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Purpose: The aim of this study was to propose and evaluate a novel three-dimensional
(3D) V-Net and two-dimensional (2D) U-Net mixed (VUMix-Net) architecture for a fully
automatic and accurate gross tumor volume (GTV) in esophageal cancer (EC)–delineated
contours.

Methods:We collected the computed tomography (CT) scans of 215 EC patients. 3D V-
Net, 2D U-Net, and VUMix-Net were developed and further applied simultaneously to
delineate GTVs. The Dice similarity coefficient (DSC) and 95th-percentile Hausdorff
distance (95HD) were used as quantitative metrics to evaluate the performance of the
three models in ECs from different segments. The CT data of 20 patients were randomly
selected as the ground truth (GT) masks, and the corresponding delineation results were
generated by artificial intelligence (AI). Score differences between the two groups (GT
versus AI) and the evaluation consistency were compared.

Results: In all patients, there was a significant difference in the 2D DSCs from U-Net, V-
Net, and VUMix-Net (p=0.01). In addition, VUMix-Net showed achieved better 3D-DSC
and 95HD values. There was a significant difference among the 3D-DSC (mean ± STD)
and 95HD values for upper-, middle-, and lower-segment EC (p<0.001), and the middle
EC values were the best. In middle-segment EC, VUMix-Net achieved the highest 2D-
DSC values (p<0.001) and lowest 95HD values (p=0.044).

Conclusion: The new model (VUMix-Net) showed certain advantages in delineating the
GTVs of EC. Additionally, it can generate the GTVs of EC that meet clinical requirements
and have the same quality as human-generated contours. The system demonstrated the
best performance for the ECs of the middle segment.
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INTRODUCTION

More than one-third of patients who have unresectable esophageal
cancer (EC) or are ineligible for surgery are recommended for
radiotherapy (RT) as the locoregional treatment modality (1).
Accurate segmentation of the gross tumor volume (GTV) is
critical for increasing the treatment efficacy. GTV contouring for
EC is variable because the esophagus lacks a serousmembrane; thus,
there are differences in the quality, efficiency, and repeatability of
delineation between different physicians (2). Additionally, the time
to delineate a patient’s target area is affected by the physician’s
proficiency, ranging from tens ofminutes to 1 h. The automation of
tumor contouring is an effectivemeans to solve the above problems,
aiming to improve the consistency and save time. However, the
automation of tumor contouring for EC is challenging due to the
substantial interpatient heterogeneity in tumor shape and the
poorly defined tumor-to-normal tissue interface.

Artificial intelligence (AI) techniques using convolutional
neural networks (CNNs) have shown tremendous potential in
medical image processing and the automated segmentation of
normal anatomy (3–8) and the GTV (9–12). These technologies
have high accuracy and reduced processing time compared to the
atlas-based segmentation methods (13, 14) commonly used
today. As a well-known CNN architecture for medical image
segmentation, U-Net (15) has been widely utilized in all CNN-
based contour delineation models.

Recently, deep learning has achieved success in the automatic
contouring of head and neck carcinoma (16–20), rectal carcinoma
(21–23), breast carcinoma (24, 25), and cervical carcinoma tumors
(26, 27). Nevertheless, there is little research on the application of
CNNs in the delineation of the GTV for patients undergoing their
initial EC treatment. Here, we present a novel three-dimensional
(3D) V-Net (28) and two-dimensional (2D) U-Net mixed
(VUMix-Net) architecture for segmentation of the GTV in the
planning computed tomography (CT) for EC. We took advantage
of two deep learning models to automatically delineate the GTV
contour of EC. The first model yielded the gross localization of the
EC, which was used to determine the slices containing the EC
tumors. For each of these slices, the second model delineated the
GTV contour precisely. We compared the performance for EC in
the three segments of the esophagus and explored in which
segment the application effect of the AI was best.
MATERIALS AND METHODS

