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Abstract: A proliferation-inducing ligand (APRIL) and B-cell activating factor (BAFF) are cytokines
belonging to the tumor necrosis factor family which play an essential role in B-cell maturation,
differentiation, and survival. Recent evidence indicates their importance in hematological disorders;
however, their function in essential thrombocytosis (ET) pathogenesis remains elusive. Therefore, we
aimed to analyze the role of APRIL and BAFF in megakaryocytopoiesis in ET patients. We observed
elevated levels of APRIL and BAFF in the plasma of ET patients compared with healthy controls,
while no differences were found among patients with different JAK2(V617F) statuses. In addition,
APRIL levels were positively associated with the number of platelets and WBC count. In the bone
marrow, APRIL but not BAFF levels were higher in ET patients with the JAK2(V617F) mutation;
however, JAK2(V617F)-negative patients showed slightly reduced levels of BAFF. In ET patients,
we showed that the differentiation of CD34+ progenitor cells towards megakaryocytes induces the
expression of both APRIL and BAFF. More importantly, APRIL neutralization significantly reduced
platelet production. In conclusion, our data provide evidence that blocking APRIL signaling, which
acts as an autocrine growth factor for terminal megakaryocytopoiesis, inhibits platelet production in
ET patients, regardless of the status of JAK2(V617F) mutation.

Keywords: APRIL; BAFF; megakaryocytopoiesis; essential thrombocythemia; CD34+ progenitor
cells; megakaryocytes

1. Introduction

The regulation of megakaryocytopoiesis is a complex phenomenon that begins with
the commitment of hematopoietic progenitor cells, which requires the coordinated activity
of an array of soluble mediators, including cytokines and growth factors, to provide
controlled cell proliferation, maturation, and differentiation [1]. It is well established that
megakaryocyte (MKs) growth and platelet production in both physiologic and disease
conditions are orchestrated by stem cell factors (SCFs), interleukin 1β (IL-1β), IL-6, and/or
thrombopoietin (TPO), among others [2,3]. Increased platelet production is observed during
severe inflammation, as the inflammatory environment promotes the formation of MKs
in essential thrombocythemia: one of the chronic, BCR-ABL-negative, myeloproliferative
neoplasms (MPN), characterized by an increased number of mature MKs and a sustained
platelet count of above 450 × 109 platelets/L [4].

The discovery of Janus-activated kinase 2 (JAK2)V617F, a gain-of-function JAK2 mu-
tation, improved our understanding of MPN pathogenesis [5]. On the other hand, the
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mechanism by which this mutated JAK2 initiates deregulated signals in cells remains to be
fully elucidated. It is believed that JAK2V617F requires interactions with cytokine receptors
to elicit its transforming signal [5,6], which renders hematopoietic cells more sensitive
to cytokine stimulation, probably influencing the phenotype of the disease [4,7]. Once
activated, JAK family members lead to the transcriptional regulation of STAT target genes
which regulate cell growth, death, and differentiation, among others [1,8].

Proinflammatory cytokines, such as tumor necrosis factor-α (TNF-α), are elevated in
patients with MPN, but their contribution to disease pathogenesis remains elusive [9]. In ad-
dition, IL-1β and TNF-α have been shown to increase megakaryocytopoiesis through direct
or indirect mechanisms, highlighting new issues regarding the potential physiopathologic
role of plasma cytokines in MPN [9].

The B-cell activating factor (BAFF) and a proliferation-inducing ligand (APRIL) repre-
sent relatively newly discovered members of the tumor necrosis factor (TNF) family. BAFF
and APRIL are produced as homotrimeric type II transmembrane proteins that may be
cleaved to their unbound (soluble) forms by furin-like convertases [10]. Both ligands have
been shown to act as main survival factors for immature, naive, and activated B-cells [10].
Their activity is mediated by direct interaction with shared receptors—namely, BCMA
(B-cell maturation antigen) and TACI (transmembrane activator and CML interactor)—
while BAFF is also explicitly recognized by BAFF receptor (BAFF-R). Strong evidence
indicates their essential role in several hematopoietic disorders and malignancies [11].
BAFF and APRIL have been proposed to promote cancer cell survival, proliferation, and
invasiveness, including breast cancer, multiple myeloma, and acute leukemia [12,13]. How-
ever, this effect was not demonstrated in lung cancer cells [14].

