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Abstract

Ischemic stroke is the most common type of stroke, ranked as the second leading

cause of death worldwide. The Alberta Stroke Program Early CT Score (ASPECTS) is

considered as a systematic method of assessing ischemic change on non-contrast CT

scans (NCCT) of acute ischemic stroke (AIS) patients, while still suffering from the

requirement of experts' experience and also the inconsistent results between readers.

In this study, we proposed an automated ASPECTS method to utilize the powerful

learning ability of neural networks for objectively scoring CT scans of AIS patients.

First, we proposed to use the CT perfusion (CTP) from one-stop stroke imaging to

provide the golden standard of ischemic regions for ASPECTS scoring. Second, we

designed an asymmetry network to capture features when comparing the left and

right sides for each ASPECTS region to estimate its ischemic status. Third, we per-

formed experiments in a large main dataset of 870 patients, as well as an indepen-

dent testing dataset consisting of 207 patients with radiologists' scorings.

Experimental results show that our network achieved remarkable performance, as

sensitivity and accuracy of 93.7 and 92.4% in the main dataset, and 95.5 and 91.3%

in the independent testing dataset, respectively. In the latter dataset, our analysis rev-

ealed a high positive correlation between the ASPECTS score and the prognosis of

patients in 90DmRs. Also, we found ASPECTS score is a good indicator of the size of
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CTP core volume of an infraction. The proposed method shows its potential for auto-

mated ASPECTS scoring on NCCT images.
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1 | INTRODUCTION

Stroke is the leading cause of long-term disability and the second most

common incidence of death worldwide (Kim et al., 2020). One in six

people worldwide would have a stroke in their lifetime. More than

13.7 million people have a stroke each year, of which approximately

80% are ischemic strokes and 5.8 million lead to death (Murphy &

Werring, 2020). Clinical manifestations of stroke generally include

weakness or paralysis or loss of sensation in any part of the body,

even hemiplegia, loss of balance and coordination, speech and visual

impairment, severe headaches, memory decline, difficulty swallowing,

and involuntary eye movements (Jones, O'Connell, David, &

Chalder, 2020; Ojaghihaghighi, Vahdati, Mikaeilpour, & Ramouz, 2017;

Runchey & McGee, 2010). Non-contrast Computed Tomography

(NCCT) is generally used as first-line imaging to determine the site of

brain hemorrhage and infarction, which leads to specific treatment

processes (Powers et al., 2019; Yew & Cheng, 2009).

Previously, the diagnosis of ischemic stroke patients was based

on the 1/3 rule, where ischemic lesions less than 1/3 of the area sup-

plied by the middle cerebral artery (MCA) were considered suitable

for thrombolytic therapy with NCCT images (Van Seeters et al., 2013).

While nowadays, Alberta Stroke Program Early Computed Tomogra-

phy Score (ASPECTS; Schroder & Thomalla, 2016) is widely used as a

systematic method for quantifying early ischemic changes (EIC) with

NCCT images. Early studies have shown that ASPECTS is more reli-

able than the 1/3 rule (Barber, Demchuk, Zhang, & Buchan, 2000).

ASPECTS scoring is defined as follows. First, the MCA vascular terri-

tory was separated into 10 regions of each hemisphere. There are six

cortical regions, for example, M1 corresponding to the frontal opercu-

lum, M2 to the anterior temporal lobe, M3 to the posterior temporal

lobe, with M4, M5, M6 being superior to M1, M2, M3, respectively.

The four subcortical regions include caudate (C), lentiform (L), internal

capsule (IC), and insular (I). Then, if the left and right sides of one

region show signs of ischemic stroke, such as hypodensity, gray-white

distinction, and focal swelling, 1 point is deducted from the initial

score of 10 points (Neuhaus et al., 2020). ASPECTS scores were found

correlated with clinical outcomes, where the American Heart Associa-

tion/American Stroke Association (AHA/ASA) guidelines recommend

selecting patients with ASPECTS > 6 for intravascular thrombectomy

(Powers et al., 2019). Although most randomized trials excluded

patients with an ASPECTS ≤6 or 7, recent studies suggest that

patients with low ASPECTS may also benefit from thrombectomy

(Kaesmacher et al., 2019; Yoo et al., 2016).

However, in clinical practice, ASPECTS is a subjective scoring sys-

tem and thus presents poor inter-rater reliability (Farzin et al., 2016).

