads to a phenotype that is hyporeactive to stress, as evidenced by reduction in both beha-
vioural measures of anxiety and cortisol levels. Going further, developmental exposure to
ethanol not only appears to be anxiolytic, as judged by thigmotaxis in larvae and juveniles 1

Fig 4. Stress-reactivity measured by scototaxis in 6-month old adult zebrafish A) Time course of
average time spent at the bright side of the apparatus and B) overall average time spent at the bright
side of the apparatus. Adult zebrafish that had been developmentally exposed to ethanol spent more time
on the bright side of the tank (F 2, 31 = 3.85, P<0.05). Post hoc t-test, ** P<0.01, * P<0.05.

doi:10.1371/journal.pone.0148425.g004
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day or 2 weeks following treatment, but also in adults some 6 months after the cessation of
treatment as assessed by novel tank diving, thigmotaxis and scototaxis (Figs 1–4).

These data thus partly confirm but partly contrast with those of others. In mammals the
behavioural and cortisol response to ethanol is complex. Acutely, ethanol stimulates corticoste-
rone secretion in adult rats [25,57], but longer exposure is associated with depressed HPA
activity [27]. Ethanol withdrawal produces anxiogenic symptoms, including elevated cortico-
steroid, in humans, rodents, and in zebrafish [27,58–62]. Furthermore, developmental expo-
sure to ethanol in rodents leads in later life to similarly enhanced HPA responses to stress as in
the human species [31,63]

More pertinent to the present studies are those of Fernandes and Gerlai [64] and Bailey et al
[65] both of whom examined long term effects of early developmental ethanol exposure on
subsequent adult behaviour in zebrafish. The periods of exposure were far shorter than those
used in the present study, just 2h at 24hpf [64], and for 2h at 8hpf or 3h at 24hpf [65] and the
concentrations of ethanol used were up to 1% (171mM) [64], or 1–3% [65], thus approximately
5–15 times higher than the maximal concentration (50mM) used here. Fernandes and Gerlai
[64] used a shoaling assay, and showed that adult fish (6 months) that had been exposed to
higher concentrations significantly distanced themselves from a computer animated zebrafish
shoal. Bailey et al [65] tested their treated animals at 2 months, and found significant effects in
a tap startle assay, and in novel tank diving. Both of these tests showed greater activity in the
treated animals relative to the controls. Bailey et al [65] also conducted novel tank diving assays
and showed that treated animals were more exploratory and spent less time at the bottom of
the tank, consistent with the results reported here.

There may be differences in interpretation of all such behavioural data, but ours tends to
support the view that 1–9 day ethanol treatment has sustained actions that are primarily anxio-
lytic in zebrafish, thus contrasting with rodent data do not reflect those in rodents in which
prenatal ethanol subsequently produces symptoms of anxiety and depression [29,66]. Clearly
differences in handling and procedure can give variations in results, and we have found that
use of somewhat different treatment protocols may give some data at variance with that
described here ([37] and unpublished).

As mentioned in the introduction, we opted to use ethanol doses that reflect ethanol con-
centrations experienced by mammalian fetuses during development, which yielded in an anxi-
olytic phenotype. We acknowledge that different ethanol doses could potentially yield a
different phenotype under this same exposure period, as it has occurred with mice and zebra-
fish during different points of development [67,68].

The more important point that we seek to emphasise in this paper however, is that taking
the present data together with that from our previous study [38], there is a clear relationship
between behaviour and HPI function, reflecting similar results in mammals [50,58–60]. The
mechanisms merit further investigation.
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