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One of the major causes of death in the world is cardiac arrhythmias. In the field of healthcare, physicians use the patient’s
electrocardiogram (ECG) records to detect arrhythmias, which indicate the electrical activity of the patient’s heart. The problem is
that the symptoms do not always appear and the physician may be mistaken in the diagnosis. Therefore, patients need continuous
monitoring through real-time ECG analysis to detect arrhythmias in a timely manner and prevent an eventual incident that
threatens the patient’s life. In this research, we used the Structured Streaming module built top on the open-source Apache Spark
platform for the first time to implement a machine learning pipeline for real-time cardiac arrhythmias detection and evaluate the
impact of using this new module on classification performance metrics and the rate of delay in arrhythmia detection. The ECG
data collected from the MIT/BIH database for the detection of three class labels: normal beats, RBBB, and atrial fibrillation
arrhythmias. We also developed three decision trees, random forest, and logistic regression multiclass classifiers for data
classification where the random forest classifier showed better performance in classification than the other two classifiers. The
results show previous results in performance metrics of the classification model and a significant decrease in pipeline runtime by

using more class labels compared to previous studies.

1. Introduction

1.1. Healthcare Context. Modern healthcare has become a
process that can provide data analysis with the support of
various sources. For example, patients who need remote
monitoring or home monitoring and wireless and wear-
able remote sensors can generate the data needed to
manage the health of these patients. Also, big data can lead
to more accurate decisions and changes in the providing
of health care services [1]. With the increase in healthcare
data, new technologies have been developed to process
them [2]. Discovering knowledge and accessing useful
medical information that can improve services, reduce
patient and hospital costs, and save patient lives is possible
through the analysis of these data [3, 4]. In the field of
cardiovascular disease, the use of big data analysis is
increasingly used in health care than in the past.

Intelligent sensors and smartphones are designed to re-
ceive physiological information and the patient’s ECG
signal, providing real-time detection of deadly cardiac
arrhythmias and early warning [1]. ECG data, which are
the most important medical health data, have features
such as high speed and sequential production. With these
features, a big data platform can be used to real-time
analyze and detect cardiac arrhythmias [5]. The most
important cardiac arrhythmias that can be diagnosed
through ECG are atrial fibrillation (AF) and right bundle
branch block (RBBB) arrhythmias [6, 7]. AF is one of the
most prevalent cardiac arrhythmias [6]. In addition to
heart failure, it can lead to stroke in patients; it has a
profound effect on patients’ lives and is a threat to their
lives [8, 9]. But the right block of the heart electrical
conduction system responsible for activating the right
ventricle is called the right bundle branch block.
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During RBBB arrhythmia, impulses passed by the right
bundle branch are unable to activate the right ventricular.
Many techniques have been used in batch mode and static
environment for AF detection [10, 11]. However, there are
generally many methods of stream processing in real-time
mode. These are database, mining, or tool-based methods.
Sampling, sketching [12], and approximation [13] are the
types of database-based techniques. Mining methods refer to
machine learning algorithms that are essentially designed for
stream mining [14, 15]. Finally, the tool-based methods
allow working with the data stream. Massive Online Analysis
(MOA) [16] and Rapid Miner [17] Streaming Computation
Engines [18] like Apache Spark Streaming, Apache Spark
Structured Streaming, apache storm, etc. are tool-based
methods for stream processing. Streaming Computation
Engines, unlike traditional tools, are capable of supporting
parallel and distributed computing.

Several methods have been developed for the real-time
diagnosis of AF and RBBB arrhythmias. The Pan-Tampkins
[19] algorithm is a mining-based technique for real-time
QRS-complex detection of ECG signal that can be used for
real-time detection of AF [20] and RBBB [21] beats. Some
tool-based methods have been proposed and have used a big
data platform for real-time AF [22] and CHF detection [5].

In this paper, we have implemented a novel machine
learning pipeline using the Apache Spark Structured
Streaming Processing Engine for real-time detection of AF
and RBBB arrhythmias in the ECG signal. This approach is a
tool-based approach that has not yet been implemented with
a Spark Structured Streaming able to support distributed and
parallel computing. We also were able to make a real-time
diagnosis of more class labels of cardiac arrhythmias with
less time and high performance through the use of weaker
hardware resources compared to previous studies.

The Apache Spark Structured Streaming is a new stream
processing engine built on the open-source Apache Spark
platform that enables real-time data processing. Besides, the
Structured Streaming Processing Engine is based on Data
Frame/Dataset API built on the Spark SQL Library and can
address other big data platform constraints [23]. Therefore,
it is possible to use SQL commands on streaming data. Our
study is the first approach that uses this processing engine
for real-time cardiac arrhythmias detection. With theories
defined in this processing engine, the Spark Structured
Streaming compared to other stream processing tools
provides new capabilities with data frame API that make it
reliable on real streaming [24]. The following are the
features:

(1) I/O optimization: unlike other big data tools in
stream processing and existing algorithms, Struc-
tured Streaming can receive data from multiple
inputs and send the result to different output sinks.
Depending on the need of the application, these
capabilities can significantly reduce the delay in
sending results to the user

(2) Performance, throughput, and latency: studies show
that Structured Streaming has higher performance
than other streaming systems. Recent research [24]

