
1

Vol.:(0123456789)

Scientific Reports |        (2022) 12:10761  | https://doi.org/10.1038/s41598-022-14979-0

www.nature.com/scientificreports

Inferring the spread of COVID‑19: 
the role of time‑varying reporting 
rate in epidemiological modelling
Adam Spannaus  1*, Theodore Papamarkou1,2,3, Samantha Erwin4 & J. Blair Christian1

The role of epidemiological models is crucial for informing public health officials during a public health 
emergency, such as the COVID-19 pandemic. However, traditional epidemiological models fail to 
capture the time-varying effects of mitigation strategies and do not account for under-reporting of 
active cases, thus introducing bias in the estimation of model parameters. To infer more accurate 
parameter estimates and to reduce the uncertainty of these estimates, we extend the SIR and SEIR 
epidemiological models with two time-varying parameters that capture the transmission rate and 
the rate at which active cases are reported to health officials. Using two real data sets of COVID-19 
cases, we perform Bayesian inference via our SIR and SEIR models with time-varying transmission 
and reporting rates and via their standard counterparts with constant rates; our approach provides 
parameter estimates with more realistic interpretation, and 1-week ahead predictions with reduced 
uncertainty. Furthermore, we find consistent under-reporting in the number of active cases in the 
data that we consider, suggesting that the initial phase of the pandemic was more widespread than 
previously reported.

During a disease outbreak, epidemiological forecasting informs public health decisions by predicting how widely 
the disease will possibly spread1. Such information is critical for public health officials trying to understand the 
dynamics through which a disease is transmitted and to slow its propagation2. It is also important to quantify the 
proportion of infections in a community and the frequency with which infections are being reported to public 
health officials. Moreover, in the case of a novel disease, there are uncertainties in estimates of the infection rate 
and of the incubation period, and reliable testing strategies have yet to be developed. These considerations are 
relevant during the SARS-CoV-2 (COVID-19) pandemic as the uncertainty surrounding the disease’s transmis-
sion and incubation rates have made coordinating the global response to this disease a substantial challenge to 
public health officials.

One of the most widely employed mathematical models of general disease transmission is the Susceptible-
Infected-Removed (SIR) model3. This model describes the interactions between three population groups: those 
who are are susceptible to an infection, those who are infected, and those who have been removed from the 
population through either recovery or death. Over time, the SIR model has been augmented to include other 
groups, such as an exposed individuals, asymptomatic carriers, or individuals immune to the infection4. In the 
present context of the COVID-19 pandemic, a latency period in the course of the disease has been proposed5, 
during which an individual carrying the disease does not present symptoms. This suggests the possibility of 
including an ‘exposed’ state, thus modelling the spread of COVID-19 with a Susceptible-Exposed-Infected-
Resistant (SEIR) model.

Deterministic epidemiological models cannot reflect the real-time implications of preventative measures, 
such as safer-at-home orders, social distancing, or mask mandates that directly impact the transmission rate6. 
Moreover, these models do not take into account climatic changes, nor social cycles, e.g., holiday gatherings or 
the periodic starting and stopping of the school calendar. To capture the time-varying effects of preventative 
measures and changes in social interactions, we choose stochastic state space representations of both the SIR 
and SEIR model and adopt a Bayesian approach.

The novelty in our model is that the rate of transmission and the reporting rate of positive cases vary in time. 
Time-varying transmission and reporting rates, as opposed to constant ones, provide more flexible model-
ling assumptions, and thus adhere more closely to respective observed rates in COVID-19 data. By allowing 
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the transmission rate to vary in time, our model adapts to heterogeneity of disease outcomes, to mutations in 
the disease, to asymptomatic transmission, and to mitigation strategies used to slow the spread of the disease. 
However, a time-varying transmission rate does not fully capture the spread of a disease though a population. 
Indeed, not all cases are reported due to faulty tests, inability to obtain a test, or false negative results for example. 
In order to further quantify disease proliferation through a susceptible population, we also allow the reporting 
rate to vary in time. By including a time-varying reporting rate, our model is more flexible to adapt to under-
reporting of cases and to advancements in testing reliability. In other words, this time-varying reporting rate 
allows our model to dynamically adapt to changes in the spread of COVID-19, thus informing more accurately 
the reporting of positive cases to the health agencies.