Data and Preprocessing
The studywas approved by the ethics committee ofAnyangCancer
Hospital & The Fourth Affiliated Hospital and College of Clinical
Medicine of Henan University Science and Technology. The
patients provided written informed consent to participate in this
study.TheCTdata from215patientswith locally advancedECwere
collected from November 2017 to January 2020. All scans were
acquiredwith a BrillianceCTBigBore (PhilipsHealthcare, Best, the
Netherlands) with a thickness of 5 mm. The private information of
the patients was kept confidential during the data collection and
processing. The GTV contours delineated manually by a trained
Frontiers in Oncology | www.frontiersin.org 2
radiation oncologist (with more than 20 years of experience in
caring for patients with EC) before radiotherapy in clinical practice
were used as the segmentation ground truths (GTs). The GTV was
defined according to CT imaging, gastroscopy, and
esophagography findings. GTV delineation is associated with the
International Commission on Radiology Radiation Units and
Measurements 95 report (29) requirements, which are consistent,
and delineation with reference to Chinese guidelines for the
radiotherapy of esophageal cancer (2021 Edition) (30). To ensure
the delineation quality, all the delineated contours were reviewed
and modified (only when needed) together by a professional
radiation oncologist committee consisting of six oncologists with
more than 10 years of experience in radiotherapy for chest tumors,
which is the clinical routine in the radiotherapy department of this
hospital. These patients were randomly assigned to two cohorts: (a)
a training–validation cohort of 185 patients and (b) a testing cohort
of 30 patients.

Network Architectures
Physicians have difficulty delineating the GTV because the
location and shape of the EC tumor are highly variable and the
boundaries are rarely clear.

Therefore, to precisely identify the CT slices containing the EC
tumor, we proposed a multiscale focusing strategy to segment the
EC mask from coarse to fine. Figure 1 shows the architecture of
VUMix-Net. First, we converted all the CT scans to the same
resolution of 1mm×1mm×5mm. Second, each slicewas cropped
to a size of 192 × 192 with the barycenter of the body region as the
center point. V-Net is implemented as a localization network to
localize theECtumorbyextracting3D-structured informationwith
3D convolutions with volumetric kernels and using residual blocks
to avoid the vanishing gradient problem. The output of this 3D V-
Net is then processed by analyzing the continuity of the positive
slices. Only the slices within ten consecutive positive samples are
input into the 2D segmentation network. Figure 2 shows the
architecture of the 2D U-Net-based CNN. A 2D U-Net backbone
architecture consisting of an encoding path and a decoding path is
used in the2Dsegmentationnetwork.Toconcatenate themultilevel
features and take advantage of both the low-level and high-level
information, the encodingpath anddecodingpath are combined by
a skip connection in the typical U-Net. As a result, the network
learns to use the features equally. In this network, an attention block
is proposed to weight the lower-level features to multiply with the
higher-level features in the decoder part. Through the attention
block, multilevel features are combined with skip connections. As a
result, each attention block infers attention maps along both the
channel dimension and spatial dimension for adaptive feature
refinement. Informative features are emphasized, while other
features are suppressed.

Training
TheEC localizationnetwork and segmentationnetworkwere trained
in sequence.Afive-fold cross-validation strategywas appliedwith the
training–validation cohort. The model with the highest mean
validation performance across the five validation data sets was
selected. All the models were implemented by PyTorch and Python
and trained and tested on an NVIDIA TITAN RTX with 24-GB
July 2022 | Volume 12 | Article 892171
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memory. The two networks used the Adam optimizer with an initial
learning rate of 0.0001 and decayed by an exponential function with
gamma 0.9 for every epoch. For the localization network, we reduced
the number of channels to reduce the number of parameters, the
trainingbatch sizewas set as 4, and theprocess tookapproximately 23
h. For the segmentation network, the training batch size was 8, and
the process took approximately 15h. To compare the performance of
our proposedmethod, we conducted testing on the 3D segmentation
network (named V-Net), the 2D segmentation network with
attention enhancement (named U-Net), and VUMix-Net
separately. A weighted sum of the binary cross-entropy loss and
Dice loss was used as the loss function in all the segmentation
networks, while binary cross-entropy loss was used in the
localization network. The profiles of the training Dice similarity
coefficient (DSC) and loss are shown in Figure 3 (31).