Interestingly, Bonci et al. showed that APRIL promotes the expansion of megakary-
ocytes from healthy cord blood-derived CD34+ progenitor cells [15]. It is, therefore, tempt-
ing to speculate that endogenous APRIL plays a role in MK growth and determines the
amount of platelet production, suggesting a possible role in myeloproliferative neoplasms
such as essential thrombocytosis (ET). Thus, we aimed to investigate the effects of BAFF
and APRIL expression and function on megakaryopoiesis in ET patients.

2. Materials and Methods
2.1. Patients

Peripheral blood from 109 patients and bone marrow from 40 patients with newly
diagnosed ET (following the World Health Organization classification system 2016) was
provided by the Department of Hematology, Medical University of Bialystok. The detailed
characteristics of patients enrolled in this study are summarized in Table 1. The samples
were collected upon obtaining written informed consent, according to the rules and tenets
of the recently revised Helsinki protocol (R-I-002/461/2018). All the patients were tested
for JAK2(V617F) mutation. Patients who had CALR or MPL mutations, due to the small
number of available samples, were excluded from the study. Furthermore, the patients were
divided into two homogeneous groups according to their different biology: JAK2(V617F)-
mutated patients and triple-negative patients. Indeed, there are several studies showing
that triple-negative patients present a lower level of platelets or WBC and mostly have
a low incidence of vascular events [16]. The patient’s median age at the time of sample
collection was 59 years (interquartile range (IQR) 22–87 years). Seventy-five were female
and thirty-nine were male. In the control group (age- and sex-matched), samples were
obtained from 40 healthy volunteers (control).
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Table 1. Demographic and clinical characteristics of the ET patients and healthy volunteers.

Parameter
All Donors ET Patients

ET (n = 109) Control (n = 40) p JAK2+ (n = 75) JAK2- (n = 34) p

age (min–max) 59 (23–87) 58 (23–85) p = 0.9 58 (23–84) 59 (25–87) p = 0.88
female/male 75/39 25/15 p = 0.9 52/27 27/12 p = 0.79

RBC (×106/µL) 4.85 (4.4–5.17) 4.12 (3.9–4.45) p = 0.09 4.97 (4.6–5.29) 4.725 (4.14–5.07) p = 0.22
HGB (g/dL) 14.4 (13.1–15.3) 14.1 (12.3–15.4) p = 0.2 14.7 (13.2–15.5) 13.8 (12.8–14.9) p = 0.1

HCT (%) 43.5 (39.45–47) 42 (39.1–45.1) p = 0.09 44.1 (39.9–47.9) 40.8 (37.7–45.0) p = 0.02
WBC (×103/µL) 9.71 (7.9–11.83) 7.12 (5.1–9.2) p = 0.01 10.32 (8.3–12.53) 8.9 (6.46–10.29) p = 0.002
PLT (×103/µL)) 828 (678.5–994) 255 (166–340) p < 0.01 876 (712–1072) 764.5 (610–941.3) p = 0.06

history of thrombosis
(patients) n = 20 - - n = 13 n = 7 -

risk stratification for thrombosis (IPSET-t)
low n = 44 - - n = 22 n = 20 -

intermediate n = 53 - - n = 30 n = 23 -
high n = 17 - - n = 10 n = 7 -

ET—essential thrombocytosis; JAK2+, patients with JAK2 V617F mutations; PLT—platelets’ WBC—white blood
cells; HCT—hematocrit; Hgb—hemoglobin; RBC—red blood cells; IP—SET-t; International Prognostic Score of
thrombosis in World Health Organization—essential thrombocythemia. Data are presented as medians (IQR).

2.2. Material Isolation

Freshly obtained EDTA-anticoagulated samples of blood and bone marrow were
processed according to the standard operation procedures of the Medical University of
Bialystok Biobank. Briefly, the blood was centrifuged at room temperature for 5 min
at 400× g to separate plasma or bone marrow supernatant. Collected plasma and bone
marrow supernatant was centrifuged at 4 ◦C for 5 min at 1200× g to remove residual cells.
Aliquoted biofluids were biobanked in a −80 ◦C controlled environment.

Bone marrow mononuclear cells (BMMCs) were isolated by Histopaque density gradi-
ent centrifugation (Sigma, St. Louis, MO, USA) according to the manufacturer’s instructions.
Briefly, freshly obtained bone marrow was diluted two times in PBS (Corning, New York,
NY, USA) and placed on Histopaque (Sigma). The specimens were centrifuged for 25 min
at room temperature, followed by interphase collection and washing in PBS for 5 min at
4 ◦C. Freshly isolated bone marrow mononuclear cells were counted, cryopreserved, and
stored in LN2 for further use.

2.3. Immunoassay

BAFF, APRIL, IL-1β, IL-6, sTACl, and sBCMA were quantified in serum and bone
marrow supernatant using commercially available ELISA sets (R&D Systems, Minneapo-
lis, MN, USA) according to the manufacturer’s instructions. The detection range for
used immunoassays was as follows: BAFF 39.1–2500 pg/mL, APRIL 31.3–2000 pg/mL,
IL-1 β 3.91–250 pg/mL, IL-6 9.38–600 pg/mL, sTACI 93.8–6000 pg/mL, and sBCMA
31.3–2000 pg/mL. The samples were analyzed using an automatic light absorption reader,
Ledetec. The results were calculated according to the standard curve in MicroWin2000 software
(Baton Rouge, LA, USA).

2.4. Cell Sorting

Bone marrow mononuclear cells were thawed, washed, and resuspended in X VIVO-10
(Thermo Fisher, Waltham, MA, USA) culture medium and incubated for resting (2–3 h at
37 ◦C, 5% CO2). Next, the cells were washed in phosphate-buffered saline (PBS, Arlington
County, VA, USA; Corning) and stained with Zombie UV Viability Dye (Biolegend, San
Diogo, CA, USA), according to manufacturer’s instructions. Finally, the cells were stained
with mouse anti-human anti-CD34 FITC conjugated monoclonal antibody (Biologend,
clone 561). Hematopoietic stem cells, defined as single/viable/CD34+ events (Figure 1),
were sorted using the MoFlo Astrios Cell Sorting System (Beckman Coulter, Brea, CA,
USA), using single-cell purity into X VIVO-10 medium (Thermo Fisher). Sorted cells were
immediately used for differentiation experiments.
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the presence or absence of TACI: Fc (recombinant human fusion receptor used for block-
ing of growth factor function; ENZO) in X VIVO-10 medium (Thermo Fisher, Waltham, 
MA, USA) in 96-well plates (Corning) [15]. The medium was changed every second day. 
After seven days of stimulation, the culture supernatant and cells were harvested for fur-
ther analysis. The number of platelets in the cell culture medium was assessed by using 
an automated reader (Sysmex XN300), and by two experienced hematologists inde-
pendently. 
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Figure 1. Gating strategy for CD34+ cell sorting. Representative flow cytometry plots representing
gating strategy used for CD34+ hematopoietic stem cell sorting from bone marrow. First, doublet
discrimination was performed according to forward (FSC, Bonn, Germany) and side (SSC, New Delhi,
India) scatter. Next, the Boolean single event gate (“AND” gate) was visualized on a histogram for
dead cell discrimination. Viable CD34+ cells were sorted within the CD34+ cells based on single-cell
purity. The CD34+ gate was set up according to fluorescence minus one control (Staining Control).

2.5. Hematopoietic Stem Cell Differentiation

Freshly sorted CD34+ hematopoietic stem cells were stimulated in vitro with rhTPO
(Recombinant Human Thrombopoietin, R and D Biosystems, Minneapolis, MN, USA) in
the presence or absence of TACI: Fc (recombinant human fusion receptor used for blocking
of growth factor function; ENZO) in X VIVO-10 medium (Thermo Fisher, Waltham, MA,
USA) in 96-well plates (Corning) [15]. The medium was changed every second day. After
seven days of stimulation, the culture supernatant and cells were harvested for further
analysis. The number of platelets in the cell culture medium was assessed by using an
automated reader (Sysmex XN300), and by two experienced hematologists independently.

2.6. qPCR

Total RNA isolation was performed using the RNeasy Micro kit (QIAGEN), according
to the manufacturer’s instructions. Next, mRNA was reverse-transcribed using a high-
capacity cDNA reverse-transcription kit (Thermo Fisher). Expression levels of BAFF, APRIL,
and their receptors (Thermo Fisher) were quantified using commercially available TaqMan
assays (Thermo Fisher) on the StepOnePlus system (Life Tehcnologies, Hong Kong, China).
The relative expressions of BAFF (Hs00198106_m1) and APRIL (Hs00601664_g1) were
calculated and normalized to GAPDH (PN4351370) expression.

2.7. Statistics

Statistical analysis was performed using GraphPad Prism 8 Software (GraphPad
Software, San Diego, CA, USA). The Mann–Whitney U test or Wilcoxon matched pairs test
was used. The Spearman’s rank correlation coefficient was used to examine correlations.
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Statistically significant results were identified at p < 0.05. The data were presented as
median ± interquartile range.

3. Results

First, we analyzed systemic levels of APRIL and BAFF in ET patients (with or without
JAK2V617F mutation) and compared the results to matched healthy volunteers. We found
significantly higher concentrations of APRIL and BAFF in ET patients when compared
to healthy controls, regardless of the presence of the JAK2(V617F) mutation (Figure 2A,B,
respectively). Moreover, we found elevated levels of IL-6 in patients with the JAK2(V617F)
mutation when compared to both control subjects and ET patients without mutation
(Figure 2C). However, we found no differences in the levels of IL-1β among the analyzed
groups (Figure 2D). Additionally, we observed a positive, but weak, correlation between
APRIL concentrations and the number of platelets (r = 0.257; p = 0.044) and WBC counts
(r = 0.3025; p = 0.017).
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Figure 2. Systemic levels of A proliferation-inducing ligand (APRIL), B cell activating factor (BAFF),
Interleukin (IL)-6, and IL-1β in the essential thrombocytosis patients with or without JAK2(V617F)
mutation. Summary of analyses of (A) APRIL, (B) BAFF, (C) IL-6, and (D) IL-1beta levels in serum of
ET patients with different JAK2(V617F) status and healthy controls. Control—healthy volunteers;
JAK-/+ absence/presence of the JAK2(V617F) mutation; Mann–Whitney U test was used; * p < 0.05;
*** p < 0.001; **** p < 0.0001.

In our study among 109 patients, 18% (20 individuals) were presenting with thrombo-
sis (VTE). As a result, we next aimed to evaluate systemic levels of analyzed inflammatory
mediators in patients with and without VTE. We found higher levels of IL-6 (Figure 3A),
APRIL (Figure 3B), and BAFF (Figure 3C), but not IL-1β (Figure 3D), in both groups of
patients compared to control subjects. Surprisingly, we found no differences comparing
patients with and without VTE. However, we observed elevated IL-6 levels in patients
with VTE carrying JAK2(V617F) mutation compared to the patients without mutation (1.85;
1.131–2.053 vs. 1.49; 0.624–1.903, p = 0.01, respectively).

Having found a systemic increase in BAFF and APRIL levels in patients with ET,
we next analyzed concentrations of the cytokines mentioned above in the bone marrow
supernatant. We found elevated levels of APRIL in ET patients when compared to healthy
controls (Figure 4A). Surprisingly, however, BAFF levels were significantly lower in the
analyzed patients (Figure 4B). A higher level of APRIL was observed in patients with
JAK2(V617F) mutation (Figure 4C). In contrast, significantly lower levels of BAFF were
observed only in ET patients without JAK2(V617F) mutation, while in patients with the
mutation, only a trend (at the threshold of statistical significance) was observed (Figure 4D).
Moreover, we found increased concentrations of APRIL and BAFF soluble receptors—namely,
sBCMA (Figure 4E) but not sTACI (data not shown)—in the bone marrow of patients
without the JAK2(V617F) mutation. Moreover, the levels of IL-6 and IL-1β in the bone
marrow did not reach the detection limit of the used assays (data not shown).
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Figure 4. Levels of a proliferation-inducing ligand (APRIL) and B-cell activating factor (BAFF) in
bone marrow supernatants. Summary of analyses of (A) APRIL and (B) BAFF in the bone marrow of
ET patients and matched healthy controls. Levels of (C) APRIL, (D) BAFF, and (E) sBCMA among
patients with different JAK2(V617F) status and healthy controls. Control-healthy volunteers; JAK-/+
absence/presence of the JAK2(V617F) mutation; ET-essential thrombocytosis patients; Mann-Whitney
U test was used; * p < 0.05; ** p < 0.01.

Finally, we analyzed whether the observed elevated systemic and local levels of
APRIL in ET patients may play a direct role in pathological megakaryopoiesis. Using bone
marrow-derived CD34+ cells from ET patients, we confirmed the previous observations of
Bonci et al. that both APRIL and BAFF mRNA could not be detected in freshly isolated
progenitor cells (data not shown) [15]. Next, we found that the expression of both ligands is
induced during MK maturation (Figure 5A,B, respectively). Interestingly, APRIL and BAFF
expression was significantly elevated in cells without JAK2(V617F) mutation compared to
in unmutated counterparts. Furthermore, we could not detect TACI and BCMA expression
(data not shown) in both freshly isolated and maturating CD34+ progenitor cells. In order
to determine whether endogenous APRIL contributes to the megakaryopoiesis process,
CD34+ progenitor cells were differentiated in the presence of soluble human recombinant
TACI-Fc fusion protein to enable the blocking of APRIL function. We found that APRIL
neutralization resulted in a significant decrease in platelet production (Figure 5C). Thus, we
presented the first functional evidence of the contribution of autocrine APRIL production
to megakaryocytopoiesis.
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sion in bone marrow-derived CD34+ progenitor cells in the course of TPO-induced megakaryocyte
differentiation. The PCR results were presented as relative expression level (2-∆cT). (C) The ef-
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4. Discussion

Regardless of constitutive activation of JAK/STAT signaling, due to somatic mutations
in JAK2(V617F), calreticulin or the thrombopoietin receptor, it is hypothesized that other
non-genetic factors, including inflammatory mediators, are involved in the pathogenesis of
ET. A growing body of evidence indicates a substantial role of inflammatory cytokines (such
as IL-1β and IL-6) and growth factors in the control of MK differentiation, growth, and
platelet production. These promegakaryocytic factors may act through direct interaction
with MKs, or by indirectly stimulating cells that form a hematopoietic niche in the bone
marrow [1,17,18]. More importantly, it has been shown that MKs can support their own
growth and differentiation program in an autocrine manner by the release of platelet-
derived growth factor and von Willebrand factor [19].

APRIL and BAFF are mainly produced by myeloid cells, including monocytes/macrophages,
dendritic cells, and granulocytes. In addition, they possess high immune-modulatory prop-
erties and may interact with both innate and adaptive cellular repertoires [20–24]. In fact,
BAFF and APRIL have been shown to play a crucial role in B-cell development, matura-
tion, differentiation, and antibody isotype switching. Furthermore, it has been proposed
that both APRIL and BAFF may play a role in the differentiation and maturation of other
hematopoietic cells in bone marrow, including megakaryocytic cells [15]. Bonci et al.
showed, by using cord-blood-derived CD34+ cells, that APRIL is upregulated during the
proliferative phase of megakaryocytic cell differentiation, and exogenous APRIL increases
the megakaryocytic cell growth [15]. However, it should be emphasized that, to date, the di-
rect or indirect influence of APRIL and BAFF has never been described in the pathogenesis
of ET, particularly in the process of megakaryopoiesis.

Our study evaluated systemic and bone marrow concentrations of APRIL and BAFF
and their receptors in ET patients, and showed their significantly higher concentrations
in peripheral blood, regardless of the presence of the JAK2(V617F) mutation. However,
we found that with APRIL, but not BAFF, the level was elevated in the bone marrow of
ET patients, primarily in those presenting with JAK2(V617F) mutation. Moreover, we
established a positive association between APRIL concentration and platelet and WBC
counts; both are referred to as risk factors for thrombosis according to the International
Prognostic Score for ET [25]. Notably, granulocytes and monocytes from ET patients express
higher BAFF levels than those of healthy adults. This explains the higher systemic levels
of BAFF in our study. On the other hand, BAFF was shown to increase transcription and
the release of IL-6 in monocytes/macrophages and B-cells [20]. Moreover, BAFF enhances
Toll-like receptor 4 (TLR4) expression in B-cells [26]. Upon TLR-4 stimulation, B-cells
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release high levels of inflammatory cytokines, including IL-6. Interestingly, IL-6 and IL-1β
have promoted MK growth and platelet production [27]. IL-1β enhances nuclear factor
E2 (NF-E2) expression in MKs [28], which has been found to facilitate the proliferation
and differentiation of hematopoietic progenitors [29]. In contrast, IL-6 contributes to
thrombopoiesis by activating TPO gene transcription and its increased release [30]. Here,
we evaluated systemic and local (bone marrow) concentrations of IL-6 and IL-1β, and
showed elevated levels of IL-6 in serum of JAK2(V617F)-positive patients compared to
the control and patients without the mutation. Moreover, we found significantly higher
concentrations of IL-6 in patients with VTE carrying the JAK2 (V617F) mutation, compared
to the mutation-negative patients. In fact, inflammation is associated with one of the
significant complications of MPNs, namely, thromboembolism. MPN patients show an
abnormal expression of integrin CD11b in leukocytes and p-selectin receptor (CD62p)
in platelets. This overexpression led to an enhanced formation of platelet–leukocyte
complexes [31]. Finally, the increased activation of the hemostatic system, manifested
by elevated levels of markers of thrombosis, such as D-dimers, von Willebrand factor, and
prothrombin fragments, suggests that, in addition to hypercellularity, abnormalities in
the coagulation pathway contribute to the prothrombotic state in MPNs, including ET
patients [32].

The essential role of APRIL in megakaryocyte differentiation and platelet production
in cord-blood-derived CD34+ cells has been suggested [15]. However, in our study, it
remained elusive whether the observed elevated levels of APRIL in the bone marrow
play a role in the pathology of ET. Thus, we used an in vitro differentiation assay with
APRIL neutralization to assess platelet production and cell phenotype. Unfortunately,
due to the low number of CD34+ cells in the bone marrow and the limited amount of
material that can be acquired from the patients, the expression of APRIL and BAFF was
evaluated at baseline (in freshly isolated cells before differentiation) and on day seven
of megakaryocytic cells differentiation induced by TPO. As in other studies, APRIL and
BAFF mRNA were undetectable at baseline; however, TPO-induced differentiation induced
their expression. Interestingly, the expression of both analyzed TNF family members
was elevated in differentiating cells from ET JAK2(V617F)-negative patients compared
to JAK2(V617F)-positive counterparts. In contrast, we could not detect TACI or BCMA
expression during megakaryocytic differentiation, suggesting that APRIL binding to MKs
depends on the presence of an as-yet undefined pathway. Several epithelial cell lines can
proliferate more rapidly in response to APRIL, even though they do not express BCMA
or TACI [33,34]. This observation was extended with a subcutaneous tumor model of
HT29 and A459 cell lines in which tumor growth was significantly reduced and nearly
prevented by the administration of soluble BCMA:Fc fusion proteins [35]. This pathway
may involve APRIL interaction with proteoglycans, mediated by heparan sulfate (HS)
side chains and inhibited by the heparin [36,37]. APRIL binds HS proteoglycans via the
lysine-rich region in the N-terminal part, leaving the TNF-like region available to interact
with other receptors [38,39].

To determine whether the production of endogenous APRIL contributes to the megakary-
opoiesis process, CD34+ cells isolated from bone marrow patients with ET (with and
without JAK2 (V617F) mutation) were grown in MK culture in the presence of soluble
human recombinant TACI:Fc fusion protein, which neutralizes APRIL activity [15]. In fact,
we presented here, direct evidence that APRIL neutralization decreases platelet produc-
tion, confirming the contribution of autocrine APRIL production to megakaryocytopoiesis,
regardless of the presence of the JAK2(V617F) mutation. Moreover, the data presented
here indicate that APRIL acts as an autocrine growth factor for megakaryocytic cells with
and without JAK2(V617F) mutation, offering a potential new point for biological therapies.
The therapeutic potential and efficiency of APRIL neutralization have been proved in
several hematological malignancies. APRIL neutralization with antibodies and BCMA
downregulation significantly decrease myeloma cell viability and colony formation [40].
However, BCMA control has been retained as a compelling therapeutic target in myeloma,
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with a limited risk of off-tissue toxicity [41]. In 2013, the first report of an anti-BCMA CAR-
expressing T (CAR-T) cell was published [42], promoting BCMA as a target for multiple
myeloma treatment.

5. Conclusions

In summary, the contribution of APRIL to megakaryocytopoiesis appears to be due to
the immediate increase in MK maturation, and the process itself seems to be independent
of the presence of (JAK2)V617F mutation. More importantly, we showed direct evidence
that APRIL may act as an autocrine growth factor for megakaryocytes. However, further
studies are needed to elucidate the observed phenomenon. We believe that our research
opens new possibilities for targeted APRIL-oriented therapy in ET.
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