During the COVID-19 pandemic, and specifically in the early phases, a lag in testing times and under-
reported case rates have been observed. Similar studies on the Zika virus note a high occurrence of under-
reporting and estimate reporting rates by including a separate unreported infected population in epidemiological 
modelling7. Similarly, in estimating the reporting rate for shigellosis, a secondary unreported infected compart-
ment is proposed by Joh et al.8. An alternative approach is taken in a study of an influenza pandemic, where 
a functional form of the reporting rate is estimated as either linearly increasing or constant depending on the 
time-frame of the pandemic9,10. Rather than introducing an additional compartment into an epidemiological 
model, we instead employ a time-varying parameter of reporting rate. So, we avoid a structural change to our 
model, while making the model more flexible via time-varying parameterization. Augmenting an epidemiological 
model is not the only approach to estimate the spread of a disease throughout a population. Alternatively, one 
could develop an artificial neural network11, or a fractional-order epidemiological model12.

To demonstrate our approach, we study two regional outbreaks with different mitigation strategies using the 
COVID-19 case counts, as collated by the New York Times13. Considering data from Tennessee and New York 
showcases the flexibility of our Bayesian model with time-varying transmission and reporting rates, because the 
spread of COVID-19 in these states presents different modelling challenges. Notably, these two states experienced 
the initial 6 months of the pandemic in widely differing fashion. Indeed, each state handled the beginning of the 
pandemic differently, employed different testing strategies, and continue to have different reopening policies14. 
Such widely varying pandemic management strategies are demonstrated by the COVID-19 data sets associated 
with Tennessee and New York, which exhibit drastically different dynamics of case counts. Our experiments 
highlight the capacity of our Bayesian state space epidemiological models with time-varying transmission and 
reporting rates to fit data representing different dynamics of disease spread, to estimate the transmission rate 
and the reporting rate during the progression of COVID-19, and to reduce the uncertainty in predictions of 
COVID-19 cases.

Model formulation
S(E)IR epidemiological model.  To investigate the spread of COVID-19 through a population, we use the 
traditional SIR and SEIR epidemiological models, augmenting them with two temporal variables. One of these 
variables accounts for the rate of transmission, while the other variable quantifies the rate at which positive cases 
are reported. These time-varying variables account for variation in the transmissibility of a disease and in the 
rate at which new infections are reported. Consequently, our model is able to account for variation and uncer-
tainty present during a public health emergency.

Allowing the transmission rate of COVID-19 to vary in time, similar to the approach of15–18, we are able to 
capture intervention measures enacted by public health officials, such as mask mandates or shelter-in-place 
orders, or ‘super-spreader’ events which have direct impacts on disease prevalence. By modelling the rate at 
which the disease spreads as a time-varying variable, we may better quantify the spread of the disease, which in 
turn, yields more accurate information about the course of the pandemic to public health officials concerned 
with slowing community spread.

Quantifying the transmissibility of a disease does not fully capture its reach and spread, though. If we consider 
the early phases of the COVID-19 pandemic, wide-spread access to testing was unavailable, and disease preva-
lence within communities was widely under-reported19,20. To this end, we present a novel S(E)IR epidemiological 
model by introducing two time-varying variables, namely the reporting rate p(t) and the transmission rate β(t) . 
The reporting rate p(t) captures the percentage of positive cases reported, and the transmission rate β(t) quanti-
fies the rate at which COVID-19 spreads through a population at time t.

The SIR epidemiological model with time-varying transmission rate β(t) is represented by the system of 
differential equations

where w(t) is a stochastic differential equation (SDE), which entails the Wiener process B(t) and controls the 
transmission rate21. In this SDE, we define drift µ and diffusion σ terms, parameterized by θw , and a function 
g : R+ → R . It is this time-varying parameter that controls the extent to which a disease spreads throughout a 
population. Lastly, to fully specify the epidemiological model, we write S(t) as individuals susceptible to COVID-
19, I(t) as individuals infected with COVID-19, and R(t) as individuals removed from the population who are 

(1)

dS(t) = −β(t)S(t)
I(t)

N
dt,

dI(t) = (β(t)S(t)
I(t)

N
− γ I(t))dt,

dR(t) = γ I(t) dt,

dw(t) = µ(w(t), θw)dt + σ(w(t), θw) dB(t), w(t) = g(β(t)),
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no longer able to become infected. Susceptible individuals move into the infected compartment at rate β(t) and 
infected individuals become removed at rate γ.