In recent years, automated ASPECTS methods based on machine

learning have been proposed to provide objective and fast recommen-

dations of scores based on the NCCT data. Their performances were

also reported to be comparable to experienced neuroradiologists

(Hoelter et al., 2020; Naganuma et al., 2021). Hoelter et al. concluded

that among the three most common scoring software on the market

(Syngo.via Frontier ASPECT Score Prototype V2, Brainomix e-

ASPECTS and RAPID ASPECTS), the highest correlation (r = 0.871,

p < .001) was found between expert reading and Brainomix (e-

ASPECTS software), followed by Frontier V2, then RAPID (Hoelter

et al., 2020). Neuhaus et al. compared the results of the automated

software e-ASPECTS with ground truth acquired from experts and

obtained fair agreement in 178 baseline NCCT scans (Neuhaus

et al., 2020). Brinjikji et al. separately compare the inter-class concor-

dance of ASPECTS scores given by 16 experts for 60 patients in the

condition with and without the e-ASPECTS aid in NCCT and follow-

up CT, and they found the e-ASPECTS software could improve the

accuracy of ischemic prediction (Brinjikji et al., 2021). However, it was

reported that the performance of e-ASPECTS software would be

impacted by the slice thickness. Neuberger et al. found that the

ASPECTS scores acquired from e-ASPECTS software have no signifi-

cant difference between thin slice thickness and ground truth. While

when it applies to thick slice thickness images, the performance would

have a substantial decrease, which has significant difference with its

ground truth (Neuberger et al., 2020). Besides using expert scoring

from NCCT as golden standard, recent studies employed Diffusion-

Weighted Imaging (DWI) (Yoshimoto et al., 2019). Briefly, DWI can

detect ischemic tissue within a few minutes, and has become a sensi-

tive and specific imaging technique for acute ischemia. For example,

Qiu et al. proposed an automatic ASPECTS using random forest by

training on radiomics features of each partition with CT images of

157 patients followed by DWI within 1 hr as ground truth. They

achieved an agreement with radiologists' manual scorings where accu-

racy was up to 84.9% for dichotomous results on a testing set of

100 subjects (Kuang et al., 2019). DWI is sensitive in the detection of

small and early infarcts in acute ischemic stroke. However, DWI is not

used as a first-line imaging modality in most of stoke centers. Despite

the MR availability in these facilities, one-stop-shop stroke imaging

with CT was widely adopted and DWI might be used for the follow-

up scans. Regarding this, the approach of using DWI as reference

standard has a great challenge of collecting sufficient data, and so in

this study we used CTP as the reference.

The human brain is largely symmetrical, and comparing the left

and right sides of a brain region is wildly used in the clinical evaluation

of medical imaging (Kalavathi, Senthamilselvi, & Prasath, 2017; Shi
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et al., 2012). Similarly, in the image analysis field (Chen et al., 2017;

Liu, Zhang, Adeli, & Shen, 2019; Munsell et al., 2015; Shi et al., 2012),

Herzog et al. performed an early diagnosis of Alzheimer's disease by

comparing the differences between the left and right hemispheres of

the brain (Herzog & Magoulas, 2021). Li et al. utilized the property of

symmetry of brain structures by taking the differential features of the

hippocampus on both sides as an input channel (Li et al., 2021). In the

case of ischemic stroke, the CT appearance of affected regions may

also show asymmetry that could be utilized by the machine learning

model and thus contribute to the automated ASPECTS scoring.

In this article, we propose a novel method, named deep asymme-

try network (DA-Net), to score ASPECTS from NCCT images. (1) We

propose to utilize the infarct region in the CTP as the ground truth of

NCCT to train models. As general interval time of DWI and clinical CT

is too long, that is, almost beyond 2 hr, that image features are incon-

sistent. In contrast, CT perfusion and CT scans are generally separated

by a few minutes in a one-stop scanning scenario, which is relatively

reliable and will provide a large amount of data for training better per-

formance models. Among CTP parameter maps, the cerebral blood

flow (CBF) represents the rate of delivery of arterial blood to a capil-

lary bed in the brain tissue, measured in units of ml of blood per 100 g

of tissue per minute. The smaller the CBF value, the more severe the

ischemia of the tissue. When the CBF value in a region decreases to

30% of the normal brain tissue in the opposite brain side, the cerebral

infarction in that region is considered as infarct core area. The infract

core is initially invisible on NCCT at the hyperacute ischemic stage

especially when the onset to imaging time is less than 3 hr. As the dis-

ease progress, the ischemic signs as mentioned above gradually

become visible (Rudkin, Cerejo, Tayal, & Goldberg, 2018). According

to Voleti et al., there is a moderate correlation between NCCT

ASPECTS and CTP core volume (defined by CBF < 30%) in acute

ischemic strokes (r = �0.55, p < .0001) (Voleti et al., 2021). In this

study, we chose CTP as the reference standard to evaluate the ische-

mic signs in NCCT for patients in acute stage. (2) Here we propose a

novel deep asymmetry network that compares left and right differ-

ences in CT for ASPECTS scoring. (3) Besides the main dataset, we

also introduce an independent testing dataset to evaluate the perfor-

mance of our method, with manual results from radiologists as ground

truth.

2 | METHOD

2.1 | Overview

In this study, we propose a framework for automatically generating

ASPECTS scores from NCCT images. Briefly, in the preprocessing

stage, we adjust the orientation of NCCT to a standard space to facili-

tate the comparison of the left and right sides of brain regions. Then,

we adopt a segmentation neural network, namely VB-Net (Han, 2019;

Hua et al., 2020), to remove skulls and obtain ASPECTS regions,

respectively. Finally, a deep asymmetry network (DA-Net) is designed

to automatically score ASPECTS for each pair of brain regions as

Figure 1a.

2.2 | Preprocessing

Many stroke patients have decreased consciousness to cooperate

with the image scan, and thus the brain orientation in CT images var-

ies largely. To this end, we first align the routine CT scan to a standard

CT template to ensure image symmetry, that is, the left and right sides

show the same structural regions. Given that, in clinics, the identifica-

tion of local ischemia largely depends on the contralateral information.

Skull stripping is then performed to reduce the impact of non-brain

tissues, which is a standard process in brain image analysis. Finally,

images are normalized to intensity range �1 to 1 and in-plane resolu-

tion of 0:5�0:5mm2.

2.3 | Acquiring ASPECTS regions via VB-Net

In this step, we segment 10 paired ASPECTS regions from preprocessed

CT images. Based on the widely used V-net (Milletari, Navab, &

Ahmadi, 2016) in segmentation tasks, our previous work proposed VB-

Net which further combines bottleneck layers for fewer network

parameters and thus faster speed. The VB-Net has been successfully

used in organ and lesion segmentations (Han, 2019; Shi et al., 2021).

We use a cascade structure to segment 20 regions in a coarse-to-fine

manner with the ground truth outlined by radiologists according to the

ASPECTS regions. In the first stage, we train a coarse segmentation net-

work on downsampled images to roughly locate the region of interest

to be scored. Then the original resolution images were used to train a

another finely segmentation network within the partition detected in

first stage to accurately segment the scored regions. In testing, a cas-

cade of above two network (VB-Net) is employed for inference. Consid-

ering the image slice thickness (3–6 mm) is usually much larger than

that of in-plane resolution, the first two down blocks are performed in

the x and y directions, and the last two down blocks are performed in

the x, y, and z directions simultaneously. The architecture of VB-Net is

shown in Figure 1b.

2.4 | Proposed deep asymmetry network (DA-Net)
for ASPECTS scoring

In this article, we propose a novel asymmetry network for comparing

the left and right regions and predicting a score. The framework con-

sists of feature extraction and contralateral comparison, as neurologists

usually evaluate ASPECTS scores by comparing bilateral asymmetric

vascular territory. For each of 10 brain regions, the left and right sides

from the segmented image are used as two 3D patches for network

input. The patches have a size of [80, 160, 120], window level of

30, and window width of 50. For the network to better learn the asym-
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metric information by comparison, the right-side region is flipped. Then,

these two regions go through convolutional layers independently.

We adopt DenseNet (Huang, Liu, Van Der Maaten, &

Weinberger, 2017) as the backbone of the feature-extraction module

with four dense blocks, and each dense block consists of Batch Norm,

ReLu, and convolution layers. The transition module serves as the

connection between dense blocks, and the size of feature maps is

reduced by the pooling layer. However, due to individual anisotropy

of CT brain images, with an intra-layer resolution of 0:5�0:5mm2

and 5mm thickness, we select 1�3�3 convolution and 3�1�1

convolution, instead of 3�3�3 convolution in each dense block to

enhance the feature map fidelity. After these layers, the high-level

parameter maps of left and right sides are compared and their differ-

ence map is computed. Briefly, we calculate the differences between

two sides in the feature domain, as shown as operation D in Figure 1c.

The diagnostic results of left regions are acquired using a one-

dimension feature vector composed of left features and D which is

left map minus right map is used as input of a classifier to predict

ischemic stroke. One point is deducted from the corresponding hemi-

sphere if the output of DA-Net is true. The right side employs the

same operation except D is replaced by a vector of right feature maps

minus the left feature maps, and the final score takes the minimum

between two hemispheres.

2.5 | Enhanced loss function for prediction
regularization

In order to promote the accuracy of automatic scoring to the ground

truth, we design a weighted BCE loss to balance normal regions and

ischemic regions. And then, we constrain the network attention to

focus on the ROI by computing the MSE loss between the attention

map and ASPECTS regions.

Specifically, we utilize the binary cross-entropy (BCE) loss (Ruby,

Theerthagiri, Jacob, & Vamsidhar, 2020) that is commonly used for

classification. BCE loss compares the predicted probabilities of each

sample with the actual class output it belongs to (0 or 1) and then

penalizes it according to the error between probabilities and the

expected value. If the error is larger, then the magnitude of parameter

adjustments of the network in the backpropagation training process

should be larger, thus rendering the predicted value of the model to

be closer to the true value. BCE loss is defined as follows:

Logloss ¼�1
N

XN

i¼1

yi � log p yið Þð Þþ 1�yið Þ � log 1�p yið Þð Þ,

yi is the ith sample label (1 for positive, and 0 for negative), p yið Þ is the
ith sample's predicted probability of being positive.

F IGURE 1 Framework of the proposed method. (a) The pipeline where operations include aligning, skull-stripping, region segmentation, and
ASPECTS scoring. (b and c) The details about VB-Net and DA-Net, respectively
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Due to the large amount of data containing normal regions

instead of lesions, a weighting factor wclass
i inversely proportional to

the effective number of samples is introduced for BCE loss to balance

the ratio between positive and negative samples in the training set:

wclass
i ¼

XN

k¼1

1 yk ≠ yif g
N

,

where class ϵ 0,1f g, N is the total number of all samples, and yi is the

ith label.

Since the input patches of the network are 3D and contain

ASPECTS regions as well as their surrounding regions, we apply an

online attention module to focus on the network's attention on the

ASPECTS regions (e.g., M1-M6, I, C, L, IC). This is to learn all the

important features for classification efficiently and also generate the

corresponding attention map. As shown in Figure 1c, the class activa-

tion mapping (CAM; Zhou, Khosla, Lapedriza, Oliva, & Torralba, 2016)

is computed in the fully connected part of the network, and then the

MSE is calculated between the ASPECTS region and the attention

map in each classification branch, which is used to constrain the net-

work attention.

3 | EXPERIMENT

3.1 | Data

In this study, we worked on two datasets, (1) main dataset, and

(2) independent testing set. In the main dataset, there are paired

NCCT and CTP images from 870 subjects within 8 hr from symptom

onset, among which 694 subjects were randomly selected as the

training set and the remaining 176 patients were used as the testing

set. These data were collected in Huaxi Hospital of Sichuan University

using the CT scanner of SOMATOM Definition Flash with 70 kV from

Siemens. We applied post-processing software in the workstation to

acquire the CTP parameter maps, including CBF. In CBF map, the

ischemic core was obtained with the threshold of relative CBF (rCBF)

<30%, as this region has relatively 70% or more decreased cerebral

blood flow when compared to its opposite side (Mokin et al., 2017).

Then, we computed the volume ratio of the core occlusion region to

each ASPECTS region, and the region was considered to belong to the

ischemic region if the ratio exceeded 10%. This was taken as the gro-

und truth for the main dataset. As shown in Figure 2, the core occlu-

sion mask could be obtained from CBF, and then, after comparing the

volume ratio, it is used for defining the ground-truth affected

ASPECTS region (Jia, Wu, Wang, & Shen, 2010).

Besides, we also collected an independent testing set, which

included 207 patients with anterior circulation large vessel occlusion

treated with thrombectomy. This data was acquired between January

2018 and May 2020 from Hangzhou First People's Hospital of Zhe-

jiang University. All patients had baseline CT. These data were

acquired using the CT scanner of SOMATOM Definition Flash with

120 kV from Siemens. For each subject, an experienced radiologist

(J.X.) evaluated the corresponding ASPECTS score, which is used as

the ground truth for this dataset. This study was approved by the

Institutional Review Boards of participating institutes.

3.2 | Model evaluation metrics

We compared the experimental results of the proposed method with

the popular Radiomics-based method. The radiomics-based method is

F IGURE 2 Procedure to extract the ischemic cores from CBF and determine the affected ASPECTS regions in CT. The rows are for two
image slices of a representative patient. The first column shows the input NCCT image slices. The second column shows the related CBF images.
The third column shows the ischemic core defined on CBF with the rule of rCBF <30%. The fourth column matches the core region on NCCT. In
the last column, an ASPECTS region is defined as affected if the ratio of the core volume in this region over the region volume
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widely used in many clinical studies, and a similar method was used in

Qiu's work for ASPECTS scoring (Kuang et al., 2019). Briefly, the com-

parison method first extracted radiomics features using pyradiomics

(van Griethuysen et al., 2017) for each region, and then used these

features to train a model for each region with random forest to deter-

mine whether this region is an affected ischemic region.

We present boxplots, Bland–Altman plots, and histograms to

reflect the variability between automated ASPECTS and ground truth

(CTP or expert labeling). Boxplots with scatter points represent the

distribution of the generated scores over the ground truth, where the

closer the distribution to the line y = x, the better match both scores.

Bland–Altman plots show the agreement between a total automated

score and the ground truth. Its horizontal axis indicates the difference

between two methods, and the blue lines refer to an interval of 1.96

standard deviations (SD). The more data that fall within the 95% con-

fidence interval (CI) (equal to [�1.96SD, 1.96SD]) and the closer mean

value is to 0, the better agreement between the automatic scores and

the ground truth. Histograms illustrate the frequency of variance

between automated scores and the ground truth, where the higher

the frequency around 0, the smaller the difference between the two

methods. Besides, we evaluated the model performance from the

metrics commonly used in classification tasks, for example, sensitivity,

specificity, accuracy, and area under the curve (AUC). We quantified

the model performance separately for cortical and subcortical regions.

There is experimental evidence that ASPECTS >6 versus ≤6 is a

threshold to distinguish whether a large ischemic stroke occurs, which

we analyzed using dichotomized ASPECTS.

3.3 | Results

3.3.1 | Evaluation of ASPECTS region segmentation

We trained a specialized VB-Net with 626 labeled cases and tested it

with 86 cases. These data were randomly selected from the main

dataset and manually labeled by an experienced rater for 20 ASPECTS

F IGURE 3 (a) Visualization of three subjects from segmentation test from left to right. The first row is the output of network, the second is
the ground truth, and the third is difference between output and corresponding labels. (b) The Dice results for segmenting 10 ASPECTS regions in
hemispheres of 86 testing images. C, caudate; I, insula; IC, internal capsule; L, lentiform; M, MCA. Each color block represents a scoring region
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regions on NCCT images. Figure 3a shows the results of our VB-Net

for ASPECTS regions segmentation. As can be seen from the third

row, the segmentation result of our network output is basically the

same as the labels, except for the edges, where we add post-

processing to smooth the boundaries in order to be more realistic.

Since the input of our scoring network is a patch containing the

corresponding ASPECTS partition, it does not only have a strict

ASPECTS partition but also embraces part of the surrounding area.

F IGURE 4 Results of two datasets
in line (a)–(d). (a and c) The
visualization of four subjects from the

main dataset and the independent
dataset. Corresponding original CT,
preprocessed CT, radiomics result,
DA-Net result (by our proposed
method), and ground truth (GT) of
(a) from CBF, of (c) from labeling of
radiologist (J.X). For radiomics and
DA-Net results, those solid parts
represented the automatically
detected ischemic regions. Radiomics
results without side information
referred to the ground-truth ischemic
orientation for generating the
visualization results. (b and d)
Statistical charts using the testing set
in the main dataset and independent
dataset. In the left of (b) and (d) are
box plots between ground-truth and
automatically-estimated CT ASPECTS.
In the middle of (b) and (d) are Bland–
Altman plots. In the right of (b) and
(d) are histograms of difference
between ground-truth and
automatically-estimated CT ASPECTS
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From this point of perspective, our segmentation results achieve the

expected goal. Quantitative results in Figure 3b show the Dice of

20 regions on the testing set and the average Dice is 0.852.

3.3.2 | Evaluation of proposed method on the main
dataset with 176 cases

In Figure 4a, we show the visualization results of four subjects from

the main dataset. We compared the ASPECTS score results of the

radiomics method and our proposed method concerning the ground

truth. Regarding the accuracy of scores, the results of our proposed

method, that is, the solid regions were more consistent with the dark

blue areas of ground truth (GT), while the radiomics method is slightly

less accurate, and the information on the location of the lesion (left or

right brain) cannot be given automatically. Considering the old lesion,

the radiomics method and our proposed method both identified them

successfully. However, those inconspicuous lesions that are difficult

to observe in NCCT confused the radiomics method but were mostly

recognized successively by our proposed method.

Figure 4b shows the results of the main dataset. The boxplot also

illustrates that the two methods have a high agreement, that is, boxes

are approximately distributed on the diagonal, indicating that the

number of cases falling in the same fraction was remarkably close.

Darker points in the Bland–Altman plot indicated that the amount of

data aggregated at this point is larger, and the difference between the

two scoring methods concentrated around 0. This is considered as a

small difference in the final scoring results, and contains almost all the

data at a confidence level of 95%, indicating that the scoring results

of our algorithm had an excellent concordance with the ground truth.

From the histogram, we can also observe that the ultimate scores of

most patients, that is, the ground-truth scores and the algorithmic

automatic scores were consistent, with a smaller portion having a

slight difference.

Table 1 for the main dataset part shows the evaluation of the pre-

diction results for each region, given by our scoring model. It can be

seen that, when using all regions as a criterion, all metrics (sensitivity,

specificity, accuracy, and AUC) of our model outperformed the classi-

fier trained on radiomics features, by achieving 90.6% in accuracy and

also superior sensitivity (which is desired by clinicians in clinic). For

ASPECTS >6 versus ASPECTS ≤6, an important threshold for the

severity of stroke, the scoring results of our method showed an

extremely high accuracy of 92.4% and sensitivity of 93.7%, well above

the performance of the random forest with radiomics features.

Besides, the performance of our method was superior in subcortex

than in cortex.

3.3.3 | Evaluation of our proposed method on the
independent dataset with 207 cases

From Figure 4c, our proposed method shows coherence with the

expert in cortical and subcortical regions for ASPECTS scores. But the

radiomics method tends to more easily include old lesions.

In the left of Figure 4d, the boxplot reports the distribution of the

automatically-estimated NCCT ASPECTS at each individual ASPECTS,

and the intra-class correlation coefficient (ICC) between scores by our

method and experts was 0.924 based on all cases. In the middle of

Figure 4d, Bland–Altman agreement plot is shown for total ASPECTS

between results by our proposed method and experts. The mean dif-

ference in total ASPECTS between scores of our proposed method

and experts was minimal (i.e., �0.17; 95% CI, �2.13 to 1.78). And the

Spearman correlation between our method and expert reading is

0.9195 (p-value <.05), between radiomics and expert reading is

0.2443 (p-value <.05). A histogram is provided in the right of

Figure 4d showing the scoring differences between algorithm and gro-

und truth.

From Table 1 for the independent dataset part, it can be observed

that our proposed method demonstrates better robustness in all

regions compared to the main dataset. For the regions with ASPECTS

>6, the sensitivity (95.5%), specificity (86.6%), accuracy (91.3%) and

AUC (0.911) all reach a high level. To demonstrate the credibility of

our model, we tested the difference between scores of the proposed

method and ground truth through the paired T-test. And the results

show that the difference is no significant (p-value is .28). However,

the radiomics method seems not suitable for the independent dataset,

with the sensitivity, specificity, accuracy, and AUC all being inferior to

results obtained in the main dataset. The p-value of paired T-test

between radiomics scores and radiologist's scores reached signifi-

cance (p < .05).

3.3.4 | ASPECTS-based clinical index analysis on
the independent dataset with 207 cases

Table 2 shows demographic and clinical information of 207 patients

with acute ischemic stroke undergoing thrombectomy. The median

age is 72 years (interquartile range [IQR]: 63–81), including 81 females

(39.1%). The most common risk factors include diabetes, hyperlipid-

emia, coronary heart disease, atrial fibrillation, hypertension, tobacco,

and stroke, corresponding to 16.9, 23.7, 15, 60.9, 64.3, 27.1, and

10.6% of 207 subjects, respectively. A total of 23.7% of patients

received intravenous antiplatelet therapy. The median of 90DmRS is

3, with range of 1–5. The median CTP core volume is 22, with range

of 9.2–44 among 144 patients, which is defined as the area with rCBF

<30% and acquired by MIStar software (Apollo Medical Imaging Tech-

nology, Melbourne, Australia). At the same time, we calculated the sig-

nificant difference between ASPECTS score >6 and ASPECTS score

≤6 for each index and found the p-values of CTP core volume and

preoperative NIHSS were statistically significant.

We also employed the Spearman correlation to examine the rela-

tionship between each variable (with ground truth, our proposed

method, and radiomics) and the critical clinical indexes. Table 3 illus-

trates that ASPECTS scores from all methods have significant rele-

vance with 90DmRS, and a higher ASPECTS score is associated with

lower 90DmRS, which is consistent with previous clinical research.

The correlation of CTP core volume and ASPECTS also show that

smaller infraction area has higher ASPECTS score. In addition, for the
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CTP core volume, the ASPECTS obtained via our proposed method is

more reflective of the core infarct area (r = �0.6137, p < .001). The

higher ASPECTS score, the more probability of intravenous mainte-

nance of antiplatelet drugs is used. However, the other indexes are

not significantly related to ASPECTS score.

3.3.5 | Software interface with an example case

Our proposed method has been integrated into the software to pro-

vide ASPECTS scores for NCCT input images. It could provide

radiologists with auxiliary quantification information, thus greatly

improving the efficiency and performance in clinical workflow.

As shown in Figure 5, the first row shows an NCCT image of a

subject, parameter maps of CTP, and maximum intensity projection

(MIP) view of vessels. In the CBF image, the red circle region shows

low-perfusion M5 and M6, compared with the opposite side. In the

MIP, brain vessel of MCA shows that the distal end of M2 is not

developed. The second row shows the interface of our software. Two

key slices, that is, basal ganglia level and lateral ventricle (the body)

level, are shown with masks of predicted ischemic regions. In the right

column, structured results are provided.

