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Introduction: The oral squamous cell carcinoma (OSCC) is detrimental to patients’
physical and mental health. The prognosis of OSCC depends on the early diagnosis of
OSCC in large populations.

Objectives: Here, the present study aimed to develop an early diagnostic model based
on the relationship between OSCC and oral microbiota.

Methods: Overall, 164 samples were collected from 47 OSCC patients and 48 healthy
individuals as controls, including saliva, subgingival plaque, the tumor surface, the control
side (healthy mucosa), and tumor tissue. Based on 16S rDNA sequencing, data from all
the five sites, and salivary samples only, two machine learning models were developed to
diagnose OSCC.

Results: The average diagnostic accuracy rates of five sites and saliva were 98.17% and
95.70%, respectively. Cross-validations showed estimated external prediction accuracies
of 96.67% and 93.58%, respectively. The false-negative rate was 0%. Besides, it was
shown that OSCC could be diagnosed on any one of the five sites. In this model,
Actinobacteria, Fusobacterium, Moraxella, Bacillus, and Veillonella species exhibited
strong correlations with OSCC.

Conclusion: This study provided a noninvasive and inexpensive way to diagnose
malignancy based on oral microbiota without radiation. Applying machine learning
methods in microbiota data to diagnose OSCC constitutes an example of a microbial
assistant diagnostic model for other malignancies.
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INTRODUCTION

Oral cancer is a significant threat to patients’ physical and mental
health. According to the Global Cancer Statistics (Bray et al., 2018),
an estimated 350,000 new cases and 170,000 deaths from oral cavity
cancers occurred in 2018. Most global oral squamous cell carcinoma
(OSCC) cases are diagnosed in Asia. In developing countries, in
particular, oral cancers rank the eighth most common cancers in
males. Worryingly, the incidence of the oral cavity cancers appears
to be increasing in many parts of the world (Simard et al., 2014).
The most common oral cancer is OSCC, with a 95% rate. The
prognosis for oral cancers is notably poor, with a mean all-stage,
5-year survival rate of <50% (Kujan et al., 2005).

Therefore, it is essential to diagnose OSCC at an early stage,
especially in large populations, and the prognosis of the
treatment could benefit from the early detection of OSCC. In
the diagnosis of OSCC and many other tumors, pathologic
diagnosis is the gold standard, and radiologic examinations
provide useful supplementary data. However, it is difficult to
apply these traditional methods as primary diagnostic methods
for OSCC in large populations due to their invasive, radioactive,
and expensive nature. Therefore, an effective, convenient, and
noninvasive method is necessary as a screening tool for OSCC in
large populations.

In recent years, many investigations have explored the association
between oral bacteria and OSCC (Ahn et al., 2012; Pushalkar et al.,
2012; Schmidt et al., 2014). Therefore, oral bacteria might be a
potential biomarker to develop a promising early diagnostic method
for OSCC. However, we still face considerable challenges in
developing a novel diagnostic model based on oral bacteria. First,
efforts are underway to find out the core microbiome or species for
OSCC diagnosis. Previous studies have investigated the relationship
between some single species and OSCC, including Porphyromonas
gingivalis (Chang et al., 2019; Park et al., 2019; de Mendoza et al.,
2020) and Staphylococcus aureus (Wang et al., 2019). Investigators
have also indicated the differences in the oral microbiome between
OSCC patients and healthy individuals via bioinformatics analysis.
Some other previous studies have indicated significant losses in the
richness and diversity of oral microbiota in OSCC patients compared
with healthy subjects. The relative frequencies of Streptococcus,
Dialister, and Veillonella species differentiate the tumor from a
healthy state (Guerrero-Preston et al., 2016). Other studies (Krogh
et al., 1987) found significantly higher frequencies of Porphyromonas,
Actinomycetes,Haemophilus, and Enterobacter species on the surface
of OSCC tissues. Hooper et al. demonstrated that microbial diversity
increased in tumor tissues by using 16S rDNA sequencing
technology (Hooper et al., 2007). However, the exact core
microbiome remains unclear, and thus, diagnostic models were
not established to detect OSCC based on the microbiome.

Second, the oral cavity is a complicated environment, and the
microbiome is different in different sites, including the tongue,
teeth, mucous membranes, palate, and gums (Aas et al., 2005;
Avila et al., 2009; Zarco et al., 2012). Segata et al. reported that
the composition of microbial communities varies in seven oral
cavity surfaces, demonstrating that the buccal mucosa,
keratinized gingiva, hard palate, saliva, tongue, tonsils, throat,
and subgingival and supragingival plaques were distinct more or
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
less (Segata et al., 2012). Therefore, it is necessary and vital to
determine which site should be selected to analyze the
microbiome for OSCC diagnosis.

