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ABSTRACT
This study was performed to investigate the global expression profile of 

microRNAs in distinct subpopulations of a human malignant mesothelioma cell line. 
Total RNAs were isolated from the sorted side population and non-side population 
of MS1. The RNAs were subjected to analysis using Affymetrix GeneChip microRNA 
Arrays. After data extraction and normalization, a subset of microRNAs defining cell 
subpopulations was identified using bioinformatics softwares. Based on the criteria of 
2-fold difference and the p-value of < 0.05, a total of 95 microRNAs were differentially 
expressed in the side population compared to the non-side population. Functional 
ontology revealed that target genes of the miRNAs were categorized into various 
gene ontology terms, such as stem cell maintenance, cell proliferation, programmed 
cell death, cell migration, and cellular response to stress. The Kyoto Encyclopedia of 
Genes and Genomes analysis showed that ErbB-2 receptor tyrosine kinases signaling 
pathway was the most represented. Integrated analysis of MiRTarBase and RNA-seq 
identified 12 target genes of microRNAs defining side population, including DDIT4 and 
ROCK2. The present study indicates that a distinct set of microRNAs may be critically 
involved in the generation and maintenance of heterogeneous subpopulations of 
cancer cells. They could be a plausible target for the eradication of more aggressive 
cancer cell subpopulations.

BACKGROUND

Harboring heterogeneous cell populations in a 
tumor mass is a common feature of many cancer types 
[1]. The intratumoral heterogeneity refers to a hierarchical 
organization of phenotypically and functionally distinct 
cancer cells within a tumor [2]. Cancer cell subpopulations 
with distinct biological properties are considered to be the 
main obstacle against effective cancer therapy [3]. Clonal 
evolution has been proposed to explain the development 
of intratumoral heterogeneity [1]. Recently, it has been 
reported that epigenetic modifications contribute to the 
genesis of tumor cell heterogeneity [4–6].

MicroRNAs (miRNAs) are a class of non-coding 
small RNAs that post-transcriptionally regulate gene 
expression. They pair with the 3’-untranslated regions 
or the open reading frames of their target mRNAs. The 
interaction between miRNA and target gene leads to 
either degradation of the target genes or inhibition of the 
protein translation [7]. Dysregulation of miRNAs has 
been implicated in cancer progression by acting as either 
oncogenes or tumor suppressor genes [8].

Human malignant mesothelioma (HMM) is an 
aggressive cancer arising from the surface of body cavities 
[9]. Many factors including environmental contaminants and 
viruses have been implicated in the development of HMM 
[10]. Although significant progress has been made in terms 
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of etiology and pathogenesis, the prognosis of HMM patients 
remains dismal with the survival time of less than 12 months 
from the diagnosis [9, 10]. HMMs are markedly heterogeneous 
in morphology as well as in biology, which makes HMM a 
paradigmatic model for the intratumoral heterogeneity [11]. 
Formation of three different histopathologic subtypes from 
single cell in vitro indicated the potency of HMM cells in 
generating tumor heterogeneity [11–13]. Using side population 
(SP) assay, subpopulation cells harboring stem cell properties 
were identified in HMM cell lines [13].

In an attempt to elucidate the involvement of 
epigenetics in the generation and maintenance of intratumoral 
heterogeneity, the miRNA expression profiles of HMM cell 
subpopulations were investigated using microarray analysis. 
A distinct subset of the miRNAs was identified from cancer 
cell subpopulations, and potential signaling pathways 
regulated by these miRNAs were determined. The present 
study provides background information to advance our 
understanding about the regulatory function of miRNAs in 
the generation of intratumoral heterogeneity.

RESULTS

Isolation of RNA from the sorted SP and NSP 
cells of MS1

SP assay composed of Hoechst 33342 dye staining and 
subsequent flow cytometry illustrated a distinct SP cells in the 
MS1 cell line as a tail in flow cytometry plot (Figure 1A). The 
SP fraction was significantly decreased by the treatment of 50 
μM verapamil hydrochloride (Figure 1B). The isolated RNAs 
were determined to be of good quality with no degradation 
by A260/280 ratio greater than 1.8 determined using Agilent’s 

2100 Bioanalyzer and the RNA Integrity Number (RIN) 
value higher than 8 measured using Nanodrop.

Identification of differentially expressed miRNAs 
(DEMs) by microarray analysis

Based on the criteria of over 2-fold difference and 
p-value less than 0.05, a total of 95 DEMs were identified 
to be differentially expressed in SP cells compared to NSP 
cells. Among the 95 DEMs, 42 DEMs were significantly up-
regulated and 53 DEMs were significantly down-regulated 
in the SP cells compared to the NSP cells (Supplementary 
Table 1). Top 10 up-regulated and down-regulated miRNAs 
were presented, respectively (Table 1) The microarray data 
are available at the National Center for Biotechnology 
Information Gene Expression Omnibus (http://www.ncbi.
nlm.nih.gov/geo/) under the accession number of GSE69910.

GO and pathway analyses of the predicted target 
genes of DEMs

The identification of target genes for miRNAs was 
performed by several computational algorithms. The 
TargetScan database was used to predict target genes of 
DEMs. A total of 1,743 target genes generated by the target 
prediction software were subjected to the GO analysis 
in order to determine key-regulatory components and 
functional relationships of the predicted target genes [14]. 
The predicted target genes were categorized into biological 
processes, molecular functions, and cellular components. 
GO analysis revealed that 287 GO terms were involved 
in the domain of biological processes including 57 GO 
terms in the domain of molecular functions and 52 GO 

Figure 1: Identification of side population (SP) cells in the MS1 cell line. (A) Side population assay revealed that the MS1 cell 
line contained a distinct region of SP cells indicated by a trapezoid on each panel. (B) Treatment with verapamil hydrochloride significantly 
reduced the fraction of SP cells.
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terms in the domain of cellular components. To minimize 
redundancy in the lists of enriched GO categories, the GO 
terms were merged and replaced with their representative 
subset of terms based on semantic similarity measures 
using REVIGO. The initial list of GO terms of biological 
processes was reduced to 123, eliminating 164 largely 
redundant terms. The GO terms of 57 molecular functions 
and 52 cellular components were reduced to 48 and 39 
non-redundant terms, respectively. The non-redundant 
GO terms with higher than 1% frequency were visualized 
based on their semantic similarities in a semantic space 
(Figure 2). The cluster representatives of biological 
processes included regulation of cell proliferation, 
negative regulation of gene expression, regulation of 
cell migration, regulation of cellular response to stress, 
regulation of apoptotic process, and regulation of cell 
communication. The detailed information about the non-
redundant GO terms including frequency, EASE score, 
and uniqueness, was presented (Supplementary Table 2).

The predicted targets of DEMs were subjected to the 
KEGG pathway annotation to elucidate signaling networks 
involved in the maintenance of subpopulations of the HMM 
cells. The functional analysis using KEGG revealed 37 signal 
transduction pathways significantly involved in the SP cells 
compared to NSP cells (Supplementary Table 3). One of the 
most over-represented pathways was ErbB signaling pathway 
(Figure 3), and some of the other key pathways involved in 
the tumorigenesis of HMM included MAPK, Wnt, insulin, 
mTOR, and VEGF signaling pathways.

Identification of differentially expressed genes 
(DEGs) by RNA-seq

The NGS data of the transcriptome in SP and NSP 
cells in the MS1 cell line was previously published [15]. By 
comparing the RNA-seq data of SP and NSP, as a result, the 
differential expression of 1,130 genes from a total of 17,122 
mRNAs was identified. Among these genes, 795 DEGs 
were significantly up-regulated and 335 DEGs were down-
regulated in the SP cells compared to the NSP cells. The NGS 
data of the transcriptome in the present study are available in 
the National Center for Biotechnology Information Sequence 
Read Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/) 
under the accession number SRR2062223 and SRR2064655.

Predicted target genes of DEMs matched to 
mRNAs from RNA-seq analysis

To validate the microarray analysis of miRNAs, RNA-
seq data were integrated to the predicted target genes of the 
DEMs. The RNA-seq data were used for the validation of 
miRNA’s target genes in SP cells in the present study. Of 
1,743 predicted target genes of DEMs generated from the 
TargetScan database, a total of 88 gene pairs of DEM target 
genes and DEGs were identified. Based on the criterion of 
2-fold difference, 8 up-regulated mRNAs were targeted by 
3 down-regulated DEMs, and 4 down-regulated mRNAs 
were targeted by 3 up-regulated DEMs (Table 2). Of note, 
down-regulated miR-22 and up-regulated miR-138 were 
found to have significant association of simultaneous inverse 
expression in their target genes, DDIT4 (DNA-damage-
inducible transcript 4) and ROCK2 (Rho-associated, coiled-
coil containing protein kinase 2), respectively (p-value < 
0.05). In GO and KEGG analyses, the ROCK2 gene was 
found to implicate cell migration through regulation of actin 
cytoskeleton organization and Wnt signaling pathway. In 
the same vein, the DDIT4 gene was shown to involve cell 
survival and death through the regulation of programmed 
cell death and mTOR signaling pathway (Table 3).

DISCUSSION

In the HMM, accruing evidence has emphasized the 
importance of aberrantly expressed miRNAs in the etiology 
and pathogenesis of HMM [16–18]. In the present study, 

Table 1: Top 10 up- and down-regulated miRNAs 
defining SP cells identified by miRNA microarray

microRNA Fold change (log2 
ratio)

p-value

hsa-mir-3198-1 4.129 2.19E-10

hsa-mir-3198-2 4.129 2.19E-10

hsa-mir-4497 2.666 8.72E-16

hsa-mir-138-1 2.420 2.90E-15

hsa-mir-4304 2.413 1.71E-08

hsa-mir-1281 1.882 3.12E-08

hsa-mir-489 1.859 4.83E-07

hsa-mir-4745 1.850 1.63E-14

hsa-mir-301a 1.782 1.54E-09

hsa-mir-3935 1.642 9.57E-09

hsa-mir-148b -2.231 1.42E-06

hsa-mir-484 -2.288 0.000582039

hsa-mir-584 -2.290 0.007460966

hsa-mir-425 -2.290 0.0332853

hsa-mir-197 -2.432 4.96E-07

hsa-mir-629 -2.646 0.01597814

hsa-mir-183 -2.835 0.01547796

hsa-mir-4485 -2.884 1.43E-07

hsa-mir-4443 -3.221 2.84E-06

hsa-mir-1246 -4.673 0.000618761

A total of 20 miRNAs that were most significantly altered 
defining SP cells in MS1 cell line were presented.
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Figure 2: Gene Ontology scatterplot constructed by REVIGO. GO terms enriched in predicted target genes of DEMs in 
SP cells were visualized using REVIGO, which allows to remove functionally redundant GO terms. Individual circle indicates cluster 
representatives. The color of circle indicates the EASE score. More functionally similar GO terms were closer in the scatterplot, but the 
semantic space units have no intrinsic meaning. GO terms particularly relevant to more aggressiveness of SP cells were labeled. The full 
list of GO terms is presented in Supplementary Table 2.

Figure 3: Target prediction of miRNAs and KEGG pathway analysis. The ErbB signaling pathway was the highest over-
represented pathway among key pathways. Colors represent miRNA target genes and their expression status in KEGG pathway map. Red 
square: up-regulated target genes. Green square: down-regulated target genes.
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microarray analysis for global expression profile of miRNAs 
revealed DEMs defining SP cells in a HMM cell line. A 
total of 95 DEMs including 42 up-regulated DEMs and 53 
down-regulated DEMs were identified in SP compared to 
the NSP of a HMM cell line. In many human malignancies 
including HMM, SP is enriched for the cells with stem-like 
properties [14]. To the best of our knowledge, this is the first 
study to report the global expression profile of miRNAs in 
the subpopulations of HMM cells.

The notion that miRNAs are responsible for the 
aggressive behavior of HMM could be supported by the 
DEMs and their enriched GO terms found in the present study. 
Among the down-regulated DEMs, miR-148b is a signature 
of SP cells from hepatocellular carcinoma and has been 
implicated in enhanced metastatic and angiogenic potential 
of the hepatic cancer stem cells (CSCs) [19]. Similarly, miR-93 
inhibits programmed cell death, facilitates cell proliferation, 
and promotes the colony formation of colonic CSCs [20]. 
Consistent with the present study, the oncogenic activation of 
miR-34a in CSCs with respect to cell proliferation, metastasis, 
drug resistance, and in vivo tumorigenicity have been reported 
[21–23]. Menges et al., [24] reported that aberrant expression of 
miR-34a was essential for the maintenance of CSC population 
and metastatic potential of malignant mesothelial cells. They 
showed that CSC populations lacking miR-34a expression 
were highly heterogenic and invasive in the genetically 
modified mice harboring NF2 and CDKN2A gene suppression 

[25]. One of the upregulated DEMs in our study, miR-138, has 
been reported to enhance cell survival, in vitro tumor sphere 
formation and in vivo tumorigenicity glioma [26].

The SP cells of HMM cell lines are more resistant 
to the chemotherapeutic drugs than the NSP cells 
[27]. However, the underlying mechanism of the drug 
resistance is not comprehensively understood. A few 
miRNAs identified in this study may be attributable to 
the enhanced drug resistance of SP cells. Up-regulation of 
miR-125b-2 increases the drug resistance of glioblastoma 
CSCs through silencing the Bcl-2 family and inhibition 
of mitochondria-dependent apoptosis [28]. Likewise, 
hypomethylation and concordant overexpression of miR-
663 reduces the drug sensitivity of human breast cancer 
cells by repressing the expression of heparan sulfate 
proteoglycan 2 (HSPG2) [29]. The present study also 
showed that the expression of HSPG2 was suppressed by 
up-regulation of miR-663 in HMM cells.

Cancer cells cope with stress by stimulating the 
expression levels of miRNAs and their target genes [30–
32]. The GO analysis in the present study showed that 
approximately 40% of miRNAs defining SP cells were 
categorized into biological processes of cellular response to 
stress. Among the DEMs, miR-7-1 and let-7d may be critical 
with regard to the stress regulation of SP cells in HMM. Both 
miRNAs are commonly dysregulated in HMM, promoting 
malignancy through the activation of EGF, PDGFA, and 

Table 2: Potential target genes of miRNAs defining SP cells identified by RNA-seq

microRNAs Log2 FC 
(microarray)

miRNA-target pairs Log2 FC (RNA-
seq)a

p-valueb

hsa-mir-7-1 -1.831 hsa-mir-7-1:FNDC4 1.693 0.151

hsa-mir-7-1:PPIF 1.586 0.166

hsa-mir-7-1:PTAR1 1.586 0.166

hsa-mir-7-1:POLE4 1.395 0.166

hsa-mir-22 -1.904 hsa-mir-22:DDIT4 2.296 0.047

hsa-mir-22:FRAT2 1.965 0.116

hsa-mir-22:IRF5 1.639 0.192

hsa-mir-183 -1.151 hsa-mir-183:IDH2 1.258 0.269

hsa-mir-183* -2.835 hsa-mir-183*:IDH2 1.258 0.269

hsa-mir-138-1 2.420 hsa-mir-138-1:EID1 -1.076 0.328

hsa-mir-138-1:ROCK2 -5.283 0.001

hsa-mir-663 1.023 hsa-mir-663:HSPG2 -1.728 0.182

hsa-mir-195 1.287 hsa-mir-195:SLC2A3 -1.994 0.146

Target gene prediction using RNA-seq identified a total of 12 potential target genes, showing epigenetically concomitant 
changes in the miRNAs and gene expression in SP cells. The expression statuses of the NSP samples were utilized as 
references for those in the SP samples.
a, b Fold change and p-value were determined by RNA-seq analysis
Abbreviation: FC, fold change
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RAS oncogenes [17, 18, 33]. Flies with mutated miR-7 
fail to develop their eyes when grown upon temperature 
fluctuations [34]. The let-7 family that is commonly down-
regulated in many tumor types triggers stress phenotypes of 
tumor cell [35]. Although further studies are warranted for 
the detailed mechanisms, SP cells may be quite versatile in 
adapting to hostile microenvironments.

The ErbB signaling was the one of the most over-
represented pathways identified by the KEGG pathway 
mapping of DEMs and their target genes in this study. The 
data indicate that the ErbB signaling pathway mediated via 
dysregulated miRNAs may be the key oncogenic activation 
of HMM. ErbB tyrosine kinase receptors have been 
associated with cell proliferation, survival, and differentiation 
in human solid tumors [36]. The activation of EGFR (ErbB1) 
and ErbB2 increases the long term survival of asbestos-
exposed mesothelial cells in vivo and dissemination of HMM 
[37]. Among the multiple signaling pathways recognized in 
the present study, the ErbB signaling may be significantly 

involved in self-renewal and/or survival of more aggressive 
cancer cell subpopulation in HMM.

Integrated analysis of miRTarBase and RNA-seq 
revealed a number of potential target genes. Among 
them, ROCK2 and DDIT4 were found to be statistically 
significant targets of miR-138 and miR-22, respectively. 
The ROCK2 is involved in cell migration and phosphorus 
metabolism in SP cells, and reduced expression of ROCK2 
inhibits migratory and invasive properties of cancer cells 
[38]. The DDIT4 is transcribed when exposed to cellular 
stress such as hypoxia and DNA damage, and it enhances 
cell growth and survival by inhibiting the cascades of 
the mammalian target of rapamycin complex 1 [39]. 
Although further studies for functional validation of target 
genes of DEMs are necessary, the present study indicates 
that altered expression of miR-138 and miR-22 may be 
associated with the maintenance of tumor heterogeneity 
HMM by regulating their target gene expression.

The failure of the first-line therapy and limited 
availability of second-line treatment options call for an urgent 

Table 3: Putative biological functions and pathways of ROCK2 and DDIT4 targeted by miR-122 and miR-138-1 via 
GO and KEGG analyses

miRNAs Targets GO and KEGG terms EASE score

hsa-mir-138-1 ROCK2 GO:0006793~phosphorus metabolic process 0.000743227

GO:0006468~protein amino acid phosphorylation 0.001408809

GO:0016310~phosphorylation 0.003583528

GO:0051130~positive regulation of cellular 
component organization

0.002402911

GO:0033043~regulation of organelle organization 0.039881837

GO:0007010~cytoskeleton organization 0.013056657

GO:0030036~actin cytoskeleton organization 0.013837722

GO:0030029~actin filament-based process 0.016937947

GO:0007242~intracellular signaling cascade 0.004744225

KEGG:has04810~Regulation of actin cytoskeleton 0.000105943

KEGG:has04310~Wnt signaling pathway 0.000224177

hsa-mir-22 DDIT4 GO:0012501~programmed cell death 0.009907439

GO:0008219~cell death 0.003096555

GO:0006915~apoptosis 0.007165309

GO:0009968~negative regulation of signal 
transduction

2.94131E-05

GO:0010648~negative regulation of cell 
communication

7.08217E-05

KEGG:hsa04150~mTOR signaling pathway 0.017825651

Potential functions of miR-122 and miR-138-1 defining SP cells were presented. These miRNAs were shown to be involved 
in cell migration, survival, and death, via designated target gene regulation. RNA-seq identified statistical significance of 
ROCK2 and DDIT4 expressions in SP cells. miRTasebase revealed that the genes were experimentally verified targets of 
miR-122 and miR-138-1, respectively.



Oncotarget42853www.impactjournals.com/oncotarget

need of novel strategies to improve the prognosis of HMM 
patients [10]. Studying heterogeneous cancer cell population 
within HMM cell lines and tissue may elucidate the 
molecular mechanisms underlying the generation of tumor 
cells refractory to current therapies [12]. The DEMs identified 
in the present study could provide valuable information about 
the regulatory function of miRNAs in the development of 
intratumoral heterogeneity of HMM, opening an avenue to 
devise a novel strategy to cope with the malignant disease. 
The present study, however, is limited by the lack of a 
validated experiment. Thus, future research is warranted to 
scrutinize the mechanism by which miRNAs contribute to the 
tumor aggressiveness and heterogeneity in HMM.

MATERIALS AND METHODS

HMM cell line and culture

A HMM cell line, MS1, was kindly provided by 
Dr. Jablons (University of California San Francisco). The 
MS1 cells were determined to be free of mycoplasma 
contamination by using e-Myco Mycoplasma PCR 
detection kit (e-Myco, iNtRON Biotechnology, Sungnam, 
Korea). The cells were cultured in conventional RPMI 
1640 medium (Mediatech Inc., Manassas, VA, USA) 
with 10% fetal bovine serum (FBS; Mediatech Inc.) 
and supplements at 37°C in a humidified atmosphere 
containing 5% CO2, as previously described [13].

SP assay and cell sorting

A detailed protocol of SP assay composed of Hoechst 
33342 dye staining and subsequent flow cytometry 
analysis was previously described [13]. Briefly, 106 cells/
mL in pre-warmed RPMI containing 2% FBS and 10mM 
HEPES were incubated with Hoechst 33342 dye (5μg/mL; 
Sigma–Aldrich, St. Louis, MO, USA) for 90 min at 37°C 
with intermittent mixing. After centrifugation at 480 × g 
for 5 minute and subsequent PBS washing containing 2 
% FBS at 4°C, the incubated cells were subjected to SP 
analysis. The flow cytometer sorter (Becton-Dickinson 
FACS Aria III, Becton-Dickinson, San Jose, CA, USA) 
equipped with Hoechst Blue with a 450/50 broad pass 
(BP) filter and Hoechst Red with a 675/30 BP filter 
was used to detect Hoechst 33342 staining. Verapamil 
hydrochloride (50 μM, Sigma–Aldrich, St. Louis, MO, 
USA) which blocks Hoechst 33342 dye efflux was used to 
identify SP fractions. Three biological replicates of SP and 
NSP cells were pooled and subjected to further analyses.

RNA isolation

Total RNAs, including miRNAs, were isolated 
from the sorted SP and NSP cells using miRNeasy 
extraction kit (Qiagen, Valencia, CA, USA) according 
to the manufacturer’s instructions. The total RNAs 
extracted from the sorted cells were pooled and 

subjected to the miRNA array analysis. RNA quality 
was assessed by Agilent 2100 bioanalyzer (Agilent 
Technologies, Palo Alto, CA, USA) using the RNA 
6000 Nano Chip, and quantity was determined using 
Nanodrop-1000 Spectrophotometer (Thermo scientific, 
Wilmington, DE, USA).

Expression profiling of human microRNAs by 
microarray chip assay

Total RNAs with high quality isolated from SP and 
NSP cells were subjected to microarray assay performed 
at DNA Link Inc., (Songpa-gu, Seoul, The Republic of 
Korea). Per RNA sample, 1.6 μg was used as an input 
into the Affymetrix procedure as recommended by 
manufacturer’s protocol (Affymetrix® FlashTag™ Biotin 
HSR RNA Labeling Kits, cat. no. HSR30FTA; Genisphere, 
LLC, Hatfield, PA, USA). Briefly, 1.6 μg of total RNA 
was tailed by poly (A) and end-labeled by FlashTag™ 
sequence that has biotin using peroxidase-antiperoxidase 
enzyme and T4 DNA Ligase, respectively. End-labeled 
miRNA was hybridized to the GeneChip® miRNA 3.0 
arrays (Affymetrix Inc., Santa Clara, CA, USA) for 16 
hours at 48°C and 60 rpm. After the hybridization, the 
chips were stained and washed in a GeneChip Fluidics 
Station 450 (Affymetrix Inc.) and scanned using a 
GeneChip Array scanner 3000 7G (Affymetrix Inc.). The 
expression intensity data were extracted from the scanned 
images using Affymetrix Command Console software 
version 1.1 and stored as CEL files.

Data analysis and miRNA target prediction

The intensity values of CEL files were normalized to 
remove bias between the arrays, using the Robust Multi-
array Average (RMA) and Detected Above Background 
(DABG) algorithm implemented in the Affymetrix 
Expression Console software (version 1.3.1.) (http://www.
affymetrix.com) [40]. The whole normalized data were 
imported into the programming environment R (version 
3.0.2) and overall signal distributions of each array were 
compared by plotting using tools available from the 
Bioconductor Project (http://www.bioconductor.org) 
to check good normalization [41]. After confirming the 
normalization of the data, DEMs that showed over 2-fold 
difference between the average signal values of NSP cells 
and SP cells were selected. Additionally, the normalized 
data of the selected miRNAs were also imported into 
the programming environment R for the statistical t-test 
and genes with p-value less than 0.05 were extracted as 
candidate DEMs for further investigation [41]. For the 
candidate DEMs, targets that have more than 95 context 
score were subjected to computational prediction algorithm 
TargetScan 6.2 database (http://www.targetscan.org).
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Gene Ontology and KEGG pathways

Predicted targets of the candidate DEMs identified 
by the TargetScan 6.2 database were functionally 
annotated and classified based on the gene functions listed 
in gene ontology (GO) databases including a web-based 
tool DAVID (the Database for Annotation, Visualization, 
and Integrated Discovery) (http://david.abcc.ncifcrf.gov) 
[42]. Fisher’s exact test was used to determine statistical 
significance between the DEMs and those on the GO 
annotation list. The GO terms scoring EASE value of < 
0.05 were considered statistically significant [43]. The 
redundancy in the resulting set of GO terms were removed 
by using REVIGO web server (http://revigo.irb.hr) [44]. 
SimRel as semantic similarity measure was used, and the 
allowed similarity was medium (0.7) between the enriched 
GO terms [44].

Subsequently the predicted targets of the candidate 
DEMs were subjected to Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis, a pathway mapping 
tool for molecular networks to identify the biological 
pathways. The KEGG pathways scoring EASE value of < 
0.05 were considered statistically significant.

RNA-seq and identification of DEGs

The construction of RNA library and detailed 
analysis of the RNA-seq data was previously performed 
as described [15]. Briefly, total RNAs with high quality 
from the sorted SP and NSP cells were subjected to 
Next Generation Sequencing (NGS) assay performed 
at the DNA Link Incorporation (Songpa-gu, Seoul, The 
Republic of Korea). Sequencing libraries of mRNAs 
were prepared using an Illumina TruSeq RNA Prep kit 
v2 (Illumina Inc, San Diego, CA, USA.) according to the 
manufacturer’s instructions. The quality of the amplified 
libraries was verified using an Agilent Technologies 2100 
Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). 
Cluster generation was carried out in the flow cells on 
the cBot automated cluster generation system (Illumina 
Inc.), and then the flow cells were loaded on a HiSeq 2000 
sequencing system (Illumina Inc.) with 200 bps paired-
end reads. The high quality of clean reads was mapped 
to the hg19 with TopHat (ver. 2.0.9). The Bam file was 
used as the output to store a list of read alignments and 
was added to the Cufflinks software package (ver. 2.0.2) 
to predict transcript structures and compare transcriptome 
profiles based on the RNA-Seq data [45]. To compare the 
expression level of a gene across samples, read counts 
obtained from RNA-seq were normalized as fragments 
per kilobase of transcript per million mapped fragments 
(FPKM) [46]. The FPKM was used to identify DEGs in 
SP and NSP subpopulations, and then the FPKM in each 
sample was compared and transformed to the Log2 ratio 
(log2(number of SP reads) – log2(number of NSP reads)). 
The gene expression of the NSP subpopulation was used 
as control data for the determination of up- or down-

regulated genes in SP cells. Genes with a p-value of < 0.05 
and a log2-transformed value smaller than -1 or greater 
than 1 were considered to be statistically significant DEGs.

Integrated analysis of DEM targets and DEGs

To validate potential targets of the candidate 
DEMs identified in the study, a combined prediction of 
miRTarBase (http://mirtarbase.mbc.nctu.edu.tw/) and 
RNA-seq was carried out. The miRTarBase is a reliable 
online software program to search experimentally 
validated miRNA-target interactions (MTIs) [47]. The 
RNA-seq that is based on deep-sequencing technology 
provides a transcription profile in cells, tissues, and 
organisms [48]. The miRNAs-target mRNA pairs predicted 
from the TargetScan 6.2 database were analyzed with the 
miRTarBase data in an integrated way to identify the 
common miRNA-target pairs. Subsequently, the inverse 
expression of the potential MTIs was investigated using 
RNA-seq data. Targets showing over 2-fold difference 
and p-value less than 0.05 between SP and NSP cells were 
selected.
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