An expansion on the SIR model is the SEIR model which includes an additional ‘exposed’ compartment 
E(t) between the ‘susceptible’ and ‘infected’ compartments. Individuals who are in the disease’s latent period, 
the ‘exposed’ compartment, move into the ‘infected’ compartment with rate κ and are and thus are capable of 
infecting other susceptible individuals. The system of differential equations that represents the SEIR model can 
be found in appendix A. The salient difference between the SIR and SEIR models is the inclusion of the ‘exposed’ 
state in the latter; individuals move into this compartment once they have been exposed to an infected individual, 
but are not yet expressing any symptoms. Such a latent phase is pertinent when quantifying the breadth of the 
pandemic due to the challenges in correctly accounting for such individuals. Moreover, the ‘exposed’ compart-
ment not only acts as a delay between the ‘susceptible’ and ‘infected’ compartments, but individuals in this 
compartment may transmit the disease before becoming actively infected themselves.

In this study, for both SIR and SEIR models, we take µ = 0 and σ(w(t), θw) = θw , thus assuming that the 
transmission rate on any day is likely to be the same as the previous day, and set g(·) = log(·) . By choosing µ = 0 
and σ(w(t), θw) = θw , the resulting path w(t), defined by the SDE dw(t) = θwdB(t) , is a Brownian motion. 
Allowing w(t) to vary in time defines the effective transmission rate β(t) = g−1(w(t)) , which controls the extent 
to which a disease spreads between individuals within a population.

State space model.  Incorporating temporal information about the dynamics driving the spread of 
COVID-19 into our model, we discretize the path of w(t) which defines the transmissibility, and seek to infer 
p(t) at each time step. These two correlated time series quantify the rate at which COVID-19 spreads through a 
population10,22. Then coupling these time series with observed case counts as reported by public health agencies, 
we adopt a state-space modelling paradigm for our inference problem23.

A state space model relates two discrete time processes by a probabilistic model incorporating both state evo-
lution and observation densities. In the present context, we are given the number of cases reported by the public 
health officials, and seek to infer the distribution of the reporting rate p(t) and of the transmission rate β(t) . We 
view the transmission rate and reporting rate as discrete time processes and write βt and pt for the discrete time 
counterparts of β(t) and p(t), respectively. Making some regularity assumptions24 on the evolution dynamics of 
the system given in equation (1), and denoting any sequence as {ct}t≥0 for i ≤ j as ci:j = (ci , ci+1, . . . , cj) , we view 
the stochastic epidemiological model as a state space model, written

The transmissibility wt of COVID-19 is controlled by the SDE dwt = θw dBt , with Wiener process Bt , parameter-
ized by θw . The reporting rate pt evolves according to the SDE dpt = ptdt + ϑ2dWt , where ϑ is the diffusion 
parameter and Wt is a Wiener process. The reporting rate pt , coupled with the number of observed cases Yt , and 
associated parameters θYt defines an observation density, Yt ∼ h(·|Xt , pt , θY ) . We define Xt as the latent number 
of cases, i.e., Xt =

∫ t
t−1 βτ Sτ

Iτ
N dτ or Xt =

∫ t
t−1 κEτdτ , 1 ≤ t ≤ T for an SIR or SEIR model, respectively, and 

X0 ∼ π0 for a prior density π0 . We write this recursion as F(wt; θw) to make explicit that the solution to Eq. (1) 
depends on the state wt and can be computed for any value thereof via numerical integration.

To define the observation density h(·|Xt , pt , θY ) , we first assume that the reporting of new cases are independ-
ent Bernoulli random variables, i.e., each case is reported with probability pt . Then the waiting time until the 
first reported case is geometrically distributed with the same parameter pt and we are interested in the weekly 
incidence rate, conditional on the number of reported cases Yt . Since Yt is the sum of i.i.d.geometrically distrib-
uted random variables with parameter pt , it then follows that Yt |Xt ∼ NegBin(pt ,Xt) . Invoking the central limit 
theorem, the observations Yt are approximately Gaussian with mean ptXt and variance pt(1− pt)Xt + (ptXtη)

2 . 
In this scenario, the variance term contains an additional parameter η , which describes the over-dispersion within 
a population. See the Appendix for a more detailed discussion about the distribution of Yt . Lastly, we define 
parameters θY = (η,ϑ) and θX = (κ , γ ,X0) , or θX = (γ ,X0) , for the SEIR or SIR model, respectively.

Model parameters.  We now describe the parameters utilized in our model. Firstly, the vector θY = (η,ϑ) 
contains parameters utilized in our model when investigating a temporally-varying reporting rate pt . Here η is 
incorporated in the observation variance, specifying over-dispersion within the observations, and indicating 
heterogeneity within a population25,26. It is a common occurrence in count data25,26 and accounts for large vari-
ances in individual outcomes. Furthermore it can signal the presence of ‘super-spreading’ events27. Secondly, ϑ 
is the standard deviation of the reporting rate. By investigating the marginal density of pt at each time step, we 
may quantify the uncertainty in the rate of reporting of positive cases.