Quantitative Evaluation
TheDSCand95th-percentileHausdorff distance (HD)wereused to
evaluate the image segmentation performance. The two values
Frontiers in Oncology | www.frontiersin.org 3
equaled 1 when the two masks were completely the same. The
95HD reflects the agreement between two contours; a higher value
indicates a larger difference. TheDSCwas calculated at the 2D level
and 3D level. Mean ± standard deviation (SD) values were
calculated by averaging all the values obtained. 3D-DSC was used
to compare thewhole segmented volumes in three dimensions. 2D-
DSC was evaluated only on the positive slices that contained
manually delineated contours. The 2D-DSC was set to 0 if a
positive slice was missed by the algorithm or a negative slice was
incorrectly recognized as positive, which is a very rigorous
evaluation method.

Clinical Evaluation
The evaluationwas conducted by twoother experienced clinicians, A
and B, in our center who did not participate in the GTV contouring.
Both of them have more than 15 years of experience in radiotherapy
and have treated more than 600 EC patients. Twenty patients were
selected randomly from the clinical work. The manual reference
contours were separated into the GT group, while the corresponding
FIGURE 1 | Architecture of VUMix-Net. The input CT slices are first cropped to better localize the body region. Slices are classified into positive or negative samples
by the 3D V-Net-based CNN. Precise segmentation is further applied to the positive slices through the 2D U-Net-based CNN.
FIGURE 2 | Architecture of the 2D U-Net-based CNN.
July 2022 | Volume 12 | Article 892171
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contours generated by the proposedmodel belonged to theAI group.
Then, the AI results and GT results of each case were randomly
labeled1or2. If theAI resultwas labeled1, theGTresultwas labeled2
and vice versa. Two clinicians were asked to score the 1 and 2 results,
sliceby slice,viaablindedevaluation.Theevaluationcriteria included
4 grades: 0—rejection (the segmentation is unacceptable andneeds to
be redrawn); 1—major revision (the segmentation needs significant
revision; 2—minor revision (the segmentation needs a few minor
edits but has no significant clinical impact without correction); and 3
—no revision (the segmentation is perfect and completely acceptable
for treatment).

Statistical Analysis
Categorical variables for the combined training–validation and
testing cohorts were compared by using the c2 test or Fisher
exact test. One-way ANOVA analysis of variance was used to
compare DSC and ASD between the different subgroups. The c2
test was used to compare the difference in the degrees of volumetric
revision between subgroups. The paired Wilcoxon rank-sum test
was used to evaluate the GTV scores of two evaluators and the AI
group and GT group scores of the single- evaluator clinical
assessment. All statistical comparisons were performed using
SPSS software (version 25.0; IBM, Inc., Armonk, NY, USA). A
value of P < 0.05 indicated statistical significance.
RESULT

Dataset Statistical Analysis
There were 185 patients in the training–validation cohort,
including 94 upper EC, 61 middle EC, and 30 lower EC
Frontiers in Oncology | www.frontiersin.org 4
patients. In the test cohort, there were 10 patients in each of
the upper, middle, and lower EC groups. The patient
characteristic statistical analysis results showed that no
significant differences were found between the training–
validation set and the test set in sex, age, and T category. The
patients’ characteristics are shown in Table 1.