TABLE 1 The performance metrics of our method and the comparison method in each ASPECTS region, cortex, subcortex, and region with
ASPECTS >6 on the testing set of the main dataset and independent dataset

Ours Radiomics features

Region Sensitivity Specificity Accuracy AUC Sensitivity Specificity Accuracy AUC

Main dataset

C 0.400 0.976 0.959 0.688 0.800 0.940 0.936 0.870

I 0.849 0.928 0.913 0.888 0.516 0.743 0.702 0.630

IC 0.636 0.963 0.942 0.800 0.083 0.887 0.830 0.485

L 1.000 0.885 0.901 0.943 0.696 0.730 0.725 0.713

M1 0.731 0.966 0.930 0.848 0.231 0.883 0.784 0.557

M2 0.909 0.899 0.901 0.904 0.303 0.820 0.719 0.561

M3 0.682 0.920 0.890 0.801 0.360 0.904 0.825 0.632

M4 0.708 0.905 0.878 0.807 0.080 0.925 0.801 0.502

M5 0.849 0.871 0.866 0.860 0.294 0.745 0.655 0.519

M6 0.773 0.893 0.878 0.833 0.522 0.824 0.784 0.673

All 0.807 0.922 0.906 0.864 0.389 0.840 0.776 0.614

Cortical 0.788 0.909 0.891 0.849 0.298 0.850 0.761 0.574

Subcortical 0.836 0.940 0.930 0.888 0.524 0.825 0.798 0.674

>6 0.937 0.862 0.924 0.900 0.851 0.433 0.778 0.642

Independent dataset

C 0.241 0.996 0.923 0.619 0.621 0.865 0.840 0.743

I 0.843 0.861 0.853 0.852 0.481 0.826 0.667 0.654

IC 0.750 0.946 0.933 0.848 0.250 0.795 0.757 0.522

L 0.841 0.942 0.893 0.892 0.181 0.944 0.563 0.563

M1 0.851 0.863 0.860 0.857 0.907 0.297 0.479 0.602

M2 0.826 0.887 0.856 0.856 0.554 0.529 0.542 0.541

M3 0.636 0.931 0.823 0.784 0.870 0.294 0.510 0.582

M4 0.803 0.860 0.846 0.831 0.057 0.940 0.726 0.499

M5 0.846 0.876 0.860 0.861 0.671 0.354 0.531 0.513

M6 0.600 0.910 0.796 0.755 1.000 0.011 0.385 0.506

All 0.772 0.910 0.864 0.841 0.559 0.586 0.600 0.572

Cortical 0.765 0.887 0.840 0.826 0.677 0.404 0.529 0.540

Subcortical 0.784 0.945 0.901 0.864 0.383 0.858 0.707 0.620

>6 0.955 0.866 0.913 0.911 0.272 0.816 0.538 0.544

Note: Ischemic regions are positive samples and normal regions are negative samples.

Bolded values indicate higher performance in our method compared to that of radiomics features in the binary results of ACPECTS>6.
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TABLE 2 Demographic of subjects in the independent dataset, and characteristics of NCCT images

Variable Cohort (n = 207) p-value (ASPECTS >6 vs. ≤6)

Clinical variables

Age, years; median (IQR) 72 (63–81) 0.7135

Female, no. (%) 81 (39.1) 0.2619

History of diabetes, no. (%) 35 (16.9) 1.0000

History of hyperlipidemia, no. (%) 49 (23.7) 0.6562

History of coronary heart disease,

no. (%)

31 (15.0) 1.0000

History of atrial fibrillation, no. (%) 126 (60.9) 0.7135

History of hypertension, no. (%) 133 (64.3) 0.9973

History of tobacco use, no. (%) 56 (27.1) 0.9592

History of stroke, no. (%) 22 (10.6) 1.0000

Onset to CT time, minutes; median

(IQR)

270 (210–360) 0.0033*

Occlusion site 0.8259

ICA 59 (28.5)

M1 102 (49.3)

M2 19 (9.2)

ACA 3 (1.4)

Tandem 24 (11.6)

Prognosis related

CTP core volume (CBF < 30%; ml),

median (IQR);

22 (9.2–44) (subjects:144) 0.0000*

90DmRS; median (IQR) 3 (1–5) 0.0719

Preoperative NIHSS; median (IQR) 17 (13–20) 0.0081*

Postoperative 1D NIHSS changes;

median (IQR)

�3 (�8–0) 0.1147

Symptomatic intracranial

hemorrhage, no. (%)

22 (10.6) 0.7588

Intravenous infusion of Tirofiban,

no. (%)

49 (23.7) 0.1228

NCCT ASPECTS score

ASPECTS by radiologist, median

(IQR)

6 (4–8) Reference

ASPECTS by DA-net, median (IQR) 6 (4–9) 0.0000*

ASPECTS by Radiomics, median

(IQR)

5 (4–6) 0.0395*

Note: The p-value was from Kolmogorov–Smirnov (K-S) test between ASPECTS score >6 and ASPECTS score ≤6 provided by radiologist scoring in each index.

*indicates p < .05.

TABLE 3 Correlation coefficients between ASPECTS and clinical indexes

Metrics Mean (std) Expert score (r, p-value) Proposed method (r, p-value) Radiomics score (r, p-value)

CTP core volume 28.42 (±30.54) �0.6086*** �0.6137*** �0.2201**

90mRS 3.14 (±2.04) �0.2352*** �0.2131** �0.2160**

Preoperative NIHSS 16.96 (±5.73) �0.2041** �0.1613* �0.1044

Postoperative NIHSS 13.54 (±8.54) �0.1916** �0.1470* �0.1304

IIT – 0.1899** 0.1915** 0.1960**

sICH – �0.1172 �0.1079 �0.019

Note: The symbol r is the correlation coefficient between metrics and scores. The p-value denotes significance of correlation between metrics and scores.

Abbreviations: IIT, Intravenous infusion of Tirofiban; NIHSS, National Institutes of Health Stroke Scale; sICH, symptomatic intracranial hemorrhage.

*p < .05; **p < .01; ***p < .001.
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4 | DISCUSSION

Subjective scoring of CT ASPECTS from clinicians may suffer from

large inconsistency, and so machine learning approaches are promis-

ing to provide a standardized and rapid evaluation. In this article,

we proposed an automatic ASPECTS scoring framework for

processing CT images and utilizing the asymmetry nature of ische-

mic regions into the network design, by simulating the process of

radiologists' reading. The experimental results show that, by using

CTP lesion as a gold standard, our proposed method achieved high

agreement than the conventional Radiomics-based method. Also,

our results are promising in the independent dataset, by using man-

ual labels by experts as ground truth. On the other hand, although

the specificity and accuracy of caudate region are high, the sensitiv-

ity is relatively low, mostly due to a small number of positive sam-

ples in caudate region. Including more caudate ischemia samples

may improve the performance. Also, we observe that the perfor-

mance of our model in subcortical region is superior to that in corti-

cal region, which is consistent with Kuang et al.'s findings (Kuang

et al., 2020).

F IGURE 5 Illustration of (a) the results of NCCT, CTP parameter maps, and MIP of vessel for a given subject, and (b) the interface of our
proposed stroke software, where the ASPECTS results of NCCT were provided
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In this study, we selected ASPECTS = 6 as a threshold, which is

commonly used to assist clinical decisions regarding whether a patient

needs treatment of thrombolysis. Although studies have suggested

that patients with low ASPECT scores (ASPECTS ≤6) may benefit from

thrombectomy (Cagnazzo et al., 2020), the HERMES data show that

ASPECTS >6 is associated with good outcome, and there is no signifi-

cant benefit for patients with the 0-to-5 ASPECTS (Goyal

et al., 2016). It can be seen that, when using ASPECTS >6 or all

regions as a criterion, our model outperforms the radiomics-based

method in all metrics, including sensitivity, specificity and accuracy,

and AUC. On the other hand, the threshold of 4 was also picked as a

criterion in other studies (Kuang et al., 2019).

We identified a moderate correlation between the baseline auto-

matic ASPECTS scores and the CTP core volumes within 24 hr. Our

results are consistentwith other studies (Olive-Gadea et al., 2019; Siegler

et al., 2020; Voleti et al., 2021). The results of the DAWN and DEFUSE

3 trials extend the treatment window to 24 hr (Albers et al., 2018;

Nogueira et al., 2018). The automatic ASPECTSmay help select decisions

in primary hospitals, that is, whether transferring patients to comprehen-

sive stroke centers. Since CTP and automatic post-processing are not

universally available, our study shows that automatic ASPECTS helps to

establish treatment decisionswhen CTP is not available.

This study has several limitations. First, there exist previous stud-

ies that employed DWI as ground truth to define the ischemic core,

where DWI was acquired within 1 hr after NCCT scan. That short

period of image acquisition is quite challenging in many clinics, and

thus we alternatively used CTP to define ischemic core and did not

compare the results with those obtained by DWI. Besides, in patients

with acute stroke or even hyperacute stroke, the image signs in CT

are not obvious. Thus, the CT detection results may be false positive.

Also, further studies are needed to provide interpretable descriptions

for better understanding of the results.

5 | CONCLUSION

In this article, we presented an automated framework to estimate

ASPECTS score via NCCT image. We designed a deep asymmetry net-

work (DA-Net) on asymmetrical structure to detect the difference of

left–right hemispheres, simulating the process of radiologists reading

films of stroke patients. We used different models for cortical and

subcortical regions to better capture the image difference. Besides,

we evaluated the performance of estimating whether the ASPECTS

score is higher than 6, and the results demonstrated that the deep-

learning derived results are comparable to the experienced radiologist.

Furthermore, we found that the ASPECTS score correlates with the

CTP core volume and 90DmRS, which could be useful in assisting

future clinic treatment and prognosis.
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