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Abstract

Cancer is driven by genetic mutations that dysregulate pathways important for proper cell

function. Therefore, discovering these cancer pathways and their dysregulation order is key

to understanding and treating cancer. However, the heterogeneity of mutations between dif-

ferent individuals makes this challenging and requires that cancer progression is studied in

a subtype-specific way. To address this challenge, we provide a mathematical model, called

Subtype-specific Pathway Linear Progression Model (SPM), that simultaneously captures

cancer subtypes and pathways and order of dysregulation of the pathways within each sub-

type. Experiments with synthetic data indicate the robustness of SPM to problem specifics

including noise compared to an existing method. Moreover, experimental results on glio-

blastoma multiforme and colorectal adenocarcinoma show the consistency of SPM’s results

with the existing knowledge and its superiority to an existing method in certain cases. The

implementation of our method is available at https://github.com/Dalton386/SPM.

Author summary

Different biological processes within a cell are performed through biological pathways. A

biological pathway consists of a group of proteins and other molecules and complex inter-

actions between them. It is known that cancer arises due to malfunction, also known as

dysregulation, of one or more pathways. Interestingly, a dysregulation in a patient is often

caused by mutations in only one (and not more) molecule in the pathway. This phenome-

non is known as mutual exclusivity of mutations and can be used for identification of

groups of genes forming (cancer) pathways. The same type of cancer in different patients

can result due to different trajectories of dysregulations in possibly different pathways

resulting in cancer heterogeneity. Cancer heterogeneity implies that cancer treatment

should be personalized according to each patient’s specific characteristics and mutations.

Therefore, grouping patients based on their pathway dysregulation trajectories into cancer

subtypes can help identify different cancer mechanisms, inform subtype-specific treat-

ment strategies and improve efficacy. In this paper, we provide a method that uses

patients’ mutation information captured by DNA sequencing and identifies dysregulated

pathways (i.e. molecules involved in each cancer pathway), cancer subtypes (i.e. groups of

patients sharing a common pathway dysregulation trajectory) and subtype-specific path-

way dysregulation orders (i.e. trajectories defining the different subtypes). The results on
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synthetic and real-world data indicate that the method can recover meaningful informa-

tion about the progression of cancer in different groups of patients.

This is a PLOS Computational Biology Methods paper.

Introduction

It is well understood that human tumors develop over an extended time period through the

accumulation of genetic mutations. Thanks to the advancements in DNA sequencing technol-

ogies, we now have an increasing amount of high quality genomic data for studying the trajec-

tories of cancer mutations (e.g. The Cancer Genome Atlas (TCGA) [1] and International

Cancer Genome Consortium (ICGC) [2]). Two intriguing questions for these studies are:

(1) Which mutations are crucial for tumor development, and which are not? In other words,

what are the so called “driver” mutations and which mutations are only “passengers”? (2) Is

there any meaningful temporal pattern for the driver mutations and how can we infer it if it

exists? While the first problem can be solved in part by comparing observed frequencies of

mutations across different patients [3], the second problem concerning the temporal order of

mutations remains challenging. This is because most of the existing genomic datasets contain

cross-sectional data taken from single samples across different individuals and not longitudi-

nal data. Moreover, solving the second problem can provide insights into the relative impor-

tance of the driver mutations (i.e. the earlier the mutation time, the more important the

mutation).

A number of studies have focused on inferring the temporal order of single mutations in

different cancers. These works can be categorized into two main classes. The first class consists

of methods based on sequencing data from a single individual. Some of the earlier methods in

this class used bulk sequencing data from a single sample (e.g. rec-BTP [4], CTPsingle [5]) or

multiple samples from the same tumor or patient (e.g. PhyloWGS [6], AncesTree [7], LICHeE

[8], CITUP [9]). The latest developments are based on single-cell data (e.g. OncoNEM [10],

SCITE [11], SiFit [12]) or simultaneously utilize single-cell and bulk sequencing to create syn-

ergy between the two data types (B-SCITE [13] and PhISCS [14]).

The second class contains methods based on sequencing data from several individuals.

Unlike the methods of the first class, ensemble level methods mostly use binarized cross-sec-

tional mutation data indicating whether the mutation has occurred or not. The first work in

this class models the relationship between the mutations as a linear path [15]. This was fol-

lowed by the idea of a phylogenetic tree among the mutations (e.g. [16, 17]). Other works con-

sider different possible evolutionary trajectories for subsets of individuals and infer a mixture

of trees (e.g. [18–21]). Others have used a probabilistic graphical model with mutations as the

variables to allow for later convergence of mutations (e.g. [22–28]), which is not possible in a

tree model. A recent publication using an ensemble approach [29] leveraged non-binary can-

cer cell fraction data which provides more information about the timing of mutations.

Because the above methods work at the level of single mutation or gene, they are challenged

by the extensive heterogeneity in the mutation data, which results in weak temporal patterns.