Segmentation Performance
The quantitative evaluation results are summarized in Table 2.
The mean 2D-DSCs for all GTVs from U-Net, V-Net, and
VUMix-Net were 0.45 ± 0.31, 0.60 ± 0.29, and 0.68 ± 0.27,
respectively. The mean 3D-DSCs were 0.84 ± 0.12, 0.84 ± 0.13,
and 0.86 ± 0.12, and the mean 95HDs were 19.08 ± 21.15 mm,
15.24 ± 18.78 mm, and 13.38 ± 16.29 mm, respectively. There
was a statistically significant difference in U-Net, V-Net, and
VUMix-Net in terms of the 2D-DSC (P = 0.01). For the
comparison between U-Net and VUMix-Net, the mean 2D-
DSC for VUMix-Net was 0.68, which is significantly higher
than that for U-Net (P = 0.03). VUMix-Net also tended to
achieve better 3D-DSC and 95HD values than both U-Net and
V-Net, although the difference was not statistically significant.
Figure 4 shows some CT slides from an EC patient with GTV
delineations. Figure 5 shows the box plots of the 2D-DSC, 3D-
DSC, and 95HD values from U-Net, V-Net, and VUMix-Net
across all patients.

For all models, the mean ± STD of the 2D-DSC values for
upper EC tumors (0.72 ± 0.16) were significantly higher than
those for middle (0.70 ± 0.20) or lower EC tumors (0.31 ± 0.32).
Additionally, the 3D-DSC values were significantly highest for
middle EC tumors (0.92 ± 0.05) and lowest for lower EC tumors
(0.73 ± 0.14), and there was a significant difference (P<0.001).
FIGURE 3 | The training DSC and loss of function.
TABLE 1 | Patient characteristics.

Characteristic Entire Cohort (n = 215) Training–ValidationCohort (n = 185) Test Cohort (n = 30) P-Value

Sex Male 111 20 0.488
Female 74 10

Age <60 89 14 0.833
>60 96 16

T category T1-2 59 7 0.346
T3-4 126 23
July 2022 | Volume 12 | Articl
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Furthermore, there was a statistically significant difference in the
95HD values for upper EC, middle EC, and lower EC tumors
(P<0.001), and middle EC tumors had the lowest values.

The 2D-DSC, 3D-DSC, and 95HD values of the upper EC and
middle EC tumors were better than those of the lower EC
tumors. Therefore, we specifically compared the differences
among U-Net, V-Net, and VUMix-Net for upper and middle
EC tumors. VUMix-Net achieved the highest 2D-DSC value
(P<0.001) and lowest 95HD value (P=0.02) among these three
models. Regarding the 3D-DSC value, VUMix-Net was higher
than U-Net or V-Net , but the difference was not
significant (Table 3).

Contrasting the performance of the three models for upper
EC, we obtained the best results with VUMix-Net Net in terms of
the 2D-DSC value, 3D-DSC value, and 95HD value, but the
difference was not significant. Additionally, VUMix-Net
achieved the best results for middle EC, with the highest 2D-
DSC value (P<0.001) and lowest 95HD value (P=0.04).
Additionally, VUMix-Net obtained the highest 3D-DSC value,
but the difference was not significant (P=0.06). In lower EC, even
Frontiers in Oncology | www.frontiersin.org 5
though VUMix-Net yielded the best results, there was no
significant difference among the three models. The results are
summarized in Table 4.

Clinical Evaluation
Details on the oncologists’ subjective evaluation results are given
in Tables 5, 6, and the score distribution is shown in Figure 6.
The predicted GTV contours of the 440 slices from 20 patients
were subjectively evaluated by the two experienced oncologists. If
the score was ≥2 points, the slices could be accepted for practical,
clinical applications and only needed to be slightly modified, if at
all. Only 0.3% of the slices predicted by the AI system were
evaluated as ‘‘major revision” among all 880 slices, obtained from
1 patient in the A oncologist group and 2 patients in the B
oncologist group. In the A oncologist group, 1 and 0 slices were
evaluated as ‘‘major revision” for the AI and GT groups.
Additionally, the score above 2 was 83.18% and 80.68%. In the
B oncologist group, 2 and 0 slices were evaluated as ‘‘major
revision” for the AI and GT groups. In addition, the score above
2 was 78.41% and 79.55%. In both the A oncologist group and
TABLE 2 | Two-dimensional Dice similarity coefficient (2D-DSC), three-dimensional Dice similarity coefficient (3D-DSC), and 95th-percentile Hausdorff distance (95HD)
values of the gross tumor volume (GTV) contours in different from network architectures and esophageal locations.