We compare our model against a model with constant reporting rate, denoted pc , for the entire time dura-
tion. In the model with constant reporting rate, we set θY = η , and we may infer the variance a posteriori from 
Markov chain Monte Carlo (MCMC) integration, but this is a static value that is not capable of adapting to 
changes in the realities of a pandemic, such as more sensitive or accurate testing methods and the availability 
of individuals to obtain a test.

For the parameters governing the movement between the compartments of the epidemiological model, aside 
from the transmission rate βt , we follow28 and assume that the distribution of γ , governing the movement of 
individuals from the infected bin to recovered, follows a Gaussian distribution with mean 5.058 days and standard 
deviation of 1.519 days, with support on the interval of 2.228 and 11.800 days. For our SEIR models, we sample 

(2)
dwt = θw dBt , dpt = ptdt + ϑ2dWt ,

Y1:T ∼ h(Y1:T |X0:T , p0:T , θY ), X0:T = F(w0:T ; θw).
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the parameter k from a gamma distribution with shape parameter 1.058 and scale 2.174. The parameter k controls 
the rate at which individuals move from the disease’s latent phase to an active infection.

Results
Parameter uncertainty.  Two data sets of reported COVID-19 cases, one from New York and one from 
Tennessee, demonstrate different evolution dynamics, see Fig. 1b,c respectively for a plot of the weekly new case 
counts. The pandemic went through a period of sustained exponential growth in New York, primarily in the New 
York City metropolitan region, then abated to a near constant level in subsequent months. Furthermore dur-
ing the initial wave in New York, testing was not widely available, and the 7-day rolling average of positive test 
case peaked at nearly 50% in early April 202029. On the contrary, the Tennessee data, which are representative 
of the evolution dynamics of case counts for the majority of other states, exhibit a slow initial increase, followed 
by a first wave in April and a much larger increase in July. The variations between the incidence data for these 
two states are visible in Fig. 1a. These two datasets represent the initial phase of the pandemic from two distinct 
perspectives. Firstly, the dramatic increase in the NY case counts during March 2020 induces greater uncertainty 
in the parameters as compared with the gradual increase in the Tennessee case counts. Secondly, the different 
levels of induced parameter uncertainty enable us to study how such different levels of uncertainty propagate in 
time through our model.

The estimated transmission rate for New York based on our SIR model with time-varying reporting rate pt 
exhibits a spike in transmissibility in April and May (Fig. 2b), which agrees with the spike of observed COVID-
19 cases in April and May (blue line in Fig. 1a). The typical SIR model with constant reporting rate produces a 
transmission rate estimate that fails to capture this spike in transmissibility, as seen in Fig. 2a. Recall that posterior 
estimates of the transmission rate quantify the rate at which susceptible individuals move from the susceptible 
compartment to an active stage of infection. As demonstrated by Figs. 1a and 2, our SIR model with time-varying 
reporting rate provides transmission rate estimates that reflect the observed dynamics of transmission more 
faithfully than a SIR model with constant reporting rate.

Furthermore, the higher rate of change in the number of observed COVID-19 cases in New York between 
March and May (blue line in Fig. 1a) induces higher uncertainty in the estimation of the transmission rate. Our 
SIR model with time-varying reporting rate yields wider credible intervals (Fig. 2b) for the estimated transmis-
sion rate in New York between March and May in comparison to the SIR model with constant reporting rate 
(Fig. 2a). Thus, letting the reporting rate vary with time facilitates the detection of periods of higher uncertainty 
in transmission rate estimates.

The transmission rate estimates obtained by fitting the SIR model with time-varying and with constant report-
ing rate to the Tennessee COVID-19 case data agree with one another for the period between May and August 
(see Fig. 3a,b). However, the SIR model with time-varying reporting rate estimates a smaller drop in the trans-
mission rate in April as compared with the SIR model with constant reporting rate. The former model exhibits 
a reduced reporting rate estimate in April (blue line in Fig. 4b). So, both models capture the small drop in the 
number of COVID-19 cases observed in Tennessee during April (orange line in Fig. 1a); the flexible SIR model 
with time-varying reporting rate attributes this drop to decreased reporting rate (Fig. 4b), whereas the SIR model 
with constant reporting rate attributes the drop to decreased transmission rate (Fig. 3a). There is no evidence to 
corroborate which of the two interpretations is correct. Nevertheless, the SIR model with time-varying reporting 
rate has a wider range of potential options, and it explains the drop in cases via reduced reporting rate in April, 
which is an explanation not available via the SIR model with constant reporting rate.