Journal of Healthcare Engineering

has compared Structured Streaming with other
streaming platforms developed in a similar infra-
structure. The results show that Structured
Streaming is more efficient than other systems in
terms of performance and throughput and latency
[24]. For example, Structured Streaming has a
maximum throughput of 65 million records per
second, which is twice as much as Kafka Stream and
Apache Flink. This high performance in Structured
Streaming is only due to the storage of streaming
data in a compressed format by the Spark SQL
engine [24]. Therefore, SQL commands can signif-
icantly reduce the final workload of the system [25].
On the other hand, by providing different types of
output generation modes (Append, Update, ...), it
produces much less delay in producing results in
processing similar data than other stream processing
tools [23]

(3) User-friendly: Structured Streaming facilitates the
implementation of incremental queries for different
applications by providing a set of concepts such as
event-time, watermark, processing time, and trigger
[24]. Although other streaming systems such as
Apache Spark Streaming, Google Data Flow [26],
and Apache Flink [27] offer various functional
functions, they require the user to define a physical
layout of the consecutive tasks. On the other hand,
Structured Streaming users define their stream-
processing logic using the powerful UDF State full
operators [24]

(4) Powerful functions: Structured Streaming provided a
set of powerful functions by data frame API that
enables users to implement different policies for
joining stream, batch, or interactive processes to-
gether in the same code. These functions have not yet
been developed on other platforms [24]. Although
the Apache Flink platform recently supports table
AP], it still lacks many of the Structured Streaming
features for real-time data stream analysis [24]

(5) Guaranteed exactly-once delivery: Structured
Streaming guarantees that if any defect occurs in the
streaming system, it will deliver the results exactly
once [24]

(6) Fault tolerance: our streaming system is fault-tol-
erant with the concept of exactly-once delivery and
ensures that data is not lost if the system crashes.
Hence, by rebooting the system, results are generated
immediately after the failure point [24]

1.2. Related Works. As mentioned in the previous section,
many approaches have been proposed to diagnose cardiac
arrhythmias in the literature. In [28], AF can be detected
using a smartphone, and the proposed algorithm measures
the RR interval by calculating the QRS complex and uses it to
classify the ECG signal beats. In this study, the results of
accuracy, specificity, and sensitivity of AF detection were
97%, 100%, and 93%, respectively. Researchers in [6] have
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used several statistical methods to separate AF beats from
normal beats in a mobile phone. The authors have claimed
that their approach is real-time realizable and the accuracy of
the results by combining all statistical methods was 99%.

Many approaches based on RR interval in heartbeats
have been proposed for AF detection; for example, re-
searchers in [29] calculated the RR interval and difference
between these RR intervals and comparison difference be-
tween coeflicients of deviation with their standard deviation
coefficients, have detected AF in real time, and have achieved
the best results for the sensitivity of 94.4% and specificity of
97.2%.

Besides, the RR interval and Markov model is another
method used to obtain RR Markov score for heartbeat
classification and real-time detection of AF arrhythmia [30].
Researchers have used MIT/BIH database to validate the
proposed algorithm and have achieved 92% sensitivity and
97% positive predictive value. Another algorithm for the
real-time detection of AF arrhythmia based on its general
specifications has been developed which uses three statistical
techniques, namely, RMSSD, TPR, and Shannon Entropy, to
identify these characteristics. They have used two different
databases to validate the results and have achieved a sen-
sitivity of 90.2% and specificity of 91.2% in AF arrhythmia
detection combination with other arrhythmias [31].

Another approach proposed for the real-time detection
of cardiac arrhythmias is to train a heartbeat classification
model in an offline fashion to each specific patient and then
apply it in an online mode to real-time patient monitoring
[32]. An approach based on active learning to construct a
patient-specific detector and real-time AF detection is
presented in [33]. In this research, by extracting R-peak,
computed consecutive RR intervals are used to construct
feature vectors and training classifiers (SVM). After testing
the three different classifiers, the best mean performance was
obtained for all patients, including 91.96%,84.63%, and
94.38% for accuracy, sensitivity, and specificity, respectively.
Heartbeat classification and automatic arrhythmia detection
including AF and RBBB using two supervised and unsu-
pervised machine learning techniques are presented in [34].
In this approach, after extracting several morphological
features from each heartbeat, they are clustered to reduce the
probable error and then labeled using the rule-based clas-
sification technique. Based on the results of this study, for
AAMI-defined classes, the sensitivity and positive predictive
value for the supraventricular class were 94.63% and 96.79%,
respectively, and those for the ventricular class were 87.17%
and 83.98%, respectively.

In recent years, several offline and online methods for
diagnosing cardiac arrhythmias have been proposed in the
literature. In a recent study proposed by Ghosh et al. [35] for
offline cardiac arrhythmias detection, the extraction of ECG
signal coefficients was used to evaluate the fractional
norm(FN) properties in different subbands of a multirate
cosine filter bank architecture. The obtained FNs were used
to teach a deep learning model for detecting AF arrhythmia.
In this study, the classification metrics were obtained for
only two class labels with accuracy, sensitivity, and speci-
fications of 99.4, 98.77, and 100%, respectively.

Deep learning models have been widely used to diagnose
cardiac arrhythmias so far. These models have been able to
partially compensate for the shortcomings of traditional
methods in signal feature extraction. In the approach pro-
posed in [36], the development of a multiscale convolutional
neural network architecture is used to classify cardiac ar-
rhythmias through multidimensional learning of ECG signal
properties. This method is a multiclass classification method.
Unlike previous methods, it can extract more important
features from the signal. This feature makes it possible to
differentiate between arrhythmia classes so that the model
can more easily distinguish different beats from each other.
Researchers evaluate the designed model with two different
data sets and calculate the best F-score value equal to 84.1%.
The authors claim that this value is higher than the previous
state-of-the-art methods. A real-time cardiac arrhythmias
detection approach based on nonlinear morphological
features is proposed to detect rare morphological features in
[37]. In this research, the MIT/BIH database and AAMI
recommendation have been used to evaluate the proposed
algorithm. Also, the beats are classified using an ensemble
majority-vote-based approach. The classification metrics are
calculated separately for each arrhythmia class. In this study,
the average sensitivity and False Positive Rate measures for
the three types of arrhythmias were 74.2% and 11.6%,
respectively.

Mahmud et al. proposed an offline method for auto-
matic cardiac arrhythmias detection based on AAMI an-
notation [38]. This approach wuses a traditional
methodology for ECG R-peak detection and then used a
data augmentation technique to fix the class imbalance
problem. In this study, researchers first design a structural
unit based on pointwise temporal convolution and then
develop a new depthwise temporal convolution architec-
ture based on the convolutional neural network to improve
unit performance. In this approach, the designed deep
learning architecture can predict arrhythmia classes with
99% classification metrics.

Researchers in [39] implemented a solution to deal with
S-type arrhythmias ectopic in AAMI annotation by two
steps. In the first step, all fusion, ventricular, and unknown
arrhythmias are detected using a deep dual-channel con-
volutional neural network. In the second step, a central-
toward LSTM supportive model (CLSM) is designed to
distinguish S-type arrhythmias from normal beats. The
inputs of the CLSM model are the temporal features of the
beats. Besides, researchers use a rule-based data augmen-
tation method to solve the class imbalance problem and lack
of input data for training the deep learning model. The
overall accuracy of the system is 97.7%, and the recall and
precision measures for detecting S-type beats are 85.6 and
65.7%, and those for the normal class are 98.2 and 99.4%,
respectively.

2. Materials and Methods

2.1. Experiment Data. In this study, we develop a stream
processing pipeline for the real-time detection of atrial and
RBBB arrhythmias using segmentation and online features



extraction of ECG signal and online classification using a
random forest machine-learning algorithm.

A useful tool that physicians can use daily to examine
patients is the electrocardiogram (ECG). These signals are
often used to diagnose heart abnormalities and arrhythmias
and to measure the electrical activity of the heart over a
while. The ECG data required for the research is data col-
lected from the well-known database MIT/BIH. The sam-
pling frequency of the recorded signal from all patients is
360 Hz, and we have implemented our computation based
on this sampling rate. The signal is recorded from two
channels, where, according to the anatomical features of the
patient in most of the recordings, two LEDs II and V1 have
been used. In this database, most of the R peaks in the beats
are marked and the type of beats is interpreted and rec-
ognized, which can be used in the training stage to train the
machine learning model.

As mentioned in the previous section, this study con-
siders three labels of beats for diagnosis based on MIT/BIH
database labeling, including normal beat and also atrial and
RBBB arrhythmia beat. But according to the AAMI rec-
ommendation for MIT/BIH database, all beats are placed in
five superclasses, the RBBB beats are in the normal super-
class, and the atrial arrhythmia is in the supraventricular
superclass. Table 1 shows the number of samples considered
for each label along with the corresponding record from the
database. The number of samples in Table 1 is calculated
based on the 360 Hz sampling rate of the signal in the MIT/
BIH database. Besides, a separate record for sampling is
provided for each class label in this study. For example, the
205 and 115 records for the normal class label, the 118 and
124 records for the RBBB arrhythmia class label, and the 232
records for the atrial arrhythmia class label are based on the
MIT/BIH database record annotations.

2.2. Data Preprocessing. Before processing data to analyze
and arrhythmias detection, the data must be preprocessed to
obtain reliable information. Data preprocessing consists of
several steps that are performed to prepare the data for final
processing and classification. In a real-time analysis, all the
preprocessing steps are implemented online and the output
of each stage provides input for the next step. In this study,
we have implemented an online pipeline for running data
preprocessing stages of ECG data on the Apache Spark
platform. To do this, we used the Pandas-UDF technique in
Spark, using which the traditional data mining functions and
instructions can be run on the Apache Spark platform.
Finally, the pipeline is built, using a spark structured stream
processing engine that runs on ECG test data.

The data preprocessing step involves the steps of re-
moving noise from the signal, R-peak detection, segmen-
tation, and finally feature extraction. After performing the
data preprocessing steps, the extracted features are classified
in the final processing step for arrhythmia detection. Fig-
ure 1 shows the block diagram of the data preprocessing
steps and classification where the raw ECG data is segmented
after the denoising and the R-peak detection as the unit beat,
and in the last step by extracting the basic feature of each
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TaBLE 1: Record and number of the total samples considered for
train and test datasets.

Data set Record Total samples
Train set 118-205-232 1111800
Test set 115-124-232 358200
Raw ECG data at 360 |
ECG denoising

v

R-peak detection

v

Segmentation

J

Feature extraction

J

Classification

Data preprocessing

FiGure 1: Block diagram of data preprocessing and classification.

segment, the number of samples per segment is reduced to
25 samples. Finally, the extracted feature is classified by the
classifier for arrhythmia detection in the final processing
step.

2.3. ECG Denoising. The first step in data processing is to
remove noise and artifacts from the data. Medical data, such
as the ECG signal, may be exposed to a variety of noises
depending on environmental conditions, which can affect
the accuracy of this data. Therefore, before extracting the
features of the ECG signal, we must remove this noise to
obtain reliable signal data without distorting or missing the
original information. We used the band-pass filter method,
the Finite Impulse Response (FIR) to filter and eliminate
noise from the ECG signal. The FIR band-pass filter is widely
used for many digital signal processing applications. This
filter has two features of the linear phase and high stability.
The linear phase feature is used to design each amplitude-
frequency characteristic, which is vital for the real-time
processing of the digital signal.

2.4. R-Peak Detection. Each heartbeat is made up of several
waves that are generated by electrical stimulation in the
heart, and inside one beat, it represents the time evolution of
an electrical cycle of the heart. Each arrhythmia causes a
change in one or more of these waves. By identifying and
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measuring these changes, different arrhythmias can be de-
tected. The most important part of a heartbeat is the QRS
complex, which involves the waves of the Q, R, and S, and as
a single event, they form the largest wave of a normal
heartbeat.

At this stage of our research, since each heartbeat
contains one QRS complex, we online detected the R points
that make up the highest points in the QRS complex to find
the single heartbeat. Using these points, we will be able to
convert a large file of the ECG signal into unit beats in the
next step with the segmentation technique. It is very im-
portant to accurately identify the R points of the ECG signal
because it allows us to detect the beats, and this greatly
affects the final results of the diagnosis of cardiac arrhyth-
mias. Figure 2 shows the results of the first and second stages
of data preprocessing, in which a portion of the raw signal of
the ECG is filtered to remove noise and the R peaks are
detected.

2.5. Segmentation. As mentioned earlier, the purpose of
segmentation operations is to break a large record from the
ECG data to achieve single heartbeats with a fixed number of
samples. In this preprocessing stage of the data, we convert
the filtered ECG signal of the previous step into beats using
the R peaks detected through the segmentation technique. In
various studies, the number of samples of a heartbeat with a
sampling rate of 360 Hz is randomly considered from 144 to
432 samples. In this study, we considered 200 samples for
each beat, one sample for R-peak, 69 samples before R-peak,
and 130 samples after R-peak, forming samples for each beat.
The accuracy of segmentation is also important because if
the number of samples is not considered appropriate for a
single beat, important beat information may be lost, and
then the accuracy of the final results of the arrhythmia
detection will be reduced.

Figure 3 shows a normal beat after segmentation, with a
sample number of 200, and the main information and basic
features of the signal are preserved.

2.6. Feature Extraction. A cardiac signal cycle is composed
of T-QRS-P waves. Useful clinical information is specified in
an ECG signal at distances and amplitudes defined by its
waves [40]. This information is divided into two categories:
morphological and temporal features [40]. Morphological
features are important morphological parameters including
the QRS-complex duration, the PR wave distance, and the T
segment. On the other hand, the temporal properties con-
stitute a vector of signal statistical characteristics.

The purpose of feature extraction is to find as few fea-
tures as possible in the ECG signal, which enables successful
and efficient detection of the anomaly. Therefore, using an
accurate and fast method for automatic feature extraction of
ECG signals is of particular importance. What plays a key
role in correctly diagnosing cardiac arrhythmias is the
feature extracted from the ECG signal. The purpose of
feature extraction is to find as few features as possible in the
ECG signal to provide a successful and efficient diagnosis of
arrhythmia.
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FIGURE 3: A normal segmented beat in 360 Hz sample rate.

In this research, we have used the discrete wavelet
transform algorithm [41] up to 4 levels of decompositions to
extract the signal statistical characteristics. This significantly
reduces the number of original heartbeat samples while
retaining useful information. Therefore, this action will
reduce the delay in the classification process in the next step.
In the discrete wavelet transform algorithm to discrete a
signal with high sampling frequency to lower levels, the main
signal first passes through a high-pass filter and then through
a low-pass filter. After filtering, half of the signal samples are
removed based on the Nyquist theorem [41]. This action
indicates a level of decomposition. The above process, also
known as subband encoding, is repeated for further
decomposing the signal at higher levels. The samples and the
frequency band are halved at each decomposition level [41].
The input of the current step is the previous output of the
low-pass filter [41]. In this study, we reduced the number of
5-second epoch samples after segmentation from 200
samples to 25 main samples per beat with four levels of
decomposition. In the classification stage, the decomposed
epochs are sent to train the classification models.

The initial and reliable method used in the literature to
extract the feature and useful information from statistical
characteristics of the ECG signal is to reduce the signal



samples by sampling the signal in the time domain and
receiving the (n) sample a(t,), a(t,), ..., a(t,) and construct a
vector(A) (equation (1)) from them [42].

A=lal,a2,...,an] = [A(t1), A(t2),...,A(tn)], (1)

where a(ti) is a random variable vector.

To access signal information and build a vector A, the
signal can be decomposed into several levels to remove more
samples. First, the original signal S[n] is passed through a
high-pass filter H[n] (equation (2)) and then the low-pass
filter L[n] (equation (3)) is applied and can be shown as
follows:

Yiign (k] = ) Slnl - H[2k —n], )

Yigw [k] = ) S[n] - L[2k -, 3)

where Yyigh and Y, are the output of the algorithm after
subsampling with factor 2, respectively. This operation is
repeated at the next levels of decomposition.

Figure 4 shows the feature extraction operation where
the main characteristics of the heartbeat are kept with 25
samples. After segmentation, the beat has decomposed into 4
levels using the DWT algorithm, and the number of signal
samples has reduced at each level of decomposition. Finally,
after the fourth level of decomposition, the number of
heartbeat samples has reduced to 25 samples without losing
the main beat information.

2.7. Classification. Classification is a two-step process. The
first step is learning, in which a classifier is trained using
training tuples on how to describe a set of class labels. The
second step is to evaluate the classification model made in
the previous step and use it for classification [43]. In this
study, the training tuples involved in the building model are
a set of features extracted from the signal in the data pre-
processing stage, and class labels include normal heartbeat
labels and atrial and RBBB arrhythmia labels. Table 2 shows
the number of tuples in the training dataset for each class
label to create a classification model and the corresponding
record in the MIT/BIH database. Since the number of class
labels in this study is more than 2, we need to develop a
multiclass classification model.

In machine learning, multiclass classification is a com-
mon problem in supervised learning. Multiclass classifica-
tion is learned from a data set with M sample and L class
label; each sample contains information in the form of the N
attribute and the L?3. In this research, M = 5559, N =25, and
L=3 are the parameters of classification models. Besides,
several multiclass classifiers including decision tree, re-
gression, and random forest have been trained due to their
advantages and low computational complexity. Random
Forest is an ensemble majority-vote-based classifier that uses
a set of decision trees to classify data samples [44]. The set of
decision trees forms a forest. During the classification, each
tree decides its vote to identify the class, and finally, the most
popular class with the most votes is selected for the current
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FIGURE 4: Feature extraction of ECG signal using the DWT
algorithm.

TaBLE 2: The number of training samples according to each class
label sampled at 360 Hz and the corresponding record in the MIT/
BIH database.

Class label Record Number of samples
Normal beat 205 400000
RBBB arrhythmia 118 400200
Atrial arrhythmia 232 311600

sample [44]. By evaluating the classification measures, the
random forest model with 10 trees showed better perfor-
mance than the other models and was selected as the final
model. The multiclass random forest model was developed
using the Apache Spark platform and was evaluated with a
test dataset by the Spark Structured Streaming engine.

There are many reasons to choose a random forest model
for classification, including its ensemble nature. Ensemble
models are usually more accurate than nonensemble models.
Also, the random forest model can be effectively applied to
large datasets. Another feature of the random forest model is
its ability to be used for future use and other data classifi-
cations. Finally, according to the specifications of ECG data
in this study, the random forest classification model with its
stated advantages could be one of the efficient models to
achieve the desired goals in this research.

2.8. Online Classification Using Apache Spark. We have
developed an online pipeline consisting of all of the
aforementioned preprocessing and classification steps using
existing functions at Apache Spark libraries and using the
Spark structured stream processing engine to classification
ECG streaming data and real-time cardiac arrhythmia
detection.

2.9. Spark Structured Streaming. Structured Streaming is a
powerful stream processing engine in Spark that is based on
the Spark SQL engine [32]. Conceptually, Structured
Streaming is capable of storing input streaming data with
data frame API. The Structured Streaming considered
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sequential input data as an unlimited table, so it can benefit
from the capabilities of Spark SQL in working with relational
data, and our results are equivalent to performing a batch
process across all input streaming data. Also, considering all
input data as an unlimited table enables the user to run
common data mining algorithms on streaming data [45].
Figure 5 shows the data stream schema in Structured
Streaming top on the Apache Spark platform.

2.9.1. File Source. There are several input sources for data
entry in Structured Streaming, including the Kafka source
and the file source. We used a file source to store the ECG
test data as the input source. The data in the file source is
entered with a time interval of 5 seconds, and by performing
the calculations, the result of detecting the received beats in 5
seconds is generated from the received ECG record.

2.9.2. Continuous Query. In an online environment,
changes always happen suddenly. Therefore, it is not possible
to react to changes with a traditional system and batch
processing. In a streaming system, we can react timely to
changes through a continuous query. This query is executed
sequentially on the streaming data. The query execution time
is defined by a predetermined time interval as the data is
received [46]. The continuous query that we have imple-
mented includes predefined pipeline steps that form the
preprocessing and classification stages. In this study, the
execution time of the query is considered based on a 5-
second time interval, which means that every 5 seconds the
query is executed once on the input streaming data.

2.9.3. Real-Time Processing. 'The main steps in the real-time
data processing of this research include the three steps of
reading the data from the file source, running the pipeline
and producing the results, and sending them to the database.

We have implemented our real-time computations using
Structured Streaming through a continuous query with 5-
second time intervals. Before starting to perform computa-
tions, the predeveloped random forest model is loaded for
classification. After that, in the first stage of the computations,
whenever the time interval is completed, 5 seconds of test data
available in the file source are entered into the system through
a continuous query; then in the second stage, the query
commands are executed. And the predefined steps of data
processing and classification are applied to the input data,
respectively. Finally, in the third step, the results of the
classification, which is the detection of arrhythmia class labels,
are sent to the database. At subsequent time intervals, all of
these steps are executed again on the input data, respectively,
and continue until the data available in the file source are
terminated. Figure 6 shows the online pipeline proposed for
cardiac arrhythmia detection using a machine learning model
within the spark structured streaming framework.

2.10. Analysis Environment. We had a lot of hardware
limitations to implement the steps of this research. To
address  these limitations, we launched our

Data stream Unbounded table

—>
=
]

FIGURE 5: Data Stream as an unbounded table in Apache Spark
Structured Streaming.

ECG enening
file J
model

source

=

Spark Structured Streaming

Preprocessing
7 5

FIGURE 6: Framework of the proposed online cardiac arrhythmias
detection pipeline on Apache Spark.

Classification
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implementation tools in the Google Colaboratory envi-
ronment on Google’s virtual machine with a CPU of
2.3 GHz (single-core and two-threads), 12.6 gigabytes of
RAM, and 100 gigabytes of disk space. In addition, our
implementation stages are written in Python program-
ming language version 3.6 and run on the Apache Spark
platform version 2.4.3.

3. Results

3.1. Classification Statistics. Since the number of the class
label in this study is more than 2 class labels, we have used
multiclass classification evaluation metrics to validate our
models. Sensitivity and specificity performance metrics were
applied to validate the approach developed using test
streaming data because of their compatibility with the nature
of clinical data [22].



sensitivity: L x 100, (4)
Y TP+ EN

TN
specificity: TN+ 100. (5)

Table 3 shows the number of beats considered for test
data sampled at 360 Hz for each class label, along with the
corresponding record in the MIT/BIH database.

To validate our online arrhythmia detection approach,
we used a 5-second packet of test streaming data for all
records. Each cycle a 5-second time interval is completed,
computations are performed on the received ECG data in
this interval and the diagnostic results are recorded in the
database.

We developed a decision tree, logistics regression, and
random forest classification models using training data with
25 features (generated in the feature extraction phase). After
validating these models with the test dataset, the random
forest classifier based on an ensemble of 10 trees showed the
best classification performance results. The overall results of
multiclass classification metrics derived with this model are
reported in Table 4.

Table 5 compares the classification performance of the
proposed method with several approaches in the literature. It
should be noted that the proposed approach is only com-
pared with online approaches to arrhythmia diagnosis and
offline approaches are not considered.

AUC stands for “Area under the ROC curve”. A ROC curve
(receiver operating characteristic curve) is a plot showing the
performance of a classification model at all classification
thresholds. This curve plots two parameters: True Positive Rate
and False Positive Rate. The higher the AUC value means that
the model performs better in distinguishing between positive
and negative classes. Therefore, if the AUC is equal to one, the
model can perfectly distinguish between positive and negative
classes. In this study, the AUC for the implemented multiclass
model is 0.86 and shows that the model can distinguish three
defined arrhythmia classes from each other with high
performance.

In some of the methods listed in Table 5, only AF or RBBB
or both arrhythmias are considered along with other ar-
rhythmias. Also, other methods have used only two arrhythmia
and nonarrhythmia class labels for diagnosis. Other online
approaches [27, 29] have used AAMI annotations to detect
what has not been considered in the comparison. Besides, the
approach in [51] has used the Spark platform and focuses on
data volume to offline cardiac arrhythmia detection which is
not comparable to the results of this study. Also, in recent years,
online and offline arrhythmia detection methods based on new
approaches such as deep artificial neural networks have been
introduced. Table 6 shows the comparison of the performance
metrics of our proposed method with the performance results
of these methods.

3.2. Execution Time. In spark structured streaming it is
possible to manage the query and prepare a report of all its
specifications by the progress reporter, including the time
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spent by continuous queries from creation to completion.
This time includes receiving the current batch offset, re-
ceiving the batch from the input source, query planning,
and sending the batch result to the output at each round of
query execution. Query planning time is the time required
to implement pipeline, preprocessing, and classification
steps. In this study, the time consumed to perform the
query includes the time required to receive a 5-second
batch of ECG data samples from the input source, the data
preprocessing and the classification of the beats produced
in this batch, and finally, the time is taken to send the
detected class labels to the output sink. Figure 7 shows the
time spent in query consecutive execution on200 ECG
packs. Accordingly, Table 7 compares the pipeline con-
sumption time implemented in this study with the latest
approaches presented by the researchers in real-time AF
arrhythmia detection with an online approach. The pipeline
developed in our proposed method is based on short 5-
second epochs of ECG samples and a sampling rate of
360 Hz, but the approach presented in Sutton et al., 2018 is
based on 1-minute epochs at 8 Hz sample rate. So to
compare the total execution time of all the steps (reading
data from a file source, preprocessing, classification) we set
our pipeline based on 1-minute epochs time. So in this
comparison, the number of our epochs has been reduced to
17 epochs at a 360 Hz sample rate.

According to the authors in Sutton et al.,, 2018, the high
consumption time in this study is due to the time required to
run the feature extraction algorithm in the preprocessing
stage.

4. Discussion

Real-time data analysis techniques are divided into two
general categories: algorithm-based and tool-based tech-
niques. Most previous studies in this field are based on the
use of algorithm-based techniques such as [19] for real-time
R peak detection along with various machine learning al-
gorithms for data classification. The most important algo-
rithms used in these studies include decision tree, SVM,
KNN, and neural networks classification algorithms. In this
research, a tool-based technique based on a big data platform
has been used for real-time analysis of ECG streaming data
and implementation of traditional data classification algo-
rithms. We use Apache Spark big data platform and
Structured Streaming module, which, in addition to re-
ducing computational delays, can keep the data stream as a
relational table and supports SQL commands.

Compared to past research studies, this is the first study
to use the Apache Spark Structured Streaming module for
real-time cardiac signal analysis, which uses parallel pro-
cessing to parallelize tasks in the diagnosis of heart disease.

In the past, many methods have been proposed for
online ECG signal analysis and cardiac arrhythmia detec-
tion. In general, these methods are divided into two groups:
algorithm-based and tool-based methods. Algorithm-based
methods adopt a solution for dealing with timely analysis of
streaming data. But in tool-based methods, it is the tool that
enables real-time data stream analysis. Most of the methods
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TaBLE 3: The number of test samples according to each class label sampled at 360 Hz and the corresponding record in the MIT/BIH database.

Class label Record Number of samples
Normal beat 115 104400
RBBB arrhythmia 124 129600
Atrial arrhythmia 232 124200

TaBLE 4: Multiclass classification metrics obtained using random forest on the test dataset.

Metrics ~ Accuracy (%)  Sensitivity (%)  Specificity (%)  Fl-score (%)  Precision (%) AUC score (%) False positive rate
Value 88.7 83.8 97.5 86.08 92.5 86.2 0.024

TaBLE 5: Classification performance of the proposed method and comparison with some online methods from the literature.

Method Acc (%) Se (%) Sp (%)
Lee et al. [6] 99 — —
Park and Kang [21] 96.7 99.5 89.9
Sutton et al. [22] 82.1 100 73.6
Lahdenoja [28] 97 93 100
Tateno and Glass [29] — 94.4 97.2
Dash et al. [31] — 90.2 91.2
Jang et al. [33] 91.9 84.6 94.3
Gradl et al. [47] — 89.5 80.6
Leutheuser [48] 91.6 90.9 92.3
Yen et al. [49] 98.3 — —
Oresko et al. [50] 93.3 — —
Proposed method 88.7 83.8 97.5

TasLE 6: Classification performance of the proposed method and comparison with some recently proposed methods.

Approach Method Acc Se/Rec Pre F1 score Sp
Wang et al. [36] — 82.2 83.8 82.8 —
Offline Ghosh et al. [35] 99.4 98.7 — — 100
Mahmud et al. [38] 99.2 99.1 99.0 99.1 -
He et al. [39] 95.1 87.2 82.4 84.0 —
. Kanadala et al. [37] — 74.2 — — 88.4
Online
Proposed method 88.7 83.8 92.5 86.0 97.5
1400
1300
=
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E
E
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FIGURE 7: Execution time (Ms) consumed by a query for different packs in Apache Spark Structured Streaming.
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TaBLE 7: Consumption time of the proposed method and comparison with the novel methods from the literature.

Methods Implementation Class Average consumption time for all The number of epochs’ Epochs time
number epochs (s) sample (s)

[Sglzti[on et al, 2018 Apache Spark Streaming 2 12 480 (8 Hz sample rate) 60

?;Son et al, 2018 MatLab 2 >2 480 (8 Hz sample rate) 60

Proposed method Apache Strgctured 3 +1 1800 (360 Hz sample 5

Streaming rate)

developed in the past for online ECG signal analysis are
traditional algorithm-based methods. However, these
methods face many limitations. First, they need an expert to
determine the heartbeat type and separate different beats
[52]. Therefore, at this stage, the expert may make a mistake
in diagnosing the heartbeat. Second, previous methods use
techniques to extract the ECG signal features that are not
able to extract all signal properties [52]. Thus, some im-
portant properties may be lost. All these limitations reduce
the accuracy of the classification model [52].

With the development of machine learning algorithms,
deep learning methods are widely used in cardiac ar-
rhythmias detection [35-39]. Although deep learning
methods can solve the limitations of traditional algorithm-
based techniques in some areas such as learning important
features, they also suffer from high computational com-
plexity due to the lack of powerful hardware for model
training [52]. Therefore, it is more reasonable to use deep
learning methods in batch and offline processing to diagnose
cardiac arrhythmias.

We used a technique based on the big data tool for sig-
nificantly reducing the latency of the results. By defining user-
defined functions, we have been able to run traditional algo-
rithms that do not have high computational complexity on a
big data platform. This capability avoids the computational
complexity of deep learning methods and it maintains the
classification performance metrics of previous models as the
computational speed increases. Therefore, we have considered
the advantages of the traditional algorithms and the state-of-
the-art methods. It reduces the delay of the results as much as
possible in addition to maintaining the classification measures.
Our results show that the proposed method detects three types
of cardiac arrhythmias with Average Consumption Time in
about 1 second for all 5-second ECG signal epochs and 88.6%
of accuracy, 83.8% of sensitivity, 86.01 of Fl-score, 92.5% of
precision, 97.5% of specification, and 86.23% of the total av-
erage of ROC score classification metrics.

Compared to online and offline methods presented in
the past, our approach in addition to having the advantages
of scalability, pipeline portability, and compatibility with
other biological signals can significantly reduce latency in
arrhythmia detection and maintain classification measures
for precision, F1-score, specification, and AUC score.

On the other hand, compared to the tool-based methods
[22], our results show better performance in terms of both
classification performance and the amount of delay in
producing results. This is due to the high-level API (Data

Frame) provided by the Structured Streaming platform,
which enables the implementation of fast SQL functions on
streaming data. Also, Structured Streaming provides the user
with a variety of output modes for generating results and
output sinks to display it to minimize I/O operation latency.

In this study, three different classification algorithms,
decision tree, random forest, and logistics regression, have
been used, which can classify multiclass data. Each of the
models developed in this study has other advantages in
addition to the ability to classify multiclass data. The random
forest model is usually more accurate than the nonensemble
model because it is an ensemble and uses a combination of
decision trees. Besides, the random forest model has a high
ability to manage data with a large number of independent
variables. However, in this study, the number of indepen-
dent variables of each sample is relatively high and is 25
variables. Another advantage of a random forest classifier is
that it can be stored for future use for other data classifi-
cations. Finally, according to the characteristics of ECG data
in this study and their implementation environment for
classification, a random forest model with its stated ad-
vantages could well be the most efficient model to achieve
the desired goals in this research.

In recent years, the use of deep artificial neural network
techniques in the volume [53-55] and high variety [56] of
big data is increasing due to the need for large volumes of
data to train models and its applications in data analysis with
a complex structure [24]. However, the application of these
methods in real-time data stream analysis with high pro-
duction rates is less possible due to their high computational
complexity [24]. A solution is an artificial neural network
with incremental architecture [57, 58] in which the network
structure changes with the arrival of new data. A new neuron
is assigned to the network when a new sample arrives, and
the network is being updated with new data. This method
also faces the challenge of overadjusting network parameters
and changing data distribution over time [24].

The loss of important ECG signal features in online
cardiac arrhythmia detection methods can be partially
addressed using deep learning approaches. Therefore, most
of the methods proposed with deep artificial neural networks
have been able to improve the classification performance
metrics [35-39].

On the other hand, by implementing deep learning
approaches on big data platforms and parallelizing com-
puting, their computational complexity can be greatly re-
duced. Thus, an efficient method for real-time cardiac signal
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analysis to detect various arrhythmias is the integration of
deep artificial neural network algorithms with important big
data features (volume, variety, and velocity) that can
overcome the limitations of existence online and offline ECG
signal analysis techniques.

Unfortunately, none of the previous approaches spe-
cifically mention the rate of delay in diagnosing heart dis-
ease, and some of these other approaches that calculate the
rate of delay do not have the same hardware as the hardware
used in this study, so the results of these approaches in terms
of delay the diagnosis of heart disease are not comparable to
the delay in this study. However, the approach implemented
in the earlier study, Sutton et al., 2018 [22], is one of the
recent research studies and is very similar to our proposed
approach due to the implementation of the random forest
classifier Apache Spark Streaming (Not Structured
Streaming) processing engine to diagnose AF arrhythmia.
Therefore, it can be compared with our research in terms of
time spent in diagnosing cardiac arrhythmias.

According to the results presented in Sutton et al., 2018
[22], which used a spark cluster with several nodes to im-
plement the algorithms, the total amount of time consumed
to execute all the implemented steps (calculation of PSPR
features, calculation of descriptive features, and class pre-
diction) of the research is close to two seconds, which is
more than the time consumed to perform our research steps
(Figure 7).

5. Conclusion

Our main goal in this study is to reduce the delay in real-time
cardiac arrhythmias detection. We used the Structured
Streaming stream processing engine to implement research
steps with algorithms that do not have high computational
complexity. Our results show a significant improvement in
reducing latency and speeding up computing using the big
data platform. In addition, our proposed approach is able to
maintain the classification metrics compared to previous
methods, despite the increase in the speed of computations.

5.1. The Major Contributions of This Research. Our proposed
method is a tool-based method and provides capabilities that
other algorithm-based methods do not have. These benefits
include the following:

(1) It reduces the delay in the real-time diagnosis of
cardiac arrhythmias using parallel computing
mechanism provided by the big data platform and
the relative maintenance (or improvement) of
multiclass classification performance compared to
existing algorithm-based (or tool-based) methods
(Tables 5-7)

(2) Our online pipeline has the ability to real-time an-
alyze other biological signals such as EEG signals

(3) Our proposed method can adapt and integrate with
different signal processing algorithms due to the
implementation of user-defined functions

(4) Our online pipeline is portable
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(5) Our online pipeline can be joined to static data
(patient clinical symptoms) to increase the reliability
of the results

(6) Our streaming system is scalable and can accept new
horizontal and vertical workers

(7) Our streaming system is fault-tolerant with the
concept exactly-once delivery and ensures that data
is not lost if the system crashes, and by rebooting the
system, results are generated immediately after the
failure point

5.2. Significance Statement. We supply a novel machine
learning pipeline for the real-time classification of AF and
RBBB arrhythmias in - second ECG data intervals using a
parallelized Apache Spark Structured Streaming Processing
Engine.

We used the Pandas-UDF technique to implement
classification and preprocessing algorithms on the new
Apache Spark platform to implement preprocessing and
real-time pipeline construction.

However, our proposed method faces limitations that
could be key to further research in the future.

(1) Our focus in this study is on the high-velocity feature
of big data. If the variety feature is added to the data,
the reliability of the results will increase for patients

(2) This study aimed to reduce the final delay in the real-
time diagnosis of cardiac arrhythmias. Therefore, in
this research, the novel methods such as deep neural
networks have not been used due to their high
computational complexity

(3) Our method still could not counter the concept drift
in the real world. The concept drift refers to a change
like data due to conditions such as noise. This
phenomenon affects new features in online learning
and can affect the accuracy of the results. Therefore,
in the real world, it is necessary to provide a solution
to deal with concept drift

5.3. Future Works. More studies can be done in the con-
tinuation of this research to be used with more confidence in
the real environment and monitoring of heart patients.
An important event that may occur in streaming data is
the concept of drift. This event refers to the change in the
nature of the data over time, which may be based on noise or
various environmental conditions. Using a mechanism to
detect and deal with the drift while analyzing the signal could
be a suggestion for the future. Another feature of big data is
the high variety of data typing. This feature can be achieved
by combining the patient’s physiological characteristics
along with the heart signals that are produced at high speed
and indefinitely. These characteristics can include the pa-
tient’s weight, sex, blood sugar, blood pressure, cholesterol
levels, and other physiological characteristics of the patient.
This can produce results with higher reliability that is closer
to reality. Furthermore, the approach used in this research
can be generalized to other streaming data. For example, it
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could be useful to use this approach to real-time analyze
other signals produced in the body, such as the brain signal
(Electroencephalography).

Data Availability

The data utilized for finding the outcomes of this research
have been taken from PhysioNet, and the well-known MIT/
BIH arrhythmia database is available at https://archive.
physionet.org/physiobank/database/mitdb/.
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