2D-DSC 3D-DSC 95HD

2D-DSC ± STD P Variance 3D-DSC ± STD P Variance 95HD ± STD P Variance

U-Net 0.45 ± 0.31 0.01 U-V 0.07 0.84 ± 0.12 0.70 U-V 0.87 19.08 ± 21.15 0.49 U-V 0.46
V-Net 0.60 ± 0.29 V-VU 0.73 0.84 ± 0.13 V-VU 0.44 15.24 ± 18.78 V-VU 0.68
VUMiX-Net 0.68 ± 0.27 U-VU 0.00 0.86 ± 0.12 U-VU 0.52 13.38 ± 16.29 U-VU 0.25
Upper 0.72 ± 0.16 <0.001 0.90 ± 0.04 <0.001 7.95 ± 5.69 <0.001
Middle 0.70 ± 0.20 0.92 ± 0.05 6.96 ± 4.61
Lower 0.31 ± 0.32 0.73 ± 0.14 32.78 ± 24.23
July 2022 | V
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FIGURE 4 | GTV delineations for a patient predicted from U-Net, V-Net, and VUMix-Net. (A) GTV on six transversal planes, (B) GTV on a coronal plane, (C) GTV on
a sagittal plane. The CT slices were scanned from an upper esophageal cancer patient.
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the B oncologist group, the grading results for the AI group were
not significantly different from those for the GT group (P=0.34;
P=0.65). The paired Wilcoxon rank-sum test was used to
evaluate the clinical evaluations of the two oncologists, and the
results showed that there was no significant difference.

Computational Complexity
The computational complexity of the three methods is shown in
Table 7. The average time required to predict the segmentation
results for each study was 5, 14, and 11 s, separately, using the
GPU (NVIDIA TITAN RTX with 24-GB memory).
DISCUSSION

The accuracy of tumor target contouring, an important step in
radiotherapy for EC, is undoubtedly closely related to the tumor
control rate and the radiation dose to the surrounding normal
tissues and organs. Although a global consensus has been
reached on delineating the clinical target volume (CTV) in EC
radiotherapy (32), we only investigated the delineation of the
GTV in this study. Many studies (2, 33) have found that there is a
certain degree of variability across different imaging methods
following the same guidelines, in different centers, between
different delineators and the delineator itself. AI has been
shown to be an effective method for improving the accuracy of
the delineation and reducing the variability between delineators
(34). Previous studies have suggested that AI could improve the
consistency and save time in the delineation of the GTV, CTV,
and organs at risk in nasopharyngeal cancer (20), rectal cancer
(23), breast cancer (24), and cervical cancer (26). However, no
Frontiers in Oncology | www.frontiersin.org 6
study has been conducted on automatic esophageal GTV
contouring with CNN-based methods.

In our clinical experiment, we collected and standardized the CT
images from 215 patients in our department and proposed a new
end-to-end deep learning network named VUMix-Net to
automatically segment the GTV in EC. The performance of
VUMix-Net in contouring the GTV in EC was comprehensively
evaluated with a comparison to the performance of U-Net and V-
Net. VUMix-Net achieved a higher 2D-DSC value (p = 0.01) and
tended to achieve better 3D-DSC and 95HD values than both U-
Net and V-Net. The delineation results predicted from VUMix-Net
were significantly more acceptable for use in radiation therapy
planning than those from U-Net and V-Net.