This study showed that OSCC could be diagnosed based on
oral microbiota, and a diagnostic model could be developed with
the help of machine learning methods. Moreover, the microbiota
in the saliva, subgingival plaque, tumor surface, the control side
(normal mucosa), and intratumoral tissue were useful for OSCC
diagnosis. What is more, this diagnostic model can effectively
avoid missed diagnoses; therefore, it is a potential early OSCC
diagnostic method for large populations.
MATERIALS AND METHODS

Study Design
This study consisted of three stages. In stage I, the demographic
data and microbiome were characterized using descriptive
methods to provide a clear profile of both internal and external
samples and the whole study data. Also, the microbiome and
demographic data were analyzed using exploratory methods to
test the study assumption, i.e., whether OSCC patients have
microbiome patterns different from those of healthy people. In
stage II, random forests were developed to determine the
different patterns and further analyze the specified operational
taxonomic unit (OTU) role in the differences between
microbiome patterns of healthy and OSCC individuals. In
stage III, post hoc analyses were carried out to evaluate the
different aspects of the performance of the diagnostic model
developed in stage II, i.e., external discrimination capacity and its
reliability on the sample size of the random forest prediction
model based on the oral microbiome.

Participant Information
The institutional review board of the West China Hospital
Stomatology of Sichuan University approved the study (approval
number: WCHSIRB-D-2013-047). All the patients provided
written informed consent forms before sample collection.

The sample collection protocol conformed to the Manual of
Procedure for Human Microbiome Project Core Microbiome
Sampling Protocol A HMP Protocol #07-001 (McInnes and
Cutting, 2010; Segata et al., 2012; Sturød et al., 2020). There
were 47 OSCC patients, all from China, who met the inclusion
criteria, which required the use of no alcohol, no tobacco, no
antibiotics, no cortisone, no cytokines (which could provoke the
immune system like interleukin), and no immunosuppressant
drugs like methotrexate six months before the sampling
procedure. The age of the patients ranged from 34 to 78 years.
The patients with DMF >4, calculus index ≥2, and oral fungal or
mucosal diseases were excluded (Kalogirou and Sklavounou-
Andrikopoulou, 2017; Xun et al., 2018). The control group
followed the same criteria.

All patients were sampled before treatment to ensure that the
microbiome was not affected by chemotherapy, radiotherapy,
and oral prophylaxis. Of the 47 OSCC patients, 47 salivary
samples (the saliva group), 18 subgingival plaque samples (the
August 2021 | Volume 11 | Article 728933
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pla group), 21 surfaces of tumor samples (the tum–muc group),
16 control side of healthy mucosa samples (the con–muc group),
and 16 tumor tissue samples (the tum group) were collected
(Table 1). OTU composition is a whole community structure
that reflects various conditions of the microenvironment, and it
is affected by factors such as diet, nutrition, and living habits.
Therefore, the OTU composition of samples from different
regions might be significantly different. Therefore, if this factor
is not eliminated and only local or single-source samples are
selected for the construction of the model, regional differences
might cover it when applied to the population in other regions,
resulting in unsatisfactory prediction performance. Forty-six
healthy individuals were included as a control, consisting of 21
salivary samples from the same region as patients in Sichuan
Province, and 25 salivary samples from another center, Peking
University Hospital of Stomatology (Xun et al., 2018), in Beijing,
to avoid this error (Table 1).

Sample Collection
The participants were asked not to take in any food and not brush
or floss for at least 12 h before the sample collection session. The
protocol for sample collection in each site followed the Manual of
Procedure for Human Microbiome Project: Core Microbiome
Sampling Protocol A (HMP Protocol #07-001) (McInnes and
Cutting, 2010; Segata et al., 2012; Sturød et al., 2020). The
participants were taught to stop swallowing for 1 min and
collect 5 ml of saliva in 50-ml Falcon tubes for saliva collection.
For plaque collection, buccal swabs were used to take plaque
samples from the participants, which were stored in 2-ml EP tubes.
For the bacterial flora on the oral mucosa, swabs were used to wipe
the lesion and the other side of the oral mucosa for 10 s,
respectively, avoiding the tooth and internal tumor. All the
samples were then transferred into phosphate-buffered saline
(PBS) solution and stored at −80°C immediately. For the
internal tumor, dental instruments were disinfected to cut the
internal tumor into 1 × 1 × 1-cm3 cubes on a sterile platform;
the tumor samples were then steeped in sterile povidone-iodine for
3 min and vortexed several times using 500 µl of PBS. The tumor
samples were divided into two parts, with one being steeped in
Tris-EDTA buffer (pH = 7.4) stored at −80°C and with the other
one being used for cultivation (McInnes and Cutting, 2010).

DNA Extraction and PCR Amplification
Microbial DNA was extracted from all the samples using the
E.Z.N.A.® soil DNA Kit (Omega Bio-Tek, Norcross, GA, USA)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
according to the manufacturer’s protocols (Zhu et al., 2015; Wang
et al., 2016; Li et al., 2019). The V4–V5 region of the bacterial 16S
ribosomal RNA gene was amplified by PCR (95°C for 2 min,
followed by 25 cycles at 95°C for 30 s, 55°C for 30 s, and 72°C for
30 s, and a final extension at 72°C for 5 min) using primers 515F
5′-barcode-GTGCCAGCMGCCGCGG)-3′ and 907R 5′-
CCGTCAATTCMTTTRAGTTT-3′ (Li et al., 2018; Xie et al.,
2018; Zhou et al., 2018), where the barcode is an eight-base
sequence unique to each sample. PCRs were performed in
triplicate in a 20-ml mixture containing 4 ml of 5× FastPfu
buffer, 2 ml of 2.5 mM of dNTPs, 0.8 ml of each primer (5 mM),
0.4 ml of FastPfu polymerase, and 10 ng of template DNA.
Illumina MiSeq Sequencing
Amplicons were extracted from 2% agarose gels, purified using
the AxyPrep DNA Gel Extraction Kit (Axygen Biosciences,
Union City, CA, USA) according to the manufacturer’s
instructions, and quantified using QuantiFluor™-ST (Promega,
USA) (Xie et al., 2018). According to the standard protocols,
purified amplicons were pooled in equimolar and paired-end
sequenced (2 × 300) on an Illumina MiSeq platform. The
Sequencing Depth of all samples was enough for analysis. The
rarefaction analysis and read count statistics of all samples are
shown in the Supplementary Material (Figure S2 and Table S4).
The raw reads were deposited in the National Center for
Biotechnology Information (NCBI) Sequence Read Archive
(SRA) database (Accession Number: SRP119028) (Zhu et al.,
2015; Wang et al., 2016; Yin et al., 2016; Xie et al., 2018).
Processing of Sequencing Data
Raw FASTQ files were demultiplexed and quality-filtered using
QIIME (Version 1.9.1) with the following criteria (Caporaso
et al., 2010): i) the 300-bp reads were truncated at any site with
an average quality score of <20 over a 50-bp sliding window,
discarding the truncated reads that were shorter than 50 bp.
ii) Exact barcode matching, two nucleotide mismatches in
primer matching, and reads containing ambiguous characters
were removed. iii) Only sequences that overlapped longer than
10 bp were assembled according to their overlap sequence. Reads
that could not be assembled were discarded.

OTUs were clustered with 97% similarity cutoff using
UPARSE Version 7.1 (http://drive5.com/uparse/), and chimeric
sequences were identified and removed using UCHIME. The
taxonomy of each 16S rRNA gene sequence was analyzed by
RDP Classifier (Cole et al., 2005) (http://rdp.cme.msu.edu/)
against the silva (SSU123) 16S rRNA database using a
confidence threshold of 70% (Dewhirst et al., 2010).
Statistical Analysis
In stage I, the demographic and microbiome characteristics of
the subjects were presented. An exploratory analysis was carried
out to explore the potential capacity of pattern differences
between samples from healthy and OSCC individuals. The
Shannon index, Chao index, Simpson diversity index
TABLE 1 | Samples in different groups.

OSCC Healthy control External set Total
(n = 47) (n = 21) (n = 25) (n = 93)

con_muc 16 16
Pla 18 18
Saliva 47 21 25 93
Tum 16 16
Tum_muc 21 21
Overall 118 21 25 164
OSCC, oral squamous cell carcinoma.
August 2021 | Volume 11 | Article 728933
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(Chao et al., 1992; Chao and Shen, 2003), beta diversity index,
network analysis, and functional analysis were used to explore
whether the microbiome profiles in samples differed between
OSCC and healthy individuals.

In stage II, since exploratory analysis showed that
microbiome patterns differed between OSCC and healthy
individuals, random forests were developed to show that such
a pattern of the total microbiome in healthy subjects was
different from that in OSCC individuals. The proper
discriminations of this algorithm in high-dimensional datasets
have been shown in various fields. Based on the model, the OTUs
with great importance in distinguishing OSCC patients from
healthy individuals were also extracted to provide clues for
further studies on the mechanism of interaction of microbiome
and cancer incidence.

In stage III, further analyses were carried out on the
prediction model based on the random forests to evaluate the
external prediction capacity and the dependence on
the sample size.

To evaluate external prediction capacity, although the
algorithms based on CART, bagging, and bootstrap have
strong resistance against the overfitting, still in practice in
some cases, such prediction models cannot perform well in
external datasets. Therefore, a batch of cross-validations was
carried out. In each cross-validation, a fixed proportion of
samples was first randomly selected as the training set to build
random forests. The rest of the samples used to test the forests’
prediction capacity were used to predict whether the forests
could correctly discriminate the OSCC patients from healthy
individuals in the external population. Given that all the samples
in the test set would not be used to train the forests, each time,
the forests were tested using an external validation set. This
process was repeated for large numbers to ensure that each
sample would be in training and test sets for at least once. The
average performance over the tests would be used to evaluate the
expected external discrimination capacity of OSCC patients
using random forests based on the microbiome.

As in cross-validation, not all the samples would be used to
train the model, and the prediction capacity would decrease due
to the loss of sample size. Therefore, it is of interest how many
samples can build a reliable prediction model and whether the
prediction capacity can be improved by introducing more
samples. Therefore, different batches of cross-validations with
different sample sizes of the training set were carried out to
evaluate how the prediction capacity changes in terms of the
sample size.
RESULTS

Characteristics and Exploratory Analysis
The diversity indexes, i.e., Shannon, Chao, and Simpson indexes,
showed that the diversities of oral microbiome increased
significantly in OSCC patients compared with healthy
individuals (Figure 1A).
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A Venn graph (Figure 1B) was used to determine the number
of common and distinguished OTUs between OSCC patients
and healthy controls. Samples with similar levels of 97% OTU
were used for the analysis. OSCC patients and the healthy group
exhibited significant differences in the OTU level, with only 428
out of 1,747 OTUs in common; 311 of 1,747 OTUs were unique
for OSCC patients.

The Bray–Curtis principal coordinate analysis (PCoA)
showed that healthy individuals’ microbial community was
concentrated, while the microbial community of patients was
relatively discrete. Besides, the microbiome in samples from both
OSCC and healthy individuals from the same center (West
China College of Stomatology), i.e., OSCC and healthy control
group, was similar. In contrast, those from the external center
(Peking University Hospital of Stomatology) exhibited a different
pattern (Figure 1C). This result supported our suspicion that
microbiome profiles might differ significantly between different
populations from different regions rather than those between
OSCC and healthy individuals. Therefore, if the prediction
model were built only with samples from a local or internal set
of samples, its generalizability would be significantly limited, and
the application of such a prediction model to external
populations might be inappropriate. This is also evaluated by
external prediction evaluation in stage III.

The key OTU phylotypes in OSCC patients and the healthy
group were analyzed, which showed different phyla in the two
groups. Five locations (saliva, subgingival plaque, tumor surface,
normal mucosa in the control side, and intratumoral tissue) were
sampled to investigate the frequencies of oral microbial
communities in OSCC patients. All the results are presented in
the Supplementary Material. This raised the interesting
question of whether different sampling sites affected the
model diagnosis.

These exploratory results implied that the microbiome pattern
between the healthy and OSCC subjects was significantly
different. The significant differences suggested that the oral
microbiome does have the potential capacity to discriminate the
OSCC patients from all the individuals.
Phylogenetic Profiles of Oral Microbial
Communities in Oral Squamous Cell
Carcinoma Patients
We examined the similarities and differences of genera present in
the healthy group and as depicted in Figures 2A, B. Phylotypes
with a median relative abundance larger than 0.01% of total
abundance were included for comparison. To identify key OTU
phylotypes in OSCC patients and healthy group, abundances of
OTUs were analyzed by Wilcoxon’s rank-sum test with the
Benjamini–Hochberg method.

The OTUs representing different phyla were not similar
between the two groups. The healthy group was observed to
contain Streptococcus (22.73%), followed by Neisseria (18.23%),
Prevotella (14.56%), Porphyromonas (7.33%), Haemophilus
(6.72%), and Veillonella (4.05%). The OSCC group was found
to contain Streptococcus (11.09%), followed by Neisseria
August 2021 | Volume 11 | Article 728933
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(12.88%), Prevotella (12.03%), Porphyromonas (4.18%),
Haemophilus (3.35%), and Veillonella (6.01%).

The stacked column plots also showed the differences
between the two groups in terms of phylum (Figure 3A),
class (Figure 3B), order (Figure 3C), family (Figure 3D),
genus (Figure 3E), and species (Figure 3F). Overall, the
abundance of the OSCC group was higher than that of the
healthy group. On the phylum level, there were less
Bacteroidetes and Proteobacteria and more Firmicutes and
Fusobacteria in the OSCC group. On the class level, there
were less Bacilli, Bacteroidia, and Betaproteobacteria and
more Negativicutes in the OSCC group. On the order level,
there were less Bacteroidales, Lactobacillales, and Neisseriales
and more Selenomonadales in the OSCC group. On the family
level, there were less Streptococcaceae, Prevotellaceae, and
Neisseriaceae and more Veillonellaceae in the OSCC group.
On the genus level, there were less Streptococcus, Neisseria, and
Prevotella and more Veillonella and Fusobacterium in the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
OSCC group. On the species level , there were less
Haemophilus and more Veillonella in the OSCC group.

In the co-occurrence network deduced from bacteria enriched
in the OSCC group and healthy group, the node in the network
represented the sample node or the genus node, and the line
between the sample node and the species node represented that
the sample contains the genus. Figure 4 shows the genus with
abundance greater than 50. Both groups contained Veillonella,
Alloprevotella, Capnocytophaga, Neisseria, Gemella, etc. Only the
healthy group contained Rothia, and only the OSCC group
contained Lactococcus, Aggregatibacter, Peptostreptococcus, etc.

Analysis of similarities (ANOSIM) (Table 2) was significant
for the overall model (R2 = 0.13291, p = 0.05), and pairwise
comparisons revealed a significant difference between control
subjects who remained healthy and those with OSCC. Although
the coefficient of determination is very low, there is a difference
between the two groups. On the one hand, it is suggested that
there can be a clear difference between the two, which can be
A

B C

FIGURE 1 | The diversities of oral microbiome in OSCC patients and healthy individuals. (A) Shannon, Chao and Simpson Indexes of all OTUs with relative
importance greater than 0. 01 between OSCC patients and healthy control. (B) Venn graph between OSCC patients and healthy control. (C) PCoA of
bray_curtis between OSCC and healthy individuals. O represented OSCC patients, H represented healthy people, and H(HX) means people from West China
College of Stomatology, H(BJ) means people from Peking University Hospital of Stomatology (* means 0.01 < P ≤ 0.05, ** means 0.001 < P ≤ 0.01,
*** means P ≤ 0.001).
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used as an auxiliary diagnosis of OSCC; on the other hand, this
mode difference may not be large and may lack discrimination in
particular cases. Meanwhile, considering the number of OTUs,
the samples size is relatively small, so a special method is needed
to identify such slight differences. This is the machine learning
diagnostic model mentioned later.
Abundance of Oral Microbial Communities
in Oral Squamous Cell Carcinoma
To illustrate that the location in the oral cavity has an effect on
the microbiota of the particular niche (saliva, subgingival plaque,
surface of tumor, normal mucosa in the control side, and
intratumoral tissue), we sampled microbiota in these
five locations.

The Simpson index and Shannon index reflected the diversity
of microorganisms in saliva, subgingival plaque, surface of
tumor, normal mucosa, and intratumoral tissue. According to
Figure 5, there were significant differences in the Simpson index
and Shannon index of these five locations, which indicated that
the diversity in different parts of the oral cavity was different.
Among them, the Simpson index and Shannon index in
intratumoral tissue were the highest, indicating that the
diversity in intratumoral tissue was relatively high.

It can be seen from the Venn diagram (Figure 6) that the
number of OTU that did not overlap on normal mucosa,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
subgingival plaque, saliva, intratumoral tissue, and surface of
tumor was 34, 24, 42, 99, and 14, respectively, while the number
of OTU that completely overlapped on the five sites was as high
as 340, accounting for 55%~74% of the total number of each site.
In other words, the composition of bacteria in saliva, subgingival
plaque, surface of tumor, normal mucosa, and intratumoral
tissue was very similar.

The size of nodes in Figure 7 represents the abundance of
genus, and different colors represent different genera. The
colors of the lines indicate positive and negative correlations,
red indicates positive correlation, and green indicates
negative correlation. The thickness of the line indicates the
correlation coefficient. The thicker the line, the higher the
correlation between genera. The more lines, the more close
the correlation.

It showed that the tumor site has the highest correlation between
genera, and saliva site genus correlation is the lowest. In the tumor
tissue, Dialister, Johnsonella, Peptostreptococcus, Parvimonas, and
other bacteria were closely related to other bacteria. On the tumor
surface, Peptostreptococcus, Filifactor, Selenomonas, and other
bacteria were closely related to other bacteria. In the subgingival
plaque, Selenomonas, Peptostreptococcus, Prevotella, and other
bacteria were closely related to other bacteria, and the correlation
was mostly positive. On the healthy mucosa, Prevotella was
negatively associated with most microbes. In saliva, however,
most of the microbes had a low microbiological correlation.
A

B

FIGURE 2 | OTUs phylotypes in healthy group (A) and OSCC patients (B), analysed by Wilcoxon rank-sum test with Benjamini-Hochberg method.
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Evaluation of Oral Squamous Cell
Carcinoma Prediction Random Forest
Models Based on Saliva Microbiome
Given the noninvasive collection process of salivary samples and
the high sensitivity in OSCC sample identification, using the
microbiome in salivary samples to identify potential OSCC
patients would be a more appropriate choice of screening the
OSCC patients. An additional random forest model was then
built only using the 93 salivary samples, in which 47 were from
the OSCC patients while the remaining 46 were from healthy
controls (Table 3). The result showed that the model’s accuracy
was 95.70%, and its sensitivity was 100%; i.e., four samples from
healthy controls were misclassified as from OSCC patients. In
addition to the model using only salivary samples, we wondered
whether using samples of other sites could lead to the same
performance. And the result is in the Supplementary Material.

Overfitting is a common concern in that a predictionmodel with
high internal performance does not work well in other populations,
especially in machine learning models. However, to evaluate such
uncertainty, we carried out a batch of cross-validations. For each
model, a training set containing 80% randomly selected samples was
used to build a random forest model, and the rest of the samples
were not used to build the model as the external test sets. Then, the
average external accuracy of all the random forests provides an
estimation of the model applied in external populations.

For the model built with OTUs in salivary samples, cross-
validation showed an estimated external accuracy of 93.58%; i.e.,
97 out of 1512 external test samples were misclassified in 84
external test sets containing 18 samples each. Still, no OSCC
would be missed using the oral microbiome in salivary
samples (Table 4).

The cross-validations of OSCC sample prediction random
forests, i.e., using only salivary samples, with all the samples
collected in five sites, suggested that the distinguished
microbiome pattern in samples from OSCC individuals can
also be used in external populations. Also, the sensitivity of
external test samples still at 100% proves its high capacity in
screening OSCC patients. Considering the noninvasive collection
model, using random forests based on the microbiome in salivary
samples would be strongly recommended to test whether the
individuals are possible OSCC patients.

Another common concern is that given the well-known
significant dependence on sample size, how many samples are
required to build a model with favorable performance? Another
batch of cross-validations, each with different sizes of training
sets and test sets, was carried out to evaluate the dependence on
sample size in OSCC identification using oral microbiome in
salivary samples.

The sample sizes of training sets were set as 60% (56), 70%
(65), 80% (75), and 90% (83) of all the 93 salivary samples. For
each sample size, the random forest model was tested different
times of a test sample size of 10,000 to obtain accuracy with
comparable variations. The average accuracies of the tests with
different sample sizes provided the association of the training
sample sizes and the performance of OSCC identification models
using the salivary microbiome.
A

B

D

E

F

C

FIGURE 3 | Stacked column plots representing comparison of relative
abundance of bacterial taxa between healthy and oral squamous cell
carcinoma (OSCC) groups at phylum (A), class (B), order (C), family (D),
genus (E), and species (F).
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Cross-validations showed that as the training sample size
increased, the random forests based on salivary samples became
more accurate. Seventy-five samples could supply significantly
high performance, while more training samples could give rise to
even greater accuracy; i.e., with all the 93 samples in training set
at 95.70% accuracy, another 1.20% improvement could be
obtained over 94.50% with 83 samples in the training set
(Figure 8). Also, the larger training sample size decreased the
variance of the prediction accuracy, suggesting that higher
accuracy can be obtained by a model with a large training set.

Further insight into >40,000 prediction results provided a good
sample of this point. In the cross-validations, all the random forests
with training sample sizes >80% (75) exhibited sensitivities of 100%;
therefore, no OSCCwould bemisclassified. However, as the training
sample size decreased, false-negative predictions were found, i.e., 15
patients in 5,130 OSCC patients with a training sample size of 56
and three patients in 4,998 OSCC patients with a training sample
size of 65. An interesting finding is that all the 18 false-negative
predictions happened in one same sample. This sample was found
from an OSCC patient having early invasive carcinoma on the oral
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
cavity floor. At the early stages of cancer development, the
characteristics of the oral microbiome were close to those of
healthy individuals compared with other OSCC patients. Such
samples from early cancer development stages might be
misclassified as from healthy individuals due to the partly
changed microbial profiles, which would be identified correctly by
the models with larger training sets.

This suggested the strategy of screening model development;
the prediction random forest can first be built based on small
sample sizes, such as those >50, and then the accuracy can be
improved as the new samples are added to the training set to
renew the basic model.

Also, the difference between groups of healthy individuals
from different centers suggested that a continuous and dynamic
renewal of the prediction model using new samples would be of
necessity for a potential change in population applied. It is
recommended for each center to address the differences
between microbial profiles in different populations when
building its own prediction random forest.
DISCUSSION

The human microbiome, a dynamic, interconnected ecosystem
reflecting the locating environments, plays a central role in the
process of development, health, and disease (Bracci, 2017; Cong
and Zhang, 2018; Verma et al., 2018). Although the differences
between microbiome in groups having different disorder statues
FIGURE 4 | The co-occurrence network deduced from bacteria enriched in oral squamous cell carcinoma (OSCC) group and healthy group.
TABLE 2 | ANOSIM in healthy group and OSCC patients.

Df SumsOfSqs MeanSqs F.Model R2 Pr(>F)

Group 1 6.864 6.8643 24.832 0.13291 0.001
Residuals 162 44.782 0.2764 0.86709
Total 163 51.646 1
ANOSIM, analysis of similarities; OSCC, oral squamous cell carcinoma.
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might provide potential biomarkers, traditional analyses have
low test power in identifying such differences due to the adverse
effect of dimensionality. Although there is a deluge of data on the
human microbiome, converting them into clinically meaningful
insights remains challenging (Quince et al., 2009; Hu et al.,
2013). Machine learning methods constitute proper tools for
analyzing such high-dimensional datasets with a small sample
size. For instance, Teng et al. (2015) developed a predictive
model for early childhood caries (ECC) using oral microbiota by
random forests machine learning algorithm innovatively, which
became an asset for clinical work. The algorithm was also used in
this study, indicating that OSCC can be diagnosed based on oral
microbiota. Moreover, microbiota on any one of the five sites
were useful for the diagnosis of OSCC. Thus, oral microbiota on
any one of the five sites could be collected to diagnose OSCC in
clinical practice.

Salivary samples would be an optimal choice for the OSCC
preliminary diagnosis due to their advantages in the sample
collection process. Early diagnosis plays a critical role in the
treatment of OSCC, and many methods have been used in the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
diagnosis of OSCC. Compared with the traditional methods (CT,
MRI, and PET), our novel model, based on oral microbiota,
exhibited apparent advantages. First, compared with CT and
PET, no radiation is involved during sample collection and
examination. Second, the cost of 16S rRNA gene sequences is
20%–50% of CT/MRI for every patient and <20% of PET. Third,
the examination is more convenient for patients than CT, MRI,
and PET. This method only requires the collection of saliva and
sequencing, without the need for professionals to purchase or
learn other examination equipment, and can be easily
implemented in oral medical clinics or hospitals. Fourth, the
diagnosis of histopathological analysis usually takes about 3–5
days, because the preparation of tissue samples and the
interpretation by the diagnostic physician are quite complex and
rigorous. This method only requires sequencing and machine data
processing, which will provide quick help for diagnosis. Besides,
some studies have indicated that oral microbiota could provide a
potential risk assessment for several other diseases, like dental
caries (Stuckensen et al., 2000; Ng et al., 2005; Liao et al., 2011).
Our investigations explored a novel method to detect OSCC at an
early stage, expanding the application of oral microbiota in
diagnosing oral diseases. Therefore, in the future, the analysis of
oral microbiota might be included in annual physical
examinations for large populations to detect the risk of different
diseases. The selected people with a high risk of specific diseases
could be referred to specialists for further confirmatory diagnosis.
On the one hand, patients could benefit from the early diagnosis of
the diseases; on the other hand, it could help reduce the social and
public health expenses.

In the study, the accuracy of the diagnostic model was more
favorable than that of the traditional methods. The accuracy of
CT/MRI ranges from 66% to 86.4%. In recent years, 18F-FDG
PET has been recommended in the diagnosis of OSCC patients
(Kitajima et al., 2015). The accuracy of 18F-FDG PET ranges
from 66.8% to 89.4%. In the present study, the accuracy of the
novel model was 95%. Interestingly, there was no false-negative
result in our diagnostic model. But there are still some false-
positive individuals, and further confirmatory diagnosis could
help exclude such cases.

In recent years, some studies indicated that oral microbial
composition differed significantly from a healthy state to OSCC
patients and non-tumoral to tumoral sites (Ahn et al., 2012;
Pushalkar et al., 2012; Schmidt et al., 2014). Therefore,
researchers tried to isolate some particular species and show
their relationship with OSCC. In the present study, the results
also provided evidence for some oral bacteria as potential
research objects. As shown in Table S2, the top 10 features of
oral microbiome in random forests were consistent with
previously reported studies in which close relationships were
detected between OSCC and the following bacterial species:
Porphyromonas, Fusobacterium, Prevotella, Leptotrichia,
Moraxella, Bacillus, and Actinobacteria (Sato et al., 2010; Al-
Hebshi et al., 2015). Particularly, as pathogenic bacteria of
periodontal disease, P. gingivalis and Fusobacterium nucleatum
could promote oral carcinogenesis (Groeger et al., 2011;
Gallimidi et al., 2015; Ha et al., 2015). P. gingivalis could
FIGURE 5 | Simpson index and Shannon index of microorganisms in subgingival
plaque, normal mucosa, surface of tumor, saliva and intratumor tissue (* means
0.01 < P ≤ 0.05, ** means 0.001 < P ≤ 0.01, *** means P ≤ 0.001).
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promote immunoevasion of oral cancer by protecting cancer
from macrophage attack and could facilitate cell migration,
which was slightly enhanced by co-infection with F. nucleatum
(Liu et al., 2020). Prevotella was found to have a close
relationship with digestive tract cancers (Yang et al., 2009).
Although other bacteria in the present study lacked in
mechanism evidence, they provided clues for future studies to
reveal the relationship between microorganisms and oral cancer.

In the present study, in one sample, the oral microbiome’s
characteristics were close to those of healthy individuals. Further
analysis indicated that it might be because the sample was
collected from a patient in the early stages of OSCC, confirming
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
previous research (Chocolatewala et al., 2010; Perera et al., 2016;
Mukherjee et al., 2017), in which the microbiome changes
continued with cancer development. The microbiome will
change with the pathological environment during carcinogenesis.

In conclusion, using random forests and cross-validations,
this study provided a method to build a diagnostic model based
on oral microbiota, which could be applied to the diagnosis of
OSCC in large populations accurately and conveniently without
radiation before invasive procedures. Furthermore, this study
provided an application sample to develop diagnostic models as
an auxiliary diagnostic tool not only for OSCC but also for
various tumors.
FIGURE 6 | Venn diagram of the number of operational taxonomic unit (OTU) among normal mucosa, subgingival plaque, saliva, intratumoral tissue, and surface of tumor.
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FIGURE 7 | Interconnection of the oral squamous cell carcinoma (OSCC)
and salivary and other sites bacteria. Tumor tissue (A), the tumor surface (B),
subgingival plaque (C), healthy mucosa (D), and saliva (E).
TABLE 3 | Prediction and observation of OSCC in saliva samples.

Observed Predicted Total

Healthy controls OSCC patients

Healthy controls 42 4 46
OSCC patients 0 47 47
August 2021 | Volume 11 | Article 7
OSCC, oral squamous cell carcinoma.
TABLE 4 | Prediction and observation of OSCC in saliva samples.

Observed Predicted Total

Healthy controls OSCC patients (n = 1,512)

Healthy controls 659 97 756
OSCC patients 0 756 756
OSCC, oral squamous cell carcinoma.
FIGURE 8 | The average external prediction accuracies of random forests
with different training sample sizes. The bottom part of the figure is truncated
to present the differences in the error bar.
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