This heterogeneity is associated with the fact that somatic mutations target specific biological

pathways [30]. “A biological pathway is a series of actions among molecules in a cell that leads
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to a certain product or a change in the cell. Such a pathway can trigger the assembly of new

molecules, such as a fat or protein. Pathways can also turn genes on and off, or spur a cell to

move”. [31] Pathways can be dysregulated due to the mutation of any of their critical member

genes. This results in different individuals having mutations on different genes of the same

pathway. Based on this observation, cancer is modulated by dysregulation of pathways and the

relevant order of mutations might be at the level of pathways not genes [3]. This approach

decreases the challenges associated with the heterogeneity of mutations across individuals.

Some previous work has been done on the detection of temporal patterns in pathway dysre-

gulations. Some of these approaches (e.g. [32, 33]), which demonstrate advantages over gene-

based methods, are based on the known pathways (e.g. KEGG [34]). Since most annotated

pathways are large and overlap with other pathways, they are inapplicable for the discoveries

of mutation progression in smaller sets of interacting genes [3]. One alternative is to discover

pathways de novo. Raphael and Vandin [3] proposed a method to simultaneously infer path-

ways and the timing relation between them. They hypothesized that tumor development is

driven by a linear sequence of pathway dysregulations and proposed the Pathway Linear Pro-

gression Model (PLPM). PLPM exploits a property known as mutual exclusivity, which is first

mentioned in [35] and indicates that an individual is unlikely to have more than one mutation

in a particular pathway. Mutual exclusivity has also been used to successfully identify pathways

in cancer datasets [36–39]. To find the optimal PLPM model for the observed cross-sectional

sequencing data represented in a binary format, an integer linear program is used. Later, Cris-

tea et al. [40] relaxed the linear progression assumption of PLPM in their method called path-

TiMEx. They provided a probabilistic graphical model that captures mutual exclusivity as well

as the complex progression models. It generalizes both TiMEx [41], which finds mutually

exclusive sets of genes, and Conjunctive Bayesian Networks [23, 26], which identifies partial

orders of mutations.

However, the effectiveness of PLPM and pathTiMEx is limited because of their simplifying

assumptions. Firstly, they assume that all individuals follow the same progression model of

pathway dysregulation, but different cancer subtypes have been widely observed in cancer

patients [42, 43]. Within the context of cancer analysis, subtypes refer to “the smaller groups

that a type of cancer can be divided into, based on certain characteristics of the cancer cells”

[44]. Some recent biological studies (e.g. [45, 46]) have indicated a relationship between differ-

ences in observed phenotypes and differences in temporal orders of mutations, which implies

the possible subtype-specificity of the temporal pattern of mutations. Hence, by assuming a

single progression model for all individuals, subtype-specific information from input profiles

is lost in the PLPM approach and the risk of making biased inference increases. Secondly,

PLPM and pathTiMEx assume binary mutation profiles and cannot exploit the additional

information that sequencing technologies (e.g. bulk sequencing) can provide about the tempo-

ral order of mutations (e.g. Cancer Cell Fractions (CCFs) extracted from read count data).

In this work, we also assume linear progression among pathways and irreversible mutations

(a mutation is inherited by all descendent cells after it occurs in a cell) as in PLPM. To address

the aforementioned drawbacks, we relax other assumptions of the PLPM model and propose a

novel model, called the Subtype-specific Pathway Linear Progression Model (SPM), that (1)

detects different cancer subtypes and their corresponding progression models and (2) exploits

CCFs extracted from read count data. In our method, cancer subtypes are captured by the

notion of tumor lineage. That is, the subtype of a tumor is identified by clustering the pathway

dysregulation orders of individual tumors. We also use the concept of mutual exclusivity for

detecting the pathways. However, we incorporate non-binary data providing more informa-

tion for inference of pathway dysregulation order and allowing for stronger enforcement of

mutual exclusivity between more important mutations, i.e. mutations that appear earlier. Last,

Subtype-specific temporal order of cancer pathway dysregulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007451 November 11, 2019 3 / 19

https://doi.org/10.1371/journal.pcbi.1007451


but not least, our model can employ both binary and continuous sequencing data, which

increases the versatility and accuracy of the model.

The rest of the paper is organized as follows. First, we define the problem of finding the

optimal SPM from mutation profiles. Then, an Integer Linear Program solution is provided.

Finally, the feasibility and accuracy of the proposed method is demonstrated through experi-

ments with two real cancer datasets.

Problem definition

In a SPM problem, we are given:

• An m × n mutation matrix C, with samples on the rows and genes on the columns, where Ci,j

is the Cancer Cell Fraction (CCF) of gene j in sample i. CCF of a variant denotes the propor-

tion of cancer cells in a sample that harbour that variant. For a single nucleotide variation

(SNV) locus with neutral copy number, the CCF is computed as 2v
rþv, where v and r are respec-

tively the number of variant and reference read counts mapped to an area covering that

locus. This computation is assuming a sample purity of 1, otherwise the read counts should

be corrected based on the known purity by reducing the value of r. If the sample purity val-

ues are not known, CCF values can be replaced with Variant Allele Frequency values com-

puted as v
vþr. For loci with copy number variation (CNV), computation of CCF is very

difficult and associated with uncertainty. Therefore, we do not consider loci with CNV

regardless of occurrence of SNV in the locus. For a gene, we take the largest CCF of the cor-

responding variants if there are more than one variant in that gene. Based on our assump-

tions, i.e. linear progression and irreversible mutations, this choice refers to the earliest

mutation that has happened for that gene.