Cervical and upper thoracic EC are difficult to operate due to
the similarities in their anatomical sites (35). Therefore,
radiotherapy plays a very important role in the treatment of
cervical and upper thoracic EC and is more widely used than in
middle or lower thoracic EC. In this study, cervical and upper
thoracic EC were referred to as “upper” EC. Comparing these
three segments of EC, the results showed that there was a
statistically significant difference among them in terms of the
2D-DSC, 3D-DSC, and 95HD values (p<0.001); specifically, the
values for upper and middle EC were better. The reasons may be
as follows: first, fewer patients in the training cohort had lower
EC than upper or middle EC; second, the position of the lower
esophagus is easily affected by the surrounding organs and has
great variability, especially at the esophagogastric junction, while
the position of the middle and upper esophagus is
relatively fixed.

Next, we only compared GTV contouring in upper and
middle EC and further found that VUMix-net was superior to
B CA

FIGURE 5 | Boxplots. (A) 2D-DSC from U-Net, V-Net, and VUMix-Net in all patients; (B) 3D-DSC from U-Net, VNet, and VUMix-Net in all patients; (C) HD95 from
U-Net, V-Net, and VUMIx-Net in all patients.
TABLE 3 | 2D-DSC, 3D-DSC, and 95HD values of the GTV contours in upper and middle esophageal cancer (EC) patients predicted from U-Net, V-Net, and VUMix-Net.

2D-DSC 3D-DSC 95HD

2D-DSC ± STD P Variance 3D-DSC ± STD P Variance 95HD ± STD P Variance

U-Net 0.58 ± 0.23 <0.001 U-V 0.01 0.90 ± 0.06 0.11 U-V 0.61 10.06 ± 6.96 0.02 U-V 0.04
V-Net 0.74 ± 0.12 V-VU <0.001 0.91 ± 0.04 V-VU 0.06 6.37 ± 3.05 V-VU 0.03
VUMiX-Net 0.81 ± 0.06 U-VU 0.03 0.93 ± 0.03 U-VU 0.07 5.95 ± 5.75 U-VU 0.70
July 2022 | Vo
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U-Net and V-Net. In addition, we continued to explore the
merits and demerits of the three models in upper, middle, and
lower EC, and found that VUMix-Net obtained the best results
for both upper and lower EC, although the differences were not
significant. In middle EC, VUMix-Net achieved the highest 2D-
DSC value and lowest 95HD compared to U-Net and V-Net, and
the differences were statistically significant. Therefore, this new
model, VUMix-Net, had the best applicability in middle EC,
followed by upper EC and finally lower EC.

It was difficult to fully reflect the segmentation quality using
only single-target segmentation performance indicators such as
the DSC, which is easily affected by the organ size. In the same
way that delineation deviations occur at the edges of organs, the
DSCs of small organs are usually lower than those of large organs
(36). Considering the clinical practicability of the new model,
two oncologists evaluated the results of the AI group and GT
group by a blinded method and the clinical acceptability of AI
delineation. The results showed that oncologists A and judged
that 99.8% and 99.5%, respectively, of GTVs outlined by AI can
Frontiers in Oncology | www.frontiersin.org 7
be accepted clinically. There was no significant difference in the
scores for the AI and GT groups, suggesting that the level of AI
delineation was close to that of manual delineation. This result
suggests that in terms of clinical work, the new model could
reach a similar level of applicability to manual delineation and
should be actively encouraged to use in daily clinical work.

However, a few studies (37, 38) have explored the role of deep
learning in the auto-segmentation of the CTV and GTV in EC
based on CT images. There are three unique novel contributions in
our work. First, we presented the VUMix-Net architecture for
segmenting the GTV in the planning of the neoadjuvant or
radical radiation therapy of EC, instead of adjuvant radiation
therapy (37). According to the guidelines, the use of neoadjuvant
radiotherapy or radical radiotherapy is more widespread. Second,
we compared manual delineation with AI delineation to verify the
clinical application value of AI, while other studies (37, 38) have not.
Third, we compared the three segments of EC and concluded that
the application effect of AI was best in the middle segment, which
also provides convenience for its clinical application.
TABLE 4 | 2D-DSC, 3D-DSC, and 95HD values of the GTV contours in upper EC, middle EC, and lower EC patients predicted from U-Net, V-Net, and VUMix-Net.