Figure 4 presents the estimated reporting rates for the SIR model with time-varying reporting rate (in blue) 
and with constant reporting rate (in orange). In the case of New York (Fig. 4a), the 75% and 95% credible inter-
vals for the estimated constant reporting rate are wider than the respective credible intervals for the estimated 

Figure 1.   The weekly data of COVID-19 cases for New York (blue) and for Tennessee (orange) from March 1, 
2020 through August 31, 2020 are shown in (a). The reconstructed weekly cases for New York and for Tennessee 
over the same time period, based on our SIR model with time-varying reporting rate pt , are displayed in (b) and 
(c), respectively. In (b) and (c), which show our model-based data reconstruction, blue triangles, red triangles, 
black lines, light-shaded grey areas and dark-shaded grey areas represent the original data, posterior means, 
posterior medians, 75% credible intervals and 95% credible intervals, respectively.
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time-varying reporting rate. This indicates that our more flexible SIR model reduces the uncertainty in reporting 
rate estimation by letting the rate vary with time. The time-varying reporting rate estimates capture an upward 
trend in reporting rate both in New York (Fig. 4a) and in Tennessee (Fig. 4b), which can be explained by improve-
ments in infrastructure and in available resources to manage the pandemic as time goes by. On the other hand, 
the SIR model with constant reporting rate can not accommodate such temporal changes in the management 
and reporting of the pandemic.

As seen in Fig. 4, SIR modelling with constant reporting rate tends to underestimate reporting rates. The 
disagreement in reporting rate estimation between the SIR models with time-varying and with constant reporting 
rate is particularly pronounced in the case of New York (Fig. 4b); notice that the straight orange line (constant 
reporting rate estimate) is lower than the blue line (time-varying reporting rate estimate). The demonstrated 
underestimation of reporting rates via SIR modelling with constant reporting rate has been previously noted in 
the literature, and it has been linked to underestimation of the true number of cases and to bias in transmission 
rate estimation30. Our approach based on SIR modelling with time-varying reporting rate provides a principled 

Figure 2.   Estimates of the COVID-19 transmission rate for New York based on the typical SIR model with 
constant reporting rate (a) and based on our SIR model with a time-varying reporting rate pt (b). Solid lines, 
light-shaded and dark-shaded areas correspond to posterior means, 75% and 95% credible intervals of the 
associated transmission rates.

Figure 3.   Estimates of the COVID-19 transmission rate for Tennessee based on the typical SIR model with 
constant reporting rate (a) and based on our SIR model with a time-varying reporting rate pt (b). Solid lines, 
light-shaded and dark-shaded areas correspond to posterior means, 75% and 95% credible intervals of the 
associated transmission rates.
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approach to avoid reporting underestimation, consequently reducing the uncertainty in predictions of number 
of cases.

Predictive uncertainty.  We make predictions about the number of cases 1 week into the future by fitting 
SIR and SEIR models with constant or with time-varying reporting rates to New York and to Tennessee data 
through August 30, 2020. Irrespective of whether constant or time-varying reporting rate is employed, both SIR 
and SEIR models produce 75% predictive intervals for the number of cases in New York and in Tennessee that 
contain the observed number of cases (Fig. 5).

Overall, SIR and SEIR models with time-varying reporting rates outperform their counterparts with constant 
reporting rates in terms of predictive performance (Fig. 5). Firstly, time-varying reporting rates yield narrower 
predictive intervals, thus reducing predictive uncertainty. Secondly, time-varying reporting rates lead to pre-
dictive posterior means that are closer to the observed number of cases. The improved predictive performance 
attained via modelling based on time-varying reporting rates is observed in three out of the four examined 

Figure 4.   Estimates of the COVID-19 reporting rate for New York (a) and for Tennessee (b) obtained from the 
SIR model with constant (orange) and with time-varying (blue) reporting rate. The blue line, light-shaded and 
dark-shaded blue areas represent the respective posterior mean, 75% and 95% credible intervals of the time-
varying reporting rate. The orange solid, orange dashed and orange dotted line represent the respective posterior 
mean, 75% and 95% credible intervals of the constant reporting rate.