• An integer K, which indicates the number of pathways to discover.

• An integer T, which indicates the number of subtypes to discover.

• A tolerance value �, which indicates the sequencing noise. If the difference between two

CCFs is smaller than �, they will be accounted the same. Larger � should be used for lower

sequencing coverage.

We are interested in the following outputs:

• A partitioning of genes into K pathways, such that mutual exclusivity is maximized within

each pathway. Specifically, we want to avoid having pathways that include two or more

simultaneous mutations with large CCFs, i.e. the larger the CCFs, the larger the penalty

because the larger CCFs indicate generally stronger signals and more confident mutations.

• A partitioning of samples into T subtypes, such that the pathway linear progression is consis-

tent among samples of each subtype as described next.

• For each subtype, a linear progression model capturing the linear temporal order of dysregu-

lation of the K pathways. In other words, linear progression corresponds to a sequence of

pathways with decreasing CCFs with a tolerance �. Thus, pathway x is necessarily dysregu-

lated before pathway y in sample i if and only if Zi,x − Zi,y> �. Otherwise, if |Zi,x − Zi,y|��,

the order of the two pathways is ambiguous for sample i and should be identified based on

the observations for other samples in the same subtype. We note that the CCF value is con-

sidered correlated with mutation timing based on the assumptions of linear cancer progres-

sions and irreversible mutations and excluding the CNVs. Under a different set of

assumptions, CCF and mutation time are not necessarily correlated.

Subtype-specific temporal order of cancer pathway dysregulation
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Fig 1 shows an example of inputs (left) and outputs (right). One possible SPM is color-

coded in the input matrix and also depicted in the output. Subtypes in the solution are identi-

fied by different colors in the CCF matrix. The intensity of colors is correlated with the CCF

values. The CCF values corresponding to each pathway are shown in bold and the false positive

detected is underlined. Because the progression order in subtype 3 is P3! P1, the value of larg-

est CCF for sample r7 in pathway P1 is 0.4 (for g1), and 0.4 − 0.2 > � = 0.1, this largest CCF is

not selected for pathway P1 in sample r7 (i.e. is detected as false positive) and the value for g3 is

instead chosen as the corresponding CCF. The white circles indicate the initial normal state.

The pathway progression steps are shown by colored circles with the connecting edges labeled

by dysregulated pathways.

Theorem 1. The SPM problem is NP-hard for any K� 2, T� 1, and �� 0.

Proof. This proof is inspired by the proof provided in [47] for NP-hardness of PLPM prob-

lem. We extend that proof to incorporate CCF values instead of binary mutation data and gen-

eralize it to the case of having multiple subtypes.

We prove by reduction from weighted Minimum-UnCut problem [48], which is a

well-known NP-Complete problem. The input to the weighted Minimum-UnCut problem is

a graph G = (V, E) where each edge e 2 E has a positive weight we. The output is a cut in G
resulting in two sets S and its complement �S such that the weight sum of edges

feab : a; b 2 S _ a; b 2 �Sg (i.e. edges within the two sets) is minimized.

Given a graph G and the edge weights we, we construct the equivalent SPM problem as fol-

lows. First, we assume K� 2 pathways and genes {g1, . . ., gn}[{gn+1, . . ., gn+K−1}, where n = |V|

and {gn+1, . . ., gn+K−1} are auxiliary genes. Second, we assume T� 1 subtypes and assign a path-

way progression order for each subtype. Pathways K and K − 1 get positions 1 and 2 respec-

tively for all subtypes. The position of pathways l� K − 2 are selected arbitrarily and the

corresponding position of pathway l in the progression order for subtype t is indicated as

Post(l), which is between 3 and K.

Now we construct the input matrix C for the SPM problem as follows. For every e = (u, v)2

E, T samples re
1;t (1� t� T) are generated such that for each t, we set gu = gv = we + Δ (Δ> �)

in the corresponding sample. Additional Δ is to make sure that the weights will be larger than

Fig 1. An example input with the corresponding outputs.

https://doi.org/10.1371/journal.pcbi.1007451.g001
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the tolerance �. The values for genes in {g1, . . ., gn} other than u and v are set to 0. Let ŵ be the

maximum edge weight for G. Then, for sample re
1;t we set gnþl ¼ ŵ þ PostðlÞ � D for {l:

Post(l)> 1}. Similarly, we define T samples re
2;t for every e 2 E, except that we set values of aux-

iliary genes as gnþl ¼ ŵ þ PostðlÞ � D for {l: Post(l)> 2}. So the auxiliary gene gn+K−1 is set to 0.