2D-DSC 3D-DSC 95HD

2D-DSC ± STD P 3D-DSC ± STD P 95HD ± STD P

Upper U-Net 0.64 ± 0.21 0.09 0.91 ± 0.5 0.34 10.29 ± 8.33 0.29
V-Net 0.73 ± 0.15 0.89 ± 0.03 6.73 ± 3.46
VUMiX-Net 0.80 ± 0.05 0.91 ± 0.03 6.84 ± 3.27

Middle U-Net 0.53 ± 0.25 <0.001 0.89 ± 0.07 0.06 9.82 ± 5.73 0.04
V-Net 0.75 ± 0.09 0.92 ± 0.04 6.00 ± 2.73
VUMiX-Net 0.83 ± 0.06 0.94 ± 0.03 5.07 ± 3.75

Lower U-Net 0.19 ± 0.28 0.25 0.74 ± 0.14 0.84 37.11 ± 28.33 0.73
V-Net 0.31 ± 0.33 0.71 ± 0.15 33.00 ± 24.33
VUMiX-Net 0.43 ± 0.35 0.74 ± 0.14 28.22 ± 21.47
July 202
2 | Volume 12 | Article 89
TABLE 5 | The oncologists’ evaluation results.

Score A B

AI GT AI GT

0 0 (0.00%) 0 (0.00%) 0 (0%) 0 (0.00%)
1 1 (0.23%) 0 (0.00%) 2 (0.45%) 0 (0.00%)
2 73 (16.59%) 85 (19.32%) 93 (21.14%) 90 (20.45%)
3 366 (83.18%) 355 (80.68%) 345 (78.41%) 350 (79.55%)
P-value 0.34 0.65
TABLE 6 | Mean clinical score of GTV by two oncologists.

Score AI GT

A B A B

0
1
2
3
P-value

0 (0.00%) 0 (0%) 0 (0.00%) 0 (0.00%)
1 (0.23%) 2 (0.45%) 0 (0.00%) 0 (0.00%)

73 (16.59%) 93 (21.14%) 85 (19.32%) 90 (20.45%)
366 (83.18%) 345 (78.41%) 355 (80.68%) 350 (79.55%)

0.07 0.67
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There were some limitations of this study. First, it was based on
single-center data, and the AI model could not fully meet the
outlining principles and habits of other centers. In the future,
multiple centers can jointly determine a consensus to outline
standardization, obtain larger datasets and more data sources,
improve the generalizability of the model, and better standardize
treatments across centers. Second, the oncologist needs to combine
the results of CT, gastroscopy, esophagography, and even PET-CT
tooutline theupper and lowerboundsof theGTV,while theAIonly
needs to learn the delineation based on CT images, resulting in
imprecise AI delineation at the upper and lower bounds. Therefore,
the clinical evaluation in this studyonlyevaluated the levelsoutlined
by AI and GT without considering the problem of the upper and
lower bounds. Subsequent research should enable the AI to learn
with multimodal imaging data and improve the delineation of
EC targets.

In conclusion, compared with U-Net and V-Net, the new
model (VUMix-Net) showed certain advantages in the
delineation of the GTVs of EC. Additionally, it can generate
the GTVs of EC that meet clinical requirements and have the
same quality as human-generated contours. The application
effect was the best in middle-segment EC, followed by upper-
segment EC, and finally lower segment EC.
Frontiers in Oncology | www.frontiersin.org 8
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FIGURE 6 | Distribution of GTV scores by (A) and (B) oncologist.
TABLE 7 | Comparison of computational complexity.

Model name Number of parameters Size on Disk Inference time

U-Net 7.8 M 89 MB 5 s
V-Net 67.1 M 542 MB 14 s
VUMiX-Net 13.1 M 102 MB 11 s
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