Figure 5.   One-week ahead predictions of COVID-19 cases in New York (NY) and in Tennessee (TN) for the 
week starting August 31, 2020, using SIR and SEIR models with constant reporting rate ( pc ) or with time-
varying reporting rate ( pt ). Red triangles and grey crosses denote posterior predictive means and posterior 
predictive medians, respectively. Bars represent 75% posterior predictive intervals. Blue circles depict the 
observed number of cases.
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scenarios (SIR and SEIR models fitted to Tennessee data, and SEIR model fitted to New York data), with no 
apparent improvement in one case (SIR model fitted to New York data).

The wider predictive intervals and therefore higher predictive uncertainty in the Tennessee predictions in 
comparison to the New York predictions shown in Fig. 5 is seemingly counter-intuitive, given the higher volatility 
of the New York data (Fig. 1a). However, there is an explanation for the higher predictive uncertainty associ-
ated with the Tennessee data. The Tennessee Department of Health changed how they defined an active case on 
September 3, 2020, resulting in a 1-day decrease of approximately 20, 000 reported cases31. Consequently, the 
predictive distribution is skewed to the left in comparison to the ground truth value, as anticipated after consid-
ering the change in the definition of an active case by the Tennessee Department of Health.

Discussion
The states of New York and Tennessee experienced the first wave of the COVID-19 pandemic in different fashion. 
Our modelling strategy is able to dynamically adapt to different mitigation strategies enacted in each locality and 
accurately reflect the course of the pandemic in these geographic regions. We are able to capture the dynamic 
nature of the transmission rate when intervention methods are enacted, and can quantify changes in the report-
ing rate of case counts. This modelling strategy yields actionable results for public health officials entrusted with 
a community’s well-being.

We observe dependence between the time-varying parameters, namely between the transmission and report-
ing rates, similar to the effects noted by30. Indeed, with the significant under-reporting of active cases present in 
the New York data, a model employing a static reporting rate fails to capture the dynamic nature of COVID-19 
transmissibility. As a concrete example, consider the time period from March 1, 2020 through May 24, 2020, 
when there were 383, 560 active cases reported in New York. Taking the reporting rate inferred by our SIR 
model, we find that there were 530, 411 active cases, with 95% confidence intervals (403,285, 900,077) , a figure 
which is corroborated by the study of32 that identified under-reporting of active COVID-19 cases by considering 
hospitalization and death rates.

Primarily, a novelty in our modelling approach has been to include a time-varying reporting rate that leads 
to models which are more likely to fit and explain COVID-19 incidence data. This conclusion is intuitive, since 
changes in the reporting rate imply changes in the resulting data, so a model with a varying reporting rate is 
more likely to fit data affected by changes in reporting procedures.

Secondly, we provide a Bayesian approach to quantify uncertainty in relevant epidemiological parameters 
and in predictions, yielding a source of important information to public health officials tasked with assessing 
the present state and with suggesting mitigation strategies for subsequent weeks. Our 1-week ahead predictions 
are accurate, since 75% relevant credible intervals contain the ground truth (Fig. 5a).

The methods described herein are better able to capture not only the time-varying drivers of an epidemic, but 
also how the reporting of cases changes temporally, thus providing more accurate quantification of the spread 
of a disease through a susceptible population. Our method provides near real-time actionable information to 
public health officials, as opposed to methods that use the hospitalization rate32 or the excess death rate33,34, both 
of which have a time-lag on the order of weeks. Indeed, previous studies have noted the presence of COVID-19 
in February 2020, well before any appreciable increase in hospitalizations35,36. Quantifying the spread of a disease 
through a population and the proportion that are going uncounted by public health agencies is an essential tool 
for these agencies tasked not only with estimating the proportion of a group that is actively infected, but mitigat-
ing the disease’s impact on a population. Indeed, by providing real-time knowledge of the true number of active 
infections to public health officials, the timing and severity of mitigation strategies can be better informed, thus 
reducing the community spread of a disease.

While our model cannot capture all the intricacies involved with the public health infrastructure, such as 
variability of testing sensitivity, access to testing sites, or individuals taking at-home tests that are not reported 
to public health agencies, we are able to estimate time-sensitive parameters crucial to slowing the spread of an 
emerging new disease. Indeed, by providing accurate and actionable information about the spread of a disease 
throughout a population, public health officials could put in place mitigation strategies to slow the spread of a 
disease.

Future versions of the model could incorporate additional parameters, such as one describing mobility of 
subpopulations within a geographic region. Such a parameter could capture heterogeneity within a population, 
and identify those subgroups at higher or lower risk for infection and transmission due to their movements within 
a specified time window. Lastly, we plan to further investigate the correlation structure between the transmission 
and reporting rates, to better quantify their dependencies and effects on each other.

Methods
Bayesian formulation.  Our SIR and SEIR models are parameterized by θ = (θw , θX , θY ) . We factorize the 
posterior density π(w0:T , p0:T , θ |Y1:T ) of the transmissibility w0:T , reporting rate p0:T and model parameters θ , 
given observations Y1:T , as follows:

According to Eq. (3), we sample from π(w0:T , p0:T , θ |Y1:T ) by alternating between sampling from densities 
π(w0:T , p0:T |Y1:T , θ) and π(θ |Y1:T ) via the particle Markov chain Monte Carlo (PMCMC) algorithm of37. 
PMCMC alleviates issues of convergence and insufficient exploration of the sample space that can arise due to 
correlations and dependencies between variables.

(3)π(w0:T , p0:T , θ |Y1:T ) = π(w0:T , p0:T |Y1:T , θ)π(θ |Y1:T ).
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Sampling from eq. (3) allows us to infer the time-varying transmission rate β0:T , the time-varying reporting 
rate p0:T , and to make predictions about the future course of the pandemic. Moreover, our Bayesian SIR and SEIR 
models enable us to quantify the uncertainty of our parameter estimates and of our predictions.

Particle Markov chain Monte Carlo.  To sample from the posterior density of eq. (3), we employ PMCMC 
sampling37. We describe the algorithmic procedure and detail the hyperparameter choices in our model; for an 
in-depth discussion and theoretical results, see37,38. PMCMC alleviates issues with slow MCMC mixing and low 
acceptance rates that are present in other methodologies for sampling from a joint posterior, such as the pseudo-
marginal approach of39. First, the sequential Monte Carlo (SMC) procedure is described, followed by PMCMC.

SMC algorithms38 provide a way of sampling from distributions defined by state-space models. Based on 
the decomposition of our posterior density as stated in eq. (3), samples are first drawn from the conditional 
density π(w0:T , p0:T |Y1:T , θ) . The employed SMC algorithm yields a sequence of densities that approximates 
{π(w0:τ , p0:τ |Y1:τ , θ) : τ ≥ 0} and the marginal densities {L(Y1:τ |w0:τ , p0:τ , θ) : τ ≥ 0} for a given θ and τ ≤ T . 
SMC first approximates π(w1, p1|Y1, θ) and L(Y1|w0:1, p0:1, θ) by drawing samples from an importance density 
q̂
(i)
1 ∼ Q1(·|Y1,w1, p1, θ) for particles i = 1, . . . ,P and q(i)t := (w

(i)
t , p

(i)
t )37. SMC approximates π(q1:τ |Y1:τ , θ) and 

L(Y1:τ |q0:τ , θ) , for subsequent iterations τ by sampling from importance densities q̂(i)τ ∼ Qτ (qτ |Y1:τ , q̂
(i)
1:τ−1, θ) . 

Requiring these densities to be of the form Qτ (q1:τ ) = Q1(q1)
∏T

τ=2 Qτ (qτ |Y1:τ , q1:τ−1) , one readily computes 
an unbiased estimate of the marginal likelihood L(Y1:T |q0:T , θ) , which is necessary for the Metropolis-Hastings 
acceptance ratio in the PMCMC sampler38.

Having sampled from π(w0:T , p0:T |Y1:T , θ) via SMC, it remains to sample from π(θ |Y1:T ) . At each iteration 
of the PMCMC algorithm, a value θ∗ of the parameter θ is proposed, followed by a sample {q(i)0:T }

P
i=1 generated 

via SMC. Thus, the problem of sampling from π(w1:T , p1:T , θ |Y1:T ) is reduced to sampling from π(θ |Y1:T ) , as 
samples from π(w1:T , p1:T |Y1:T , θ) are obtained via the SMC algorithm.

The model parameters η,w0, σ , and pc or pt are given wide uninformative priors due to the uncertainty about 
the ongoing pandemic and disparities in reporting data. We model the infection period as a truncated Gaussian 
distribution with mean of 5.058 days, standard deviation of 1.51, lower bound of 2.228 days and upper bound 
of 11.8 days, following Lauer et al.40. The prior for the latent period Et is obtained from the study of Moghadas 
et al.28, and is modeled as a gamma distribution with shape and scale parameters 1.058 and 2.174 respectively41. 
For the initial proportions of the population in states X0 we chose a Dirichlet distribution, while constraining 
the mean of R0 to be N (0.5, 0.252) , and let the means of the other compartments be equal. By this choice, we 
ensure that the condition St + Et + It + Rt = N or St + It + Rt = N is satisfied in the respective SEIR or SIR 
model. Thus, the sum over all compartments in the epidemiological model at each time step is the same as the 
total population N. Lastly, we ran PMCMC sampling with 5, 000 particles and obtain 50, 000 samples from the 
posterior after a burn-in period of 5, 000 iterations.

Choice of density for the observational model.  A Poisson or a Gaussian approximation can be used 
for the density h(Y1:T |X0:T , p0:T , θY ) of the observational model. Pilot PMCMC runs demonstrate similar effec-
tive sample sizes for the Poisson and Gaussian approximations, but higher number of particles and therefore 
higher computational budget are required for the Poisson approximation. For this reason, a Gaussian approxi-
mation is preferred.

Overview of data and of experimental setup.  The data used in our experiments are based on daily 
case counts from March 1, 2020, through August 31, 2020, obtained from the New York Times COVID data 
repository13. In our analysis, we use daily reported case counts and aggregate them on a weekly basis for com-
putational considerations. For one iteration of the PMCMC method, each particle in the ensemble requires the 
numerical approximation of a system of non-linear ordinary differential equations comprised of T time steps. 
This computational cost becomes infeasible in the case of daily case counts due to the increased number of par-
ticles required for PMCMC sampling.

For the implementation of our model and for PMCMC sampling, we use the Bayesian modelling software 
libBi42 and the R packages rbi and rbi.helpers43,44. Our models, data and code for reproducing our 
results can be found at https://​github.​com/​aspan​naus/​Covid-​model.

Data availability
The datasets analyzed during the current study are available in the Covid-Model github repository https://​github.​
com/​aspan​naus/​Covid-​model.

Appendices
SEIR model definition
The SEIR epidemiological model with time-varying transmission rate β(t) is represented by the system of dif-
ferential equations

https://github.com/aspannaus/Covid-model
https://github.com/aspannaus/Covid-model
https://github.com/aspannaus/Covid-model
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In this study, we take µ = 0 and θw = σ , thus assuming that the transmission rate on any day is likely to be the 
same as the previous day, and set g(·) = log(·) . By choosing µ = 0 and θw = σ , the resulting path w(t), defined 
by the stochastic differential equation dw(t) = θwdB(t) , is Brownian motion. Allowing w(t) to vary in time 
defines the effective contact rate β(t) , which controls the extent to which a disease spreads between individuals 
within a population.

SEIR model results
In this appendix, we present results on parameter uncertainty based on SEIR modelling, while the main manu-
script presents results on parameter uncertainty based on SIR modelling. We observe that the inclusion of the 
latent infected compartment in the epidemiological model has a marked impact on the estimate of the time-
varying reporting and transmission rates (Figs. 6, 7 and 8). The effect on the latter follows from recalling that the 
transmissibility is the product of the probability of passing the disease to another individual and the number of 
interactions with all individuals. If there is in fact a latent phase in the course of COVID-19, then it follows that 
individuals in the exposed bin could be mixing with the general population, potentially passing on the disease 
as it transitions from a latent to active infection.

In the case of New York data, the posterior mean estimate of the constant reporting rate of the SEIR model 
has narrower credible intervals (straight orange line in Fig. 8a) than the posterior mean estimate of the constant 
reporting rate of the SIR model (Fig. 4a). However, the credible intervals for the former seem spurious, since 
the the posterior mean estimate of the time-varying reporting rate of our SEIR model varies substantially with 
time (blue line in Fig. 8a). In fact, the posterior predictive means of number of cases are closer to the respective 
observed number of cases, when employing a time-varying (rather than constant) reporting rate in the SEIR 
model  (Fig. 5b). So, the reduced predictive capacity of the SEIR model with constant reporting rate (in compari-
son to our SEIR model with time-varying reporting rate) implies further that the estimated constant reporting 
rate in Fig. 8a is not accurate.

dS(t) = −β(t)S(t)
I(t)

N
dt,

dE(t) = (β(t)S(t)
I(t)

N
− κE(t))dt,

dI(t) = (κE(t)− γ I(t))dt,

dR(t) = γ I(t) dt,

dw(t) = µ(w(t), θw)dt + σ(w(t), θw) dB(t), w(t) = g(β(t)).

Figure 6.   Estimates of the COVID-19 transmission rate for New York based on the typical SEIR model with 
constant reporting rate (a) and based on our SEIR model with a time-varying reporting rate pt (b). Solid lines, 
light-shaded and dark-shaded areas correspond to posterior means, 75% and 95% credible intervals of the 
associated transmission rates.
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