This results in a matrix C with 2T|E| rows and n + K − 1 columns. Since we want to maxi-

mize the mutual exclusivity of mutations of each sample s, if there are more than one mutated

genes assigned to a pathway, all but one mutation will be considered as false positive and the

cost for that assignment will be equal to sum of the CCF values of false positive mutations. The

choice of the true positive mutation among those mutations within the pathway depends on

both the CCF values of those mutations (smaller CCFs are most likely to be false positive) and

the progression constraint (based on the CCFs of the pathways dysregulated before and after

that pathway). We indicate the total cost for a sample s as a result of a pathway assignment ρ:

{1..n}! {1..K} by fρ(s). For each e and t there are different possibilities in a solution ρ for SPM

problem. Denoting the pathways of genes u and v as ρ(u) = lu and ρ(v) = lv, there are following

possibilities for each subtype t:

1. Post(lu), Post(lv)> 2 (both genes are outside of the pathways K and K − 1): Both genes will

be considered as false positive as there is a larger value for gnþlu and gnþlv within the path-

ways lu and lv. So, for all e 2 E, frðre1;tÞ ¼ frðre2;tÞ ¼ 2we and frðre1;tÞ þ frðre2;tÞ ¼ 4we.

2. Post(lu)� 2 and Post(lv)> 2 (one gene is inside one of the pathways K of K − 1 and other

gene is outside them): Assuming that Post(K) = 1, if the gene u is inside pathway K, then, for

all e 2 E, frðre1;tÞ ¼ we and frðre2;tÞ ¼ 2we. Else, if u is inside pathway K − 1, then frðre1;tÞ ¼ 2we

and frðre2;tÞ ¼ we. So, in any case, frðre1;tÞ þ frðre2;tÞ ¼ 3we. This is also true for Post(K) = 2.

3. Post(lu) = Post(lv)� 2 (both genes are in one of the pathways K or K − 1): In either case

when both u and v are in K or in K − 1, we have frðre1;tÞ þ frðre2;tÞ ¼ 3we for all e 2 E.

4. Post(lu), Post(lv)� 2 and Post(lu) 6¼ Post(lv) (both genes are in one of the pathways K or K
− 1, but not in the same pathway): We have frðre1;tÞ þ frðre2;tÞ ¼ we for all e 2 E.

Based on the weighting scheme and the costs of the four mentioned cases, it is easy to see

that in the optimal pathway assignment, (1) all genes {g1, . . ., gn} will be in pathways K − 1

and K, (2) each auxiliary gene in {gn+1, . . ., gn+K−2} will be in a separate pathway, (3) gn+K−1

will be assigned to pathway K − 1, and (4) the order of pathway progression for each subtype

will follow the arbitrarily assigned orders. Accordingly, we will have only costs shown in

cases 3 and 4 above. Thus, the total cost of the optimal solution will be 3λ3 + λ4 = TW + 2λ3,

where λ3 and λ4 are the sum of weights of the edges corresponding to samples of cases 3 and

4, respectively, and W = ∑e2E we. Since TW is constant, the optimal solution minimizes the λ3

value which is T times the objective for the weighted Minimum-UnCut problem. Indeed, the

two pathways K − 1 and K correspond to the sets S and �S of Maximum-Cut/Minimum-UnCut
in graph G. This concludes that SPM problem is at least as complex as the Minimum-UnCut
problem.

As the last piece of the proof, we show that reduction from weighted Minimum-UnCut
problem can be performed in polynomial time. The equivalent SPM input matrix C con-

structed as above for a weighted Minimum-UnCut problem on a graph G = (V, E) contains

2T|E| rows, with a cost of O(n + K) for each row. This results in a total polynomial complexity

of O(T|E|(n + K)). The cost of generating the arbitrary subtype-specific progression orders Pos
is O(TK) and does not change the overall big-oh cost. This concludes that the SPM problem is

NP-hard.
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Simulation results

Synthetic data generation

Different synthetic datasets are generated based on different configurations of four factors: m,

T, K and CCF noise. For a given configuration, first m patients are assigned to T subtypes with

a uniform distribution. Then, genes are randomly assigned to pathways based on input K
assuming equal size for all pathways. For each subtype, a unique random linear progression

order is generated. Then, for each patient, K genes are randomly selected from K different

pathways. CCF values of these genes are set according to the progression order using a Dirich-

let distribution for the distances between the values of consecutive CCFs, assuming value of 1

for the largest CCF. Then, a noise of λ 2 {0.01, 0.05, 0.1} is added to the input matrix in two

steps: 1) adding a Gaussian noise with standard deviation of λ to the non-zero elements of the

current matrix and 2) by selecting mnλ of the zero elements of the input matrix and changing

their value to 2λ. The second step introduces false positives and the value of 2λ is used to

ensure that these values will not be detected by a filter that removes mutations with a small

CCF.

Sensitivity analysis

The tested values for the four factors considered in the simulations and their default settings

are shown in Table 1. When analysing the sensitivity to a factor, the other factors are set to

their default values. In addition to these factors, we consider running the algorithm with differ-

ent tolerance values � 2 {0.05, 0.1, 0.2}. We limited the running time to 10 hours and available

memory to 128 GB for both methods.

The following measures are used for performance evaluation. The accuracy of identified

subtypes and pathways is measured by the Rand index between the ground-truth clusters and

the methods’ outputs. With respect to detecting the correct progression order, we used 1–Ken-

dall tau distance to measure the similarity between the ground-truth orders and methods’ out-

puts. Because there are multiple orders for different subtypes, we first associate each output

subtype and pathway to its corresponding most overlapping ground-truth subtype and path-

way. For SPM, for each identified subtype, we compute the Kendall tau distance with the order

of the corresponding ground-truth subtype and take the average over all subtypes. For, PLPM,

because it does not produce subtypes, we report the value for the ground-truth order with the

maximum similarity. In cases with more than one solutions, we take the mean of the men-

tioned measures over all solutions.

The results are shown in Fig 2. As expected, because PLPM does not detect subtypes, the

Rand index of its outputs is always smaller than SPM. SPM performs an almost perfect subtyp-

ing and pathway detection in most of the experiments. SPM outperforms PLPM in detecting

pathways because of its ability to consider multiple different progression orders for different

subtypes. Moreover, in presence of higher noise, binary data results in worse performance for

PLPM as it assigns similar weights to small (uncertain) and large (certain) CCFs. The pathways

Table 1. Factors of synthetic data generation and their values. The default values are underlined.

Factor Value

m 50, 100, 200

K 3, 4, 5

T 2, 3, 4

Noise 0.01, 0.05, 1

https://doi.org/10.1371/journal.pcbi.1007451.t001
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and their order detected by PLPM are also more sensitive to the number of provided samples

m and PLPM require more samples to detect the correct pathways and an order matching pro-

gression of one of the subtypes. PLPM can detect one of the subtype progression orders in

three cases: 1) with 2 subtypes, because, compared to 3 subtypes, there are more samples per

subtype and less number of conflicting progression orders, 2) 4 subtypes, because the particu-

lar random example generated for this case had very similar progression orders across differ-

ent subtypes and 3) low noise, because of small number of false positives. However, PLPM

does not assign the genes to the pathways as accurate as SPM does in those cases.

Real data results

Datasets

We evaluated our method by applying it to two datasets from TCGA containing somatic muta-

tion data from patients with colorectal adenocarcinoma (COAD) [43] and glioblastoma multi-

forme (GBM) [42]. As described earlier, we used CCF values as opposed to the binarized data

used in previous works. This enables us infer more about the proper ordering of mutations but

Fig 2. Results of sensitivity analysis using synthetic data. Note that each graphs might have different scales for the vertical axes.

https://doi.org/10.1371/journal.pcbi.1007451.g002
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limited us to only somatic mutation information as copy number variation data would reduce

the accuracy of the analysis. Although there are tools for inferring the CCF values for copy

number variations (e.g. PyClone [49]), their accuracy is limited for low-coverage cross-sec-

tional data, including the two datasets we investigated. Therefore, we opted to filter out any

sample that had a copy number variation in any of genes of the panels we studied. This filtering

avoids the type of bias that can be caused by ignoring CNVs that indeed exist in a patient.

Although this process reduces sample size and limits our biological conclusions to the relation-

ships between SNVs, the implications are still interesting with respect to the cancer progres-

sion and involved mutations.

Moreover, all weak signals including the loci with total read count less than 20, variant read

count less than 10, or CCF smaller than 0.05 were considered false positives and were elimi-

nated. To tolerate the potential data noise, we set � = 0.2 for SPM. This value was selected from

values {0.05, 0.1, 0.2} based on the consistency of the output pathways and subtypes with the

existing knowledge about the pathways or using clinical data (e.g. survival or disease stage).

We focused our analysis on the list of driver genes considered in [47] for evaluating PLPM.

After the mentioned filtering of CNVs and weak signals, the COAD dataset included 132 sam-

ples and 14 genes (APC, FBXW7, ACVR2A, AMER1, PIK3CA, TCF7L2, TP53, BRAF, KRAS,

NRAS, SMAD2, SMAD4, SOX9, ELF3) with at least one mutation in those samples. The GBM

dataset consisted of 69 samples and 15 genes (IDH1, PTEN, FGFR1, EGFR, NF1, RB1, TP53,

PIK3R1, PIK3R2, PIK3CA, PIK3CB, PIK3C2G, FGFR3, PIK3C2A, ATRX). 12 genes out of 27

initial genes used in [47] were filtered out in our preprocessing as they corresponded to copy

number variations. To compare the results of SPM and PLPM for the same datasets, we binar-

ized these COAD and GBM datasets and applied PLPM on them.

As per the hyper-parameters, we tried the range of values T 2 {1, . . ., 4} and K 2 {2, . . ., 8}

and picked the result with the best value of the objective function. Each experiment was per-

formed in a parallel mode with 32 CPU cores using Rcplex R package [50], which is an R inter-

face for CPLEX solver [51]. We limited the running time and memory to at most 40 hours and

256 GB. Due to the complexity of the model and small number of samples, some of the experi-

ments reached these limits and the solutions were not guaranteed to be optimal. However, the

optimality gaps computed by CPLEX for the presented results, which were respectively *13%

and *0% for COAD and GBM datasets, indicate that the solutions are near optimal. As the

sequencing technologies are advancing, the increasing quality of data will make it possible to

incorporate copy number variation data and more samples, which is expected to inform the

searching strategy to find better solutions in shorter time.

Glioblastoma multiforme

GBM has been well studied and a number of notable genes and pathways have been implicated

in the progression of the disease [52]. Mutations in the canonical cancer genes TP53 and

EGFR are well known drivers of GBM in addition to disruptions in the PI3K pathway. Applied

to the GBM dataset, SPM identified four distinct pathways that were significantly altered in

samples, recapitulating much of the known pathways involved in GBM (Fig 3). In three out of

four cases, SPM groups together two or more genes from a known pathway and is reasonably

good at separating pathways from each other. Where SPM struggles is in grouping the PI3K

pathway genes together, spreading them across identified pathways. Despite this, SPM excels

in preserving the mutual exclusivity of the pathways, with no violations of this property in any

of the cases. This is due to the freedom of having multiple subtypes. In contrast, PLPM violates

the mutual exclusivity property in 10 cases, equating to *14%, for the first pathway (Fig 3).

Subtype-specific temporal order of cancer pathway dysregulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007451 November 11, 2019 9 / 19

https://doi.org/10.1371/journal.pcbi.1007451


The reason for this is that the first pathway that PLPM identifies contains 12 genes that corre-

spond to multiple (at least four) known biological pathways. Thus it is highly probably that

two genes from this pathway will be altered in the same sample, therefore violating the mutual

exclusivity property.

Four unique GBM subtypes were also discovered, in contrast to the single subtype

of PLPM, based on the different temporal ordering of mutations in the four pathways. Inter-

estingly, only the first subtype contains aberrations in all of the four identified pathways,

while the subtypes 2, 3, and 4 have 3, 3, and 2 mutated pathways respectively. Survival

analysis (Fig 4) shows subtype 4 having noticeably better survival probability than the other

subtypes, suggesting that the temporal order of mutations is predictive of cancer progres-

sion. Importantly, subtype 4 has no alterations in TP53 or PTEN, two of the main drivers of

GBM.

Additionally, two of the detected subtypes map reasonably onto two of the five subtypes of

GBM described in [52]. Subtype 4 captures the G-CIMP subtype with Jaccard index 0.47 (FDR

p-value 0.04) and subtype 2 maps to Neural subtype with Jaccard index 0.33 (FDR p-value

0.07). In particular, both G-CIMP-high and our subtype 4 are characterized by a high fre-

quency of mutations in IDH1, and in our case is the first mutation to occur (Fig 5). Survival

analysis in [52] shows a striking difference between the G-CIMP-high subtype and their other

molecular subtypes, similar to the difference seen in our survival analysis. A recent review

[53], reinforces the connection between G-CIMP-high tumours and mutations in IDH1 and

the favourable prognoses associated with this subtype. This further supports the importance of

our identified subtypes as they may be predictive of patient outcomes. Furthermore, since the

pathway order is directly related to CCF values, earlier mutations in pathways will be more

populous in the tumour. The relatively small size of each of our pathways makes this even

more actionable from a clinicians standpoint, as opposed to the large and uninformative first

pathway from PLPM.

Fig 3. Results for GBM using SPM (left) and PLPM (right). Genes within the same known pathway are coded by the same color.

The numbers on pathways refer to the pathway numbers in Fig 5.

https://doi.org/10.1371/journal.pcbi.1007451.g003
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Colorectal adenocarcinoma

When applied to the COAD dataset, SPM again identifies four distinct pathways and four sub-

types based on the temporal ordering of those pathways (Fig 6). However, in contrast to the

GBM results, all pathways are altered in each subtype, with no wild-type pathways present.

The separation of genes into their known biological pathways, as defined in [43], is less clear

with the COAD dataset, with genes being spread across the identified pathways. However,

SPM is still effective at maintaining mutual exclusivity with only an average of 13 cases

(� 10%) per pathway as opposed to PLPM which violates this property in 22 cases (� 16%)

per pathway.

Although we could not recognize any advantage for any of the four identified progressions

compared to the progression from PLPM and no single progression fully recapitulating the

known pathways, they provide a meaningful way to stratify patients by correlating to disease

subtype. Therefore, identifying the separate subtypes can still be informative, in particular for

finding the proper ordering of mutations. Raphael and Vandin [47] made the argument that

TP53 mutations occur before KRAS mutations, in contrast to previous reports for COAD but

in line with more recent work on other cancer types. Although their progression supported

this hypothesis, it is in conflict with the high CCF values for KRAS in some samples (Fig 5). In

88 cases (� 67%), the progression from PLPM does not match the ordering of the CCF values,

whereas SPM does not suffer from this issue due to its hard constraints. Our resulting subtypes

are in agreement with the CCF values and suggest that the ordering of KRAS and TP53 is per-

haps more variable than once thought, with KRAS preceeding TP53 in subtypes 1 and 4 and

TP53 preceeding KRAS in subtypes 2 and 3. Finding a single progression based on binarized

data and not CCF values limits this kind of inquiry.

Fig 4. Survival analysis for identified subtypes of GBM.

https://doi.org/10.1371/journal.pcbi.1007451.g004

Subtype-specific temporal order of cancer pathway dysregulation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007451 November 11, 2019 11 / 19

https://doi.org/10.1371/journal.pcbi.1007451.g004
https://doi.org/10.1371/journal.pcbi.1007451


Fig 5. Heatmap showing CCF values for GBM (left) and COAD (right) datasets partitioned into pathways and subtypes.

https://doi.org/10.1371/journal.pcbi.1007451.g005

Fig 6. Pathways detected for COAD using SPM (left) and PLPM (right). Genes within the same known pathway are coded by the

same color. The numbers on pathways refer to the pathway numbers in Fig 5.

https://doi.org/10.1371/journal.pcbi.1007451.g006
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The resulting subtypes for COAD failed to show any meaningful difference in the survival

analysis, unlike the GBM results. However, the subtypes did show some separation when

aligned to the tumour stage, a clinical variable included in the COAD dataset (Fig 7). Subtype

3 appears to be more prevalent in stage iiib compared to other subtypes, indicating that sub-

type 3 maybe be more agressive than the other subtypes. This is further supported by the fact

that subtype 3 is characterized by a high frequency of mutations with large CCF values in

TP53, a major driver in all cancers but especially crucial in COAD progression where TP53
mutations are associated with drug resistance and poor prognosis [54]. These results suggest

that these identified subtypes may be informative for categorizing samples according to

tumour stage and predicting patient outcomes.

Fig 7. Prevalence of each identified COAD subtype in different disease stages.

https://doi.org/10.1371/journal.pcbi.1007451.g007
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Methods

We propose an integer linear program to solve the SPM problem, which simultaneously opti-

mizes pathways, cancer subtypes, and subtype-specific pathway linear progression. Before

describing our solution for the SPM reconstruction problem, we explain the existing solution

for the PLPM problem proposed in [47], upon which we build the solution of the SPM

problem.

Integer linear program for the PLPM problem

Raphael and Vandin [47] proposed an integer linear programming (ILP) method for the

PLPM. Given a binary matrix M 2 {0, 1}m×n indicating the existence (1) or absence (0) of a

mutation in genes {g1, g2, . . ., gn} for samples {r1, r2, . . ., rm}, where rows and columns of M
respectively correspond to the samples and the genes, and a parameter K indicating the num-

ber of pathways to be discovered, they introduced a model for partitioning the genes into K
pathways P = {P1, . . ., PK} such that:

• For all 1� k� K we have |{gj 2 Pk: Mi,j = 1}|� 1 (mutual exclusivity)

• For all 1� k� K, if |{gj 2 Pk: Mi,j = 1}| > 0 then |{gj 2 Pk−1: Mi,j = 1}| > 0 (progression)

The first constraint guarantees the mutual exclusivity of genes inside each pathway k and

the second constraint ensures that if pathway k has a mutation then all preceding pathways in

the progression model (Pk0, k0 < k) are also mutated (i.e., have at least one mutation). Then,

they define the objective function as the number of elements of the matrix M that need to be

flipped (0! 1 or 1! 0) such that the above-mentioned constraints are satisfied. Their objec-

tive was:

min
Xm

i¼1

XK

k¼1

Xn

j¼1

ðMi;jpj;k � ai;k þ 2fi;kÞ; ð1Þ

where pj,k is a binary variable indicating whether gene gj is assigned to pathway Pk (pj,k = 1) or

not (pj,k = 0), ai,k is a binary variable indicating whether sample ri has mutation (after the

required flips) in pathway Pk (ai,k = 1) or not (ai,k = 0), and fi,k is a binary variable indicating

whether any of the genes in Pk for sample ri should be flipped 0! 1 (fi,k = 1) or not (fi,k = 0).

Then the constraints for the linear program are as follows:

• Each gene is assigned to exactly one partition: for 1� j� n,
PK

k¼1
pj;k ¼ 1;

• For each pathway Pk, at least one gene is assigned to it: for 1� k� K,
Pn

j¼1
pj;k � 1.

• PLPM is satisfied for each sample: for 1� i�m and 1� k� K − 1, ai,k� ai,k+1.

• For each sample ri, pathway Pk is considered mutated if it has a 1 in ri or if one of its

entries in ri is flipped to make it mutated (i.e. fi,k = 1): for 1� i�m and 1� k� K,
Pn

j¼1
Mi;jpj;k þ fi;k � ai;k.

Integer linear program for the SPM problem

As stated earlier, we assume that the linear relationships between the pathways are subtype-

specific, meaning that the samples can be divided into groups with different linear orders.

More specifically, in our model, each subtype is associated with a distinct linear progression

model between K pathways.
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To model cancer subtypes and continuous CCF values instead of binary mutations, new

variables are introduced and some of the variables in PLPM ILP are replaced, resulting in a

total of [Kn(m + 1) + T(m + K2)] 2 O(mnK) binary latent values. We add the SPM inputs C, T,

and � as well as the following variables and inputs:

• A binary variable s 2 {0, 1}m×T, where si,t denotes that whether sample i belongs to subtype t.
The total number of subtypes is restricted by an input parameter T, which is given as input.

For 1� t� T and 1� i�m, si,t = 1 means that sample i is consistent with the progression

in subtype t and si,t = 0 means otherwise.

• A binary variable A 2 {0, 1}T×K×K representing the ancestry matrices of relationships of path-

ways for each subtype. At,k, l denotes that, according to the progression model defined by

subtype t, whether the mutation of pathway k happens before pathway l (At,k, l = 1) or not

(At,k, l = 0). A captures and constraints the linear order of mutation of pathways.

• A binary input M 2 {0, 1}m×n indicating whether Ci,j> 0 (Mi,j = 1) or not (Mi,j = 0). Mi,j is

the binarization of the original CCF matrix and facilitates the design of integer linear pro-

gram as described later.

• A binary variable α 2 {0, 1}m×n×K with αi,j, k indicating whether gene j of sample i corre-

sponds to the CCF value representative of pathway k (αi,j, k = 1) or not (αi,j, k = 0). If this vari-

able is equal to 1, it means that first, gene j is assigned to pathway k (pj,k = 1), second, there is

a mutation in gene j of sample i (Mi,j = 1), and third, considering the CCF of gene j for path-

way k in sample i is consistent with the progression model and results in an optimal model.

Thus, αi,j, k gives us control over the choice of mutation within each pathway to optimize the

objective function.

We also extend the constraints of the PLPM ILP. Firstly, similar to constraints for pathways,

we introduce two constraints to enforce a surjective function from samples to subtypes. These

constraints will guarantee each subtype is assigned at least one sample and each sample is

assigned to exactly one subtype. Second, we introduce a constraint to regulate the behavior of

αi,j,k, that is, αi,j,k = 1 can be true only if pj,k = 1. Third, progression constraints are updated

using both At,k,l and si,t in order to satisfy our assumption of subtype-specificity. Additionally,

since bulk-sequencing data become more and more reliable as the sequencing technologies

improve and since, unlike binary data, flipping from 0 to 1 is not accurate for continuous CCF

data, we assume there is no false negative in the observed mutation matrix.

More formally, the [m + n + mn + K + T + KT + mK(n + 1 + T(K − 1)/2)] 2 O(max{mTK2,

mnK}) constraints for SPM ILP are as follows:

• Each gene is assigned to exactly one pathway: for 1� j� n,
PK

k¼1
pj;k ¼ 1.

• For each pathway Pk, at least one gene is assigned to it: for 1� k� K,
Pn

j¼1
pj;k � 1.

• Each sample is assigned to exactly one subtype: for 1� i�m,
PT

t¼1
si;t ¼ 1.

• For each subtype, at least one sample is assigned to it: 1� t� T,
Pm

i¼1
si;t � 1.

• Gene gj is considered mutated in pathway Pk only if it belongs to that pathway: for 1� i�
m, 1� j� n, and 1� k� K, αi,j,k� pj,k.

• Each pathway Pk has at most one gene mutated: for 1� i�m and 1� k� K,
Pn

j¼1
ai;j;k � 1.

• For each subtype, pathways are mutated in a linear order, for 1� k� K and 1� t� T,
PK

l¼1
ðAt;k;l þ At;l;kÞ ¼ K � 1; ðl 6¼ kÞ.
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• Each sample satisfies the progression model of its corresponding subtype: for 1� i�m, 1�

t� T, and 1� k, l� K (l 6¼ k),
Pn

j¼1
ai;j;kCi;j �

Pn
j¼1
ai;j;lCi;j � si;t þ At;k;l � 2 � �.

• The values of α is bounded by observed mutations and we assume no false negatives: for 1�

i�m and 1� j� n,
PK

k¼1
ai;j;k � Mi;j.

The objective function of SPM is as follows:

min
X

i;j;k

ðCi;jpj;k � Ci;jai;j;kÞ ð2Þ

In this formula, the term Ci,j pj,k represents the observed CCF profiles, and the term Ci,j αi,j,
k represents the CCF profile “predicted” by the SPM. The objective of SPM is to determine the

pathways, subtypes, and the pathway progression models of the subtypes that minimize the dif-

ference between the observed CCFs and the CCFs “predicted” by the SPM.

Conclusions

This work introduces a new mathematical model, called SPM, to simultaneously capture can-

cer subtypes and pathways as well as the pathway progression models of each subtype. The

underlying assumptions are mutual exclusivity of mutations within each pathway, the correla-

tion between CCF value and mutation timing, and the subtype-specificity of cancer progres-

sion. Based on experiments with 9 synthetic datasets, SPM is very robust against different

problem specifics, such as the number of patients, subtypes and pathways and data noise,

while PLPM is sensitive to these factors. Based on experiments with two real datasets, namely

GBM and COAD, the detected subtypes correlated to the clinical attributes such as survival

and tumor stage. Additionally, the discovered pathways contained genes known to be related

to each other. The relative importance of the pathways in different subtypes with respect to the

progression models was consistent with the existing knowledge. In some cases, the pathways

detected by the SPM were more informative than the pathways identified by an existing

model, namely PLPM.

As an NP-Hard problem, similar to PLPM, the ILP solution for SPM is hindered by factors

such as quality of the input data and available computational power. This also restricts the

number of genes and samples that can be included in the input. Therefore, employing alterna-

tive optimization methods is a new direction for future work. Moreover, extending the model

to automatically select a subset of the input genes (e.g. based on mutual exclusivity) to be

included in the progression inference can increase the generality of SPM. Although the pro-

posed model is applicable to both SNVs and CNVs, this study was restricted to SNVs due to

the limitation of current technology for computing CCF values in presence of CNVs. This lim-

itation should be addressed in future work as the required technology becomes available.
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