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ABSTRACT  

Single-cell RNA sequencing (scRNA-seq) is invaluable for profiling cellular heterogeneity 

and dissecting transcriptional states, but transcriptomic profiles do not always delineate subsets 

defined by surface proteins, as in cells of the immune system. Cellular Indexing of Transcriptomes 

and Epitopes (CITE-seq) enables simultaneous profiling of single-cell transcriptomes and surface 

proteomes; however, accurate cell type annotation requires a classifier that integrates this 

multimodal data. Here, we describe MultiModal Classifier Hierarchy (MMoCHi), a marker-based 

approach for classification, reconciling gene and protein expression without reliance on reference 

atlases. We benchmark MMoCHi using sorted T lymphocyte subsets and annotate a cross-tissue 

human immune cell dataset. MMoCHi outperforms leading transcriptome-based classifiers and 

multimodal unsupervised clustering in its ability to identify immune cell subsets that are not 

readily resolved and to reveal novel subset markers. MMoCHi is designed for adaptability and can 

integrate CITE-seq annotation of cell types and developmental states across diverse lineages, 

tissues, or individuals.   
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INTRODUCTION 

Recent advances in high-dimensional profiling of single cells, most notably by single-cell 

RNA sequencing (scRNA-seq), have transformed our ability to define the function and 

heterogeneity of cell populations in diverse biological systems1–4. Because many of the features 

that define cell types are not captured by scRNA-seq, multimodal single-cell technologies have 

been developed, including Cellular Indexing of Transcriptome and Epitopes by sequencing (CITE-

seq)5 and RNA expression and protein sequencing assay (REAP-seq)6 for simultaneous profiling 

of surface proteomes and transcriptomes. Integrating these high-dimensional modalities to identify 

cell subsets, developmental states, and other cellular properties with high fidelity across disparate 

datasets remains a challenge. 

Many analytical tools have been developed for the cellular annotation of scRNA-seq data. 

Unsupervised clustering is commonly used to segregate events into populations sharing similar 

expression profiles. This approach has proven invaluable for characterizing cellular 

heterogeneity7, and has been adapted for CITE-seq datasets8,9. However, the number, type, and 

identity of clusters can be difficult to compare across studies7,10. Supervised classification using 

cell atlases enables cross-study comparisons11,12, but requires reference datasets which are not 

available for all tissues and contexts13–15. Methods for reference-free annotation of cell types have 

also been developed, relying instead on knowledge-based marker definitions16,17. These tools allow 

researchers to easily adapt supervised methods to relevant cell types, but do not yet support 

multimodal datasets.  

The development of reference-free, multimodal classifiers to analyze single-cell data is of 

particular importance for studying the immune system. Immune cells comprise multiple disparate 

lineages—each of which can be subdivided into functionally distinct, but closely related subsets 
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that represent various developmental and activation states18. Cells of the immune system localize 

to nearly all tissues of the body, including specialized lymphoid organs, mucosal tissues, and 

barrier sites19,20, and exhibit site-specific adaptations21. While broad lineages, such as myeloid 

cells of the innate immune system and adaptive lymphocytes, are readily distinguished from one 

another at the mRNA level, subsets within these lineages are not. In particular, T lymphocytes can 

exist as naive or memory subsets stratified by migration pattern, function, tissue residence, and 

activation22–24, but these subsets are inconsistently resolved by scRNA-seq25–28. Innate-like 

lymphocytes such as γδ T cells and Natural Killer (NK) cells also share functional profiles which 

are not readily discernible on the single-cell level15,29–31. Multimodal approaches, incorporating 

both surface markers and transcriptional expression profiles are therefore needed to accurately 

annotate immune cell subsets and their heterogeneous features.  

Here, we developed a supervised approach for cell type annotation of CITE-seq data, 

designated Multi-Modal Classifier Hierarchy (MMoCHi) that incorporates surface protein and 

transcript features for reference-free classification. To benchmark this tool against other annotation 

methods, we sorted and profiled T cell subsets using CITE-seq and demonstrate improved 

performance by MMoCHi over alternative methods, particularly in the annotation of subsets with 

highly similar expression profiles. We apply MMoCHi to produce integrated annotations for a 

cross-tissue CITE-seq atlas of diverse immune cell populations isolated from complex tissue 

samples. Extracting features important for MMoCHi classification revealed highly interpretable 

learned representations of cell types, which we used to uncover novel markers for distinguishing 

transcriptionally similar T cell subsets. Together, MMoCHi readily enables multimodal cell type 

annotation based on marker genes and proteins and is designed for applicability to CITE-seq of 

any cell lineage or sample type.  
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RESULTS 

Algorithm Overview 

The MMoCHi algorithm uses a hierarchy of random forest classifiers trained on gene 

expression (GEX) and antibody-derived tags (ADTs) for cell type classification of CITE-seq data 

(Fig. 1). Prior to classification, ADT expression is batch-corrected using landmark registration, as 

previously applied to flow cytometry32 and CITE-seq33 (see Methods). We identified populations 

exhibiting negative (background) and positive ADT expression and applied warping functions to 

align their midpoints (landmarks) across batches, to effectively integrate CITE-seq expression 

(Fig. 1a). MMoCHi then classifies cell types based on a user-supplied hierarchy of subsets paired 

with marker-based definitions (Fig. 1b). At each classification node, high-confidence members of 

each subset are identified using manual thresholds on user-provided gene and protein markers. A 

random forest is then trained on a representative set of these high-confidence events and used to 

annotate all events—including those not labeled by high-confidence thresholding (Fig. 1b; 

Extended Data Fig. 1). Once trained, classifiers can be interrogated for features important for cell 

classification or applied to extend cell type annotation to other datasets. 

Superior annotation of closely related immune cell subsets by MMoCHi 

MMoCHi is designed to improve the annotation of subsets with highly similar 

transcriptomic profiles. We chose to test its performance using T cell subsets, which are well-

defined by surface marker expression and functional readouts22,23, but challenging to annotate by 

scRNA-seq alone. For example, CD4+ and CD8+ T cells are often imperfectly resolved, partially 

due to low CD4 transcript expression27,28,34. Moreover, conventional human T cells are delineated 

into subsets based on differentiation state and migration capacity into naive T cells (CCR7+ 
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CD45RA+ CD45RO-) and memory T cells, which comprise central memory (TCM; CCR7+ 

CD45RA- CD45RO+), effector memory (TEM; CCR7- CD45RA- CD45RO+), and terminally 

differentiated (TEMRA; CCR7- CD45RA+ CD45RO-) subsets22,23. Distinguishing naive T cells from 

TCM and TEM from TEMRA by transcriptome alone is not readily accomplished1,26–28. We sorted and 

performed CITE-seq on seven T cell subsets (CD4+ naive, CD4+ TCM, CD4+ TEM, CD8+ naive, 

CD8+ TCM, CD8+ TEM, and CD8+ TEMRA) and monocytes (Fig. 2a; Extended Data Fig. 2a; 

Supplementary Tables 1, 2). CCR7 staining by CITE-seq is suboptimal5, so we used CD62L which 

has high concordance in human blood22,23. To eliminate batch effects, we performed staining with 

CITE-seq antibodies before sorting and labeled sorted populations with hashtag antibodies prior 

to pooling all samples for library preparation and sequencing. Hashtagged populations then served 

as known references to evaluate classification. 

All sorts were of high purity (>91%; Supplementary Table 3), and subsets reflected 

expected ADT marker expression (Extended Data Fig. 2b). We devised and applied a MMoCHi 

hierarchy using the same markers used for sorting (Fig. 2b, c; Supplementary Table 4). For 

comparison to unsupervised approaches, we used totalVI9 to calculate a multimodal latent space, 

then performed clustering and manual annotation (Fig. 2c). The high concordance between sorted 

cell type and MMoCHi classification compared to manual annotation is visually evident from 

UMAPs in Fig. 2c. Indeed, MMoCHi classification had greater than 90% agreement with sorted 

labels (Fig. 2c,d), and classified populations showed expected ADT expression (Extended Data 

Fig. 2b). MMoCHi classification was accurate when downsampling GEX and/or ADT reads, 

revealing robustness to lower data quality (Extended Data Fig. 3). Here, MMoCHi was insensitive 

to GEX coverage likely because both the reference dataset and hierarchy for classification were 

defined by protein expression. 
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To compare performance between various methods, we calculated precision, recall and F1 

score for each subset, as well as overall accuracy (Fig. 2e, Supplementary Table 5). MMoCHi 

accurately classified all subsets, with an average F1 score of 0.93 (Fig. 2e: MMoCHi). We tested 

variations to validate MMoCHi’s design. Performance worsened when training random forests 

using only GEX and/or when classifying all subsets with only one random forest (instead of a 

hierarchy) (Fig. 2e: MMoCHi GEX, MMoCHi Flat, and MMoCHi GEX Flat). We also trained a 

MMoCHi classifier directly using sorted labels, instead of high-confidence thresholding. 

Performance on a 20% hold-out revealed a modest improvement for some, but not all, cell types 

(Fig. 2e: MMoCHi Sort-ref). This effect was lost when training with only GEX (Fig. 2e: MMoCHi 

GEX Sort-ref). Together, these results support multimodal hierarchical classification and high-

confidence thresholding for training. 

We next compared MMoCHi classification to manually annotated unsupervised clusters 

derived from GEX, ADT expression, or the totalVI latent space (see Methods; Fig. 2e: GEX 

Leiden, ADT Leiden, totalVI Leiden; Extended Data Fig. 2c-g). MMoCHi outperformed all 

manual annotation methods, particularly GEX Leiden, with CD4+ TCM failing to cluster separately 

(Extended Data Fig. 2f). To ensure manual annotation was not hampered by lack of clustering 

resolution, we also over-clustered the data by re-clustering each Leiden cluster (see Methods), but 

this resulted in only a slight improvement (Fig. 2e: GEX Leiden OC, ADT Leiden OC, totalVI 

Leiden OC).  

 Lastly, we tested three scRNA-seq supervised classification methods: CellTypist25, 

HieRFIT34, and Garnett16. As there were no pretrained models at an appropriate annotation 

granularity, we trained new models with sorted labels and evaluated performance on a 20% hold-

out. CellTypist, which annotates events individually or by majority voting across clusters, and 
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HieRFIT, which classifies hierarchically, outperformed GEX Leiden, but not MMoCHi. (Fig. 2e: 

CellTypist Sort-ref, CellTypist MV Sort-ref, HieRFIT Sort-ref, respectively). Garnett classifies 

hierarchically, and additionally avoids low-probability classifications. The events fully annotated 

by Garnett (46% of held-out events), were more accurate than other scRNA-seq classifiers, but 

less accurate than MMoCHi (Fig. 2e: Garnett Sort-ref). Because Garnett was developed for 

reference-free training using marker-based definitions16, we also trained a model using selected 

marker genes for each subset (Supplementary Table 6; see Methods). Unfortunately, marker genes 

were inadequate, and events fully annotated by Garnett (23% of events) had low accuracy (Fig. 

2e: Garnett Markers). Notably, all the supervised approaches described above effectively 

distinguished monocytes from T cells (Fig. 2e), consistent with previously documented high 

performance of these tools16,25,34. Our evaluation emphasizes the difficulty of segregating T cell 

subsets sharing highly similar transcriptomic profiles without profiling surface protein. By 

leveraging all available modalities, MMoCHi accurately annotated these highly similar cell types. 

MMoCHi integrates classification across diverse human tissue immune cells 

We next applied MMoCHi to total immune cells from lymphoid and mucosal tissue 

samples obtained from human organ donors25 (Fig. 3a; Supplementary Table 1). Immune cells 

were enriched from eight sites across two donors and included lung (LNG), bronchial alveolar 

lavage (BAL), lung-associated lymph node (LLN), spleen (SPL), jejunum epithelial layer (JEL), 

jejunum lamina propria (JLP), bone marrow (BOM), and blood (BLD), using methods optimized 

for each site25,27. We performed CITE-seq to profile over 270 surface markers expressed by 

immune and non-immune cells (Supplementary Table 2). In previous analysis of single-cell 

transcriptomes from this dataset, we detected all lineages of immune cells, including T cells, B 

cells, innate lymphocytes, and myeloid cells across multiple sites25. However, refined immune cell 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.06.547944doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.06.547944
http://creativecommons.org/licenses/by-nc/4.0/


subsets and differences across tissue sites were difficult to resolve in this complex dataset and 

required extensive manual annotation. Here, we integrated protein and transcriptome profiling 

using MMoCHi to determine whether transcriptionally similar immune subsets could be identified 

across diverse tissues. 

For visualization, we computed a UMAP of a donor-integrated totalVI latent space, 

revealing multiple groupings, some of which corresponded to different tissue sites (Fig. 3b; see 

Methods). We constructed and applied a MMoCHi hierarchy representing all expected cell types 

using a combination of transcript and surface protein markers (Fig. 3c; Supplementary Table 7). 

Training and classifying these approximately 198 thousand immune cell events into 26 subsets 

took less than 20 minutes (Extended Data Fig. 4, see Methods), demonstrating that MMoCHi is 

highly scalable. The resultant model, using 200 estimators in each random forest, was well-fit at 

every level of the hierarchy, as measured by the prediction accuracy for subsets in the same 

classification layer and across the full hierarchy (Fig. 3d; Extended Data Fig. 5; see Methods). 

MMoCHi classified cell types across tissue sites and consistently across donors (Fig. 3e, Extended 

Data Fig. 6).  

We compared MMoCHi classification to manually annotated clusters of the multimodal 

totalVI latent space (Fig. 4a,b; Extended Data Fig. 7a,b). The methods were broadly concordant, 

with 72% of events labeled identically; however, disagreements occurred between cell types with 

similar expression profiles. Notably, unsupervised clustering failed to resolve any CD8+ naive T 

cells, CD8+ TCM, γδ T cells, and naive B cells. We investigated discrepancies using marker 

expression (Fig. 4c-e, Extended Data Fig. 8). A substantial percentage (9%) of αβ T cells had 

conflicting CD4+ or CD8+ annotations, and by protein and transcript expression MMoCHi 

classifications were more appropriate (Fig. 4c). Cytotoxic lymphocytes are found across multiple 
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lineages (NK cells, ILCs, CD8+ TEMRA, and γδ T cells) and are difficult to resolve; however, 

MMoCHi correctly classified NK cells and ILCs by their lack of CD3 or TCRαβ surface 

expression, despite expression of CD3E and TRDC transcripts15,29 and their co-clustering with 

CD8+ TEMRA (Fig. 4d). MMoCHi also correctly distinguished CD8 TEMRA and γδ T cells, marked 

by expression of either CD3 and TCRαβ or CD3, TCRγδ, and variable expression of TRDV1 and 

TCRVδ2, respectively (Fig. 4d). MMoCHi also improved identification of T cell memory subsets 

by expression of CD62L, CCR7, CD45RA, and CD45RO (Fig. 4e). Together, MMoCHi 

classifications improved identification of known immune cell subsets, particularly in cases of 

discordant mRNA and protein expression. 

MMoCHi classifiers are highly interpretable and identify cell type markers 

Having demonstrated MMoCHi’s utility for cell type annotation, we next determined 

which features (transcript and surface protein expression) were useful for subset delineation. Many 

single-cell classifiers are trained on dimensionally reduced data12, hampering feature-level 

interpretability, but random forests within MMoCHi are trained using all available protein-coding 

genes and surface proteins. During training, features are selected for their contribution to 

decreasing impurity, thus providing a natural ranking of features by their importance for 

classification35,36 (see Methods). 

We analyzed features important for MMoCHi classifiers at various levels, including 

delineating total lineages, monocytes and macrophages, lymphocyte subsets, and B cell-like 

populations (Fig. 5, Supplementary Table 8). To display features associated with each subset, we 

selected the top important features with a log2(fold-enrichment) > 2 for that subset. All selected 

features were within the top 1% of important features at the given level and significantly 

differentially expressed (p < 0.05; Supplementary Table 9). Important features included markers 
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used for high-confidence thresholding, including: CPA3, MS4A2, TPSB2, PRSS57, CD33, 

Podoplanin, and CD352 for Lineage, SELL, S100A8, SEPP1, and FCGR3A for Mono/Mac, 

KLRF1, IL7R, JCHAIN, MZB1, CD3, CD5 and TCRαβ protein for Lymphocytes, and PLD4, 

MZB1, and JCHAIN for B cell-like (Fig. 5; Supplementary Table 8). We also identified other key 

subset markers that were not used in high-confidence thresholding, including: IL1R1 and GATA2 

for mast cells37, APOE, ACP5, and C1QC for macrophages38, CD79A, MARCKS, MEF2C, and 

CD32 for B cell-like39–42, and TYROBP, GZMB, and CD123 for pDCs43,44 (Fig. 5). Overall, we 

demonstrate that MMoCHi learns informative cell type representations—an important pre-

requisite for novel marker identification. 

MMoCHi uncovers additional gene expression markers distinguishing naive and central 

memory T cells 

Next, we wondered if multimodal high-confidence thresholding could be used to improve 

transcriptome-based segregation of naive T cells and TCM, which are defined by expression of 

specific CD45 isoforms but have very similar transcriptomes1,23,26,28. First, we used multimodal 

high-confidence thresholding to train both CD4+ and CD8+ Naive/TCM GEX classifiers 

(Supplementary Table 7). Despite excluding surface proteome from training, these classifiers were 

highly accurate, especially for CD8+ Naive/TCM, and resulting subsets had expected expression of 

CCR7, CD62L, CD45RA, and CD45RO (Fig. 6a,b). To identify additional GEX markers, we next 

interrogated impurity-based important features (Supplementary Table 10). To minimize 

contamination of these marker sets by tissue-specific populations, we trained classifiers with the 

entire dataset and only with immune cells from the blood. Marker genes were selected as the top 

important features with a log2(fold-enrichment) > 2, and a greater than 10% change in dropout rate 

(Fig. 6c,d). All selected genes were within the top 1% of important features and significantly 
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differentially expressed (p < 0.05; Supplementary Table 11). In both CD4+ and CD8+ TCM, we 

identified a suite of memory-associated genes, including ITGB1, CCR4, LMNA, and 

FAM129A22,26. We also identified PRDM1, CCL5, and KLRG1, transcripts primarily associated 

with TEM, as markers of CD8+ TCM
22,26,45. Improved prediction accuracy by classifiers trained with 

only the top 1000 important features confirmed that these features were useful for GEX 

classification (Fig. 6e-f). 

Lastly, we sought to validate these findings using our scRNA-seq of sorted CD4+ and CD8+ 

naive and TCM populations. Most of the markers identified for naive and TCM were also 

differentially expressed within the sorted dataset (Fig. 6g,h; Supplementary Table 12). GEX 

classifiers trained on CD4+ or CD8+ Naive and TCM effectively recapitulated the sorted labels, with 

F1 scores of 0.80 and 0.78 for the CD4+ and CD8+ classifiers, respectively (Fig. 6i,j). Overall, 

these findings demonstrate the capacity of MMoCHi to leverage CITE-seq to identify gene 

expression markers and train classifiers that can be effectively applied to scRNA-seq datasets.
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DISCUSSION 

The advent of multimodal single-cell technologies has enabled high-dimensional profiling 

of many systems, organs, diseases, and species. However, the development of analytical tools to 

identify cell states and their features consistently across multimodal studies is lagging behind these 

data acquisition technologies. Here, we present MMoCHi, a multimodal, hierarchical classification 

approach for cell type annotation of CITE-seq data, which integrates both gene and protein 

expression, does not require reference datasets, and is highly scalable to classify closely related 

subsets within a single lineage and diverse subsets from across lineages. Applied to immune cell 

CITE-seq datasets, MMoCHi outperforms current annotation algorithms, and identifies new 

markers for subset delineation. Together, MMoCHi provides an adaptable approach for applying 

marker-based annotation to multimodal datasets. 

Currently available single-cell classifiers are primarily designed for scRNA-seq; however, 

CITE-seq can be leveraged to improve annotation5,6. MMoCHi robustly classifies closely related 

immune cell subsets with discordant transcriptome and surface proteome profiles. Here we show 

MMoCHi effectively distinguishes T cell subsets defined by surface expression of CD45 isoforms 

and homing receptors but share overlapping transcriptomes1,23,26,28—namely naive T cells from 

TCM and TEM from TEMRA. By classifying hierarchically, MMoCHi was also able to correctly 

annotate diverse immune lineages without compromising its performance at segregating 

functionally and transcriptionally similar cell types, including cytotoxic NK cells, CD8+ TEMRA, 

and γδ T cells15,29–31. MMoCHi can accurately classify cell types despite other sources of variation, 

as shown by integrated classification of multiple immune cell lineages across blood and 8 disparate 

tissue sites of two organ donors. In this way, MMoCHi can be used to identify cell types for 
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subsequent analysis of other features that vary across tissue sites, age, disease, sex, and other 

factors.  

By providing a platform for using high-confidence, marker-based thresholding for training 

data selection, MMoCHi enables the flexible design of new classifiers based on prior knowledge 

without a requirement for carefully curated reference atlases. Similar to other marker-based 

strategies, these subset definitions are directly intelligible and can be robustly applied across 

studies and specific sequencing conditions to train new classifiers16,17. Here, we also apply 

MMoCHi’s multimodal training data selection to improve transcriptome-based annotation of T 

cell subsets across datasets, demonstrating potential for MMoCHi to advance annotation of 

scRNA-seq data as well. 

In contrast with efforts to automate cell type annotation11,25, MMoCHi’s thresholding 

schemas require careful marker curation and domain expertise, however; by leveraging this 

expertise, MMoCHi classifications may better reflect canonically defined, and biologically 

relevant designations. Additionally, MMoCHi is not optimized for novel subset identification, 

requiring the user to define all cell types for classification. Thus, MMoCHi is complemented by 

multimodal unsupervised exploration of the dataset to annotate or identify markers of unexpected 

cell types and states.  

 Beyond cell type classification, MMoCHi learns key features of protein and gene 

expression, which can be used to identify new cell type markers and derive biological insights. 

MMoCHi random forests do not require prior dimensionality reduction, enabling evaluation of 

individual surface proteins and protein-coding genes as subset markers. In classifying diverse and 

highly similar subsets, we show MMoCHi extracts relevant markers, relying on both features used 

for training data selection, and other known gene and protein markers of each subset. Using 
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MMoCHi, we identified improved transcriptional markers of naive T cells and TCM. Some TCM 

markers were associated with T cells in tissue26,27,45 and TEM
22,26, suggesting a role for tissue 

programming during TCM differentiation and indicating a gradual transition between T cell 

memory subsets. Importantly, we did not previously identify these expression patterns of 

circulating TCM in earlier studies of T cells in tissues and blood26,27, likely due to the lack of CITE-

seq and multimodal classification. 

While we have developed MMoCHi with CITE-seq applications in mind, the algorithm is 

designed for easy extension to other modalities frequently paired with single-cell transcriptomes, 

such as profiling chromatin accessibility, T and B cell receptors, mutational landscapes, 

intracellular proteins, or a combination of these modalities46–51. We also anticipate applications to 

emerging technologies for multimodal, single-cell spatial profiling52,53. While we focused on 

immunology, cell type classification is a ubiquitous problem in single-cell genomics. Thus, we 

expect broad utility for MMoCHi in diverse biological applications, including identification of 

developmental states, building atlases of complex tissues and tumors, profiling model organisms, 

and analyzing clinical specimens. 
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METHODS 

MMoCHi 

MMoCHi is designed to standardize classification of cell subsets using multimodal (CITE-

seq) data (Fig. 1). To train a new MMoCHi model, the user specifies a hierarchy of cell subsets, 

along with marker definitions (based on thresholds of either gene or protein expression) for each. 

MMoCHi iterates through each level of the hierarchy, selecting high-confidence members of each 

subset, training a random forest classifier on normalized gene and protein expression, and 

classifying cell types. Once trained, MMoCHi classifiers can be interrogated for feature 

importances or applied to extend cell type annotation to other datasets.  

Feature selection, normalization, and batch correction 

As input to MMoCHi, gene expression (GEX) was normalized to 

log(counts*10,000/total_counts+1), and antibody derived tag (ADT) expression was normalized 

to log(counts*1,000/total_counts+1). For many markers, ADT expression distributions matched 

the expected bimodal, trimodal, or gradients of expression observed by flow cytometry. To account 

for variation in antibody staining across samples, ADT expression was batch-corrected using 

landmark registration (Fig. 1a)32,33. First, landmarks (peaks) were identified in the distribution of 

expression for each ADT in each sample as automatically detected local maxima 

(scipy.signal.find_peaks) on kernel-density-smoothed (scipy.stats.gaussian_kde) ADT expression, 

or manually identified. Curve registration and warping were applied to align these landmarks 

across samples (skfda.preprocessing.registration.landmark_elastic_registration_warping). Once 

batch-corrected, thresholds delineating positive and negative populations for ADT markers could 

be applied across batches. 
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Selection of training data 

At each level of the hierarchy, we selected high-confidence events for each subset using 

manual thresholds on the user-supplied marker definitions (Fig. 1b, Supplementary Tables 4,7). 

ADT thresholds were drawn using established flow cytometry gating principles. GEX thresholds 

were drawn similar to Garnett16, primarily capturing events with any marker expression, or 

occasionally capturing only the highest expressing events. A portion (20%) of these high-

confidence events were held out for testing and validation, and the remaining 80% could be used 

for training. We then resampled this training dataset (Extended Data Fig. 1a) to remove events 

likely to be mistakenly labeled due to imperfect marker thresholding (noise) and to overrepresent 

events likely to be misclassified (in danger). To identify “noise” and “in danger” events, principal 

component analysis (PCA; scanpy.pp.pca) was run on the scaled expression of the top 5000 highly 

variable genes (scanpy.pp.highly_variable_genes) and all ADTs. The 5 nearest neighbors were 

calculated for each event (sklearn.neighbors.NearestNeighbors). Events were considered “noise” 

and removed if all neighbors disagreed with their high-confidence label. Events were considered 

“in danger” if less than half the neighbors agreed with their high-confidence label. Training events 

were also clustered using the Leiden algorithm54 (scanpy.tl.leiden) to identify “in danger” 

clusters—clusters representing less than 5% of a subset’s training events. All events considered 

“in danger” were oversampled 5 times to increase representation during training. At classification 

nodes where subsets were not expected to segregate by unsupervised approaches—including 

Lymphocytes and TCR—these selection steps were skipped. To account for class imbalance in the 

training dataset, events for all subsets were oversampled to equal numbers. Finally, training events 

were subsampled without replacement to a maximum of 20,000 events for computational 

performance. The selection of training data occurred separately for each batch. If a minimum of 
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100 events were not identified in a batch, events would be spiked into that batch from other batches 

(Extended Data Fig. 1b).  

Training and calibration of random forest classifiers 

At each level of the hierarchy, we trained a random forest (sklearn.ensemble. 

RandomForestClassifier) with 100 trees, each with a max depth of 20 to reduce overfitting. In 

datasets with multiple batches, 100 trees were trained separately for each batch and added to the 

forest. Once trained, the forest would predict the subset identity of events and provide the 

proportion of trees in agreement with the classification. To convert these proportions of trees in 

agreement to probabilities, they were transformed using an isotonic regression 

(sklearn.calibration.CalibratedClassifierCV) trained on a subset of the held-out data55. 

Classification performance was then evaluated on the remaining hold-out data. Hyperparameters 

were tuned in cases of poor fit. To increase fit, the maximum number of features to consider when 

looking for the best split during random forest training was set to 10% of total features for CD4+ 

and CD8+ memory classification for sorted T cells, as well as Lymphocyte, TCR, and CD4/8 

classification for organ donor cells. The trained classifier was then used to predict subset identity 

for all events at that level. This process of training data selection, classifier training, and prediction 

were repeated until all cells had been labeled to terminal subsets. 

CITE-seq profiling of FACS sorted subsets 

Peripheral blood from a consenting healthy volunteer (34-year-old male; Supplementary 

Table 1) was obtained by venous puncture, through a protocol approved by the Columbia 

University IRB and complying with relevant ethical regulations for work with human participants. 
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Peripheral blood mononuclear cells (PBMCs) were isolated using RosetteSep Granulocyte 

Depletion Cocktail (StemCell Technologies), following manufacturer’s protocols for density 

gradient centrifugation. Briefly, samples were incubated with the cocktail at 20°C for 10 minutes, 

diluted 1:1 with FACS buffer (DPBS 10% FBS 2mM EDTA), then layered over Ficoll-Plaque in 

SepMate PBMC isolation tubes (StemCell Technologies). Samples were centrifuged at 1200 x g 

for 10 minutes at 20°C, and PBMC layers were isolated according to instructions. Samples were 

washed (400 x g for 10 minutes) with FACS buffer. For further erythrocyte removal, pellets were 

resuspended in ACK lysis buffer (Gibco) incubated for 2 minutes at 37°C and washed with FACS 

buffer.  

PBMCs were stained with Zombie NIR Fixable Viability dye (BioLegend) for 30 minutes. 

Samples were kept at 4°C in the dark. Cells were washed thrice with FACS buffer, resuspended in 

TrueStain FcX and TrueStain Monocyte Blocker (BioLegend), and incubated for 10 minutes. We 

designed a FACS-sort antibody cocktail, prioritizing antibody clones with discrete epitopes from 

the TotalSeq-A Universal Human Panel (BioLegend) to reduce steric hinderance during CITE-seq 

staining (Supplementary Table 2). Cells were incubated with the FACS-sort antibody cocktail for 

30 minutes, then washed thrice with FACS buffer. Cells were incubated in TrueStain FcX 

(BioLegend) for 10 minutes, then stained using a custom TotalSeq-A Universal Human Panel 

(BioLegend) for 30 minutes, according to manufacturer instructions. Samples were washed thrice 

with FACS buffer. Cells were sorted using a FACS Aria III (BD Biosciences; Extended Data Fig. 

2a). Seven T cell memory populations (CD4+ Naive, CD4+ TCM, CD4+ TEM, CD8+ Naive, CD8+ 

TCM, CD8+ TEM, CD8+ TEMRA), and monocytes were sorted into sterile, heat inactivated FBS. Sort 

purity was calculated as the number of events falling within a subset’s gates divided by the total 

number of singlet events times 100, using the same gating strategy as the sort (Extended Data Fig. 
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2a). All sorts were high purity, with mean purity 94.4% (Supplementary Table 3). Sorted 

populations were washed in FACS buffer and resuspended in TrueStain FcX (BioLegend) for 10 

minutes. Samples were then stained with TotalSeq-A hashtag antibodies (BioLegend). In this 

experiment, the hashtag-oligos (HTOs) correspond to the sorted immune cell subsets (HTO1: 

CD4+ Naive, HTO2: CD4+ TCM, HTO3: CD4+ TEM, HTO4: CD8+ Naive, HTO5: CD8+ TCM, 

HTO6: CD8+ TEM, HTO7: CD8+ TEMRA, HTO8: Monocytes). Samples were then washed thrice 

with FACS buffer, and pooled.  

CITE-seq profiling of human tissue samples 

 Human tissues were obtained from deceased organ donors as previously described25,27,56,57. 

The use of tissues from organ donors is not considered human subjects research as confirmed by 

the Columbia University IRB because the donors are deceased. Mononuclear cells (MNCs) were 

isolated from tissue sites of two organ donors (D496 and D503; Supplementary Table 1), as 

described25. Approximately 1 million MNCs per tissue site were washed in FACS buffer and 

resuspended in TrueStain FcX (BioLegend) for 10 minutes. Samples were then stained with 

TotalSeq-A hashtag antibodies (BioLegend) for each tissue. For each donor, the hash-tagged 

MNCs from each tissue site were pooled, washed with FACS buffer, and stained with the 

TotalSeq-A Human Universal Cocktail panel according to the manufacturer's instructions 

(BioLegend).  

Library preparation, sequencing, and alignment 

The sorted immune cells were counted, diluted to an appropriate volume, and loaded across 

two lanes of a 10X Genomics Chromium instrument targeting 6,000 cells each. Samples from each 

organ donor were loaded across 16 lanes of a 10X Genomics Chromium instrument targeting 
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10,000 cells each. cDNA synthesis, amplification and sequencing libraries were generated using 

the Next GEM Single Cell 3’ Kit v3.1 (10X Genomics) with the recommended modifications for 

compatibility with the TotalSeq-A cell hashing and CITE-seq reagents (BioLegend). Organ donor 

GEX libraries were sequenced on a NovaSeq 6000 (Illumina) with 100 cycles for reads 1 and 2. 

Organ donor ADT and HTO libraries were sequenced on a NextSeq 500 (Illumina) with 28 cycles 

for read 1 and 55 cycles for read 2. All libraries for FACS sorted subsets were sequenced on a 

NextSeq 500 (Illumina) with 28 cycles for read 1 and 44 cycles for read 2. 

Reads were analyzed by pseudoalignment using kallisto v0.46.2 (GRCh38 with Gencode 

v24 annotation) and bustools v0.40.058–60. CITE-seq and hashtag barcodes were demultiplexed and 

extracted using DropSeqPipeline8, as previously described61. Hashtags were demultiplexed by 

CLR normalization, k-means clustering, and statistical identification of singlets by fitting a 

negative binomial model as described5.  

Analysis and benchmarking using sorted T cells   

Cells from the T cell sort were filtered to remove events with fewer than 1000 unique 

counts, fewer than 200 genes detected, or over 10% mitochondrial counts. A MMoCHi hierarchy 

was developed (Fig. 2b) and classification performed using the algorithm above. In flat 

classification variations (MMoCHi Flat, MMoCHi GEX Flat), high-confidence thresholding and 

classification were performed for all subsets in a single classification node. In GEX variations 

(MMoCHi GEX, MMoCHi GEX Flat, and MMoCHi GEX Sort-ref), ADT expression data was 

excluded from the detection of in-danger noise events and random forest training. In “Sort-ref” 

variants (MMoCHi Sort-ref and MMoCHi GEX Sort-ref), training events were selected using the 

sort labels instead of high-confidence thresholding. To mirror intra-dataset performance testing of 
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other reference-based tools25,34, a portion of the dataset (20%) was held-out from training and used 

only for performance evaluation.  

We manually annotated unsupervised clusters by average expression of gene and protein 

markers. Leiden clusters of gene expression (GEX Leiden) were computed on a PCA of the highly 

variable genes with Scanpy62 defaults. Leiden clusters of ADT expression (ADT Leiden) were 

computed on a PCA of all ADTs except for isotype controls. totalVI latent space was computed 

on all ADTs except for isotype controls, and highly variable genes selected using top 4000 genes 

as defined by the Seurat v3 method63, as recommended9. Leiden clustering was performed on the 

10 nearest neighbors of the top 40 principal components or the entire totalVI latent space. Over-

clustering was also computed where highly variable gene selection, dimensionality reduction, and 

Leiden clustering were repeated to sub-cluster each cluster resulting in 79 GEX clusters (GEX 

Leiden OC), 128 ADT clusters (ADT Leiden OC), and 57 totalVI clusters (totalVI Leiden OC). 

For visualization, UMAP (scanpy.tl.umap) embeddings of each of these feature spaces were 

calculated using defaults. 

CellTypist25, HieRFit34, and Garnett16 were trained using the sort labels as reference and a 

20% hold-out for performance testing (as with MMoCHi Sort-ref). A CellTypist model was trained 

(celltypist.train) with two-pass training enabled for feature selection. This model was applied 

(celltypist.annotate) to held-out data with and without majority voting enabled (CellTypist MV 

Sort-ref and CellTypist Sort-ref, respectively). HieRFit and Garnett models were both trained 

(HieRFIT::CreateHieR; garnett::train_cell_classifier) using a hierarchy structured identically to 

the MMoCHi hierarchy (Fig. 2b) and applied (HieRFIT::HieRFIT; garnett::classify_cells) to held-

out data with defaults enabled (HieRFIT Sort-ref and Garnett Sort-ref, respectively). An additional 

Garnett model was trained using high-confidence thresholding (Garnett Markers) on manually and 
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automatically (garnett::top_markers) selected transcript markers which were evaluated using 

built-in functions (garnett::check_markers) (Supplementary Table 6). Garnett models were trained 

without marker propagation and prediction was performed without cluster extension. Precision, 

recall, F1 scores and overall accuracy were calculated using sort labels as truth 

(sklearn.metrics.precision_recall_fscore_support; sklearn.metrics.accuracy_score). Garnett 

provides unknown and intermediate cell type labels, which were excluded from performance 

metrics calculations. 

Analysis of organ donor sequencing 

CITE-seq data obtained from tissue immune cells was filtered separately. Although hashtag 

demultiplexing removes inter-sample multiplets, this method cannot detect multiplets between 

cells from the same tissue site. Thus, multiplets were detected by Scrublet64 

(scrublet.Scrublet.scrub_doublets), using default settings, an expected doublet rate of 0.015, and 

applying separately to each library-tissue combination of over 100 events. Cells were then filtered 

to remove events with fewer than 1000 unique counts, fewer than 600 genes detected, or over 10% 

hemoglobin counts. We used a cluster-based method to remove events either identified as doublets 

by Scrublet or with high mitochondrial counts, similar to the previously described percolation 

method25. Briefly, a PCA on highly variable genes was calculated, integrated using Harmony65 

(scanpy.external.pp.harmony_integrate), and used for nearest neighbor calculation and Leiden 

clustering with a resolution of 20. Clusters with significantly higher Scrublet scores (above 0.1) or 

percent mitochondrial counts (above 15%) were removed. Individual events not captured by these 

clusters that were identified as Scrublet doublets or had over 25% mitochondrial counts were also 

removed.  
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We devised a MMoCHi hierarchy (Fig. 3d; Supplementary Table 7) and performed 

classification using the algorithm above. Classification fit across a varying number of random 

forest estimators (trees) was evaluated for prediction accuracy. Overall prediction accuracy was 

measured using 20% held-out events that were high-confidence thresholded in all layers of the 

hierarchy. Prediction accuracy was also calculated for individual classification nodes using the 

weighted average of precision, recall, and F1 scores for internally held-out, high-confidence events 

at each node. Gini impurity-based feature importances were automatically calculated during 

random forest training by scikit-learn. Manual annotation and UMAP calculation were performed 

on the totalVI latent space, as described above. Similarity matrix of classified subsets was 

calculated (scanpy.pl.correlation_matrix) on the totalVI latent space with optimal ordering 

enabled. 

Estimation of computational performance 

We measured the computational resources required to train and apply MMoCHi classifiers 

using a predefined hierarchy and thresholds (Fig. 3c; Supplementary Table 7). Comparisons were 

performed with multiprocessing enabled for random forest training, using 3rd generation Intel Xeon 

Scalable processors (3.5 GHz) with 32 vCPUs and 32 GiB of RAM (AWS/EC2 c6i.8xlarge 

instance). Tests at varying event counts were performed by randomly subsampling the dataset prior 

to classification.  

Statistical analysis 

Prior to differential expression, the two groups were subsampled to the same number of 

events and their expression matrices were downsampled to equal total counts. Differential 
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expression was performed (scanpy.tl.rank_genes_groups) on log-normalized expression, with 

Wilcoxon mode and tie correction enabled. 

DATA AVAILABILITY 

CITE-seq data generated in this study are available in NCBI GEO with the accession code 

GSE229791. 

CODE AVAILABILITY 

Code for MMoCHi is available at: https://github.com/donnafarberlab/MMoCHi 

Code for demultiplexing CITE-seq and hashtag barcodes is available at: 

https://github.com/simslab/DropSeqPipeline8  
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Figure 1 Schematic showing general workflow of MMoCHi. a. Batch correction of Antibody Derived Tag (ADT) expression was performed by landmark 
registration on log-normalized counts (1). After detection of positive (white ticks) and negative (black ticks) peaks in each batch (2), a warping function was applied 
to align these landmarks across batches (3). b. MMoCHi hierarchy demonstrating the classification workflow. User supplies a hierarchy of cell subsets, and marker 
definitions for each subset (1). Thresholding is performed to select high-confidence events for each subset (2). A portion of these high-confidence events are used 
to train a random forest (3; see Extended Data Fig 1). Finally, the trained random forest is used to predict subset identities of all events from the parent subset (4). 
This process is repeated for each classifier node within the hierarchy until all cells are classified to endpoint subsets.
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Figure 2 MMoCHi classification of predefined T cell subsets outperforms other annotation methods. a. PBMCs were stained with fluorescently-labeled antibody 
cocktail and a cocktail of oligo-tagged antibodies for sequencing. Seven T cell subsets (CD4+ Naive, CD4+ TCM, CD4+ TEM, CD8+ Naive, CD8+ TCM, CD8+ TEM, CD8+ TEMRA) 
and monocytes were sorted, hashtagged, pooled, and sequenced. b. MMoCHi hierarchy defining subsets using the same markers used for sorting. c. UMAPs of totalVI 
latent space colored by sorted cell type (identified by hashtag oligo; HTO), MMoCHi classification, and manual cluster annotations. d. Row-normalized heatmap 
comparing MMoCHi classification to sorted cell type. Color represents proportion of cells in each MMoCHi classification from each sorted subset. e. Performance 
comparison using F1 scores, calculated for each cell subset using HTO-derived sorted cell type labels as truth. F1 scores for each method were aggregated in box 
and whisker plots. Features of each method are labeled using green checks for context: “Trained on GEX/ADT”—whether gene expression (GEX) or antibody derived 
tag (ADT) expression data were used for model training. "HC-thresholds"—whether high-confidence thresholding was used for training data selection. "Sort-
reference"—whether sorted cell type labels were used for training, and accuracy was measured on a 20% hold-out dataset. "Hierarchical"—whether annotation was 
performed on multiple levels. “Cluster-based”—whether annotations were applied to unsupervised clusters. "OC"—whether over-clustering was performed. MV, 
Majority voting; TCM, central memory T cell; TEM, effector memory T cell; TEMRA, terminally differentiated effector memory T cell. Schematic in (a) created with BioRender.
com
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Figure 3 MMoCHi classification applied to human immune cells from blood and diverse tissue sites. a. Single cell suspensions of immune cells were isolated 
from blood and indicated tissue sites of two organ donors. CD45+ immune cells selected for by magnetic enrichment, hashtagged by tissue site, pooled, and 
sequenced. b. UMAP of donor-integrated totalVI latent space, colored by tissue site. c. MMoCHi hierarchy used for classification (See Supplementary Table 7 for full 
specification). d. Performance curves showing the F1 score for each endpoint subset when training random forests with various numbers of trees (estimators). F1 
scores were calculated on held-out data using high-confidence thresholded events as truth. The red line indicates the median F1 score across all predicted cell types. 
e. Column-normalized heatmap depicting the distribution of classified cell types across tissue sites. The number of total events in each classification or tissue site are 
displayed.
LNG, lung; BAL, bronchoalveolar lavage; LLN, lung lymph node; SPL, spleen; JEL, jejunum epithelial layer; JLP, jejunum lamina propria; BOM, bone marrow; BLD, 
blood; TCM, central memory T cell; Treg, regulatory T cell; TEM, effector memory T cell; TRM, resident memory T cell; TEMRA, terminally differentiated effector memory T 
cell; NK, natural killer cell; ILC, innate lymphoid cell; DC, dendritic cell; pDC, plasmacytoid dendritic cell; Mono, monocyte. Schematic created with BioRender.com
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Figure 4 MMoCHi classification of human immune cells outperforms manual annotation by clustering. a. UMAPs of immune cells from Fig. 3, colored by 
MMoCHi classification and manual cluster annotations. Dashed ellipses highlight areas of major disagreement between MMoCHi classification and manual annotation. 
b. Row-normalized heatmap comparing MMoCHi classification to manual annotation. Color represents proportion of cells in each MMoCHi classification that were 
manually annotated as each subset. Yellow columns indicate subsets that were not detected by manual annotation. c-e. Plots depicting expression of selected cell type 
markers, on cells grouped by their MMoCHi classification and manual annotation. Dot plots display gene expression (GEX). Dot size represents the percent of cells in 
the group expressing a gene, and dots are colored by the mean log-normalized GEX counts per ten thousand. Violin plots display the distribution of antibody derived 
tag (ADT) expression for each population. Violins are colored by the median log-normalized ADT counts per thousand. The number of events in each grouping are 
displayed above the dot plots. Events are denoted by a "+" where MMoCHi and manual annotation agree, and a "-" where they disagree. 
TCM, central memory T cell; Treg, regulatory T cell; TEM, effector memory T cell; TRM, resident memory T cell; TEMRA, terminally differentiated effector memory T cell; ILC, 
innate lymphoid cell; NK, natural killer cell; pDC, plasmacytoid dendritic cell; DC, dendritic cell; Mono, monocyte 
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Figure 5 Interpretation of MMoCHi random forests using feature importances reveal immune cell lineage markers. a-d. Expression of important features 
for classification for the Lineage (a), Mono/Mac (b), Lymphocytes (c), and B cell-like (d) classification nodes. The top important features associated with each 
subset (log2(fold change) > 2) are displayed to include representation of features specific to each subset. All features displayed are within the top 1% of important 
features. Dot plots display gene expression (GEX), where dot size represents the percent of cells in the group expressing a gene, and dots are colored by the 
mean log-normalized GEX counts per ten thousand. Violin plots display the distribution of antibody derived tag (ADT) expression and are colored by the median 
log-normalized ADT counts per thousand. The impurity-based importance of each feature displayed is shown in a bar chart to the right. All features displayed 
were also significantly differentially expressed (p < 0.05). Statistical significance was calculated using a two-sided Wilcoxon with tie correction, followed by a 
Benjamini–Hochberg adjustment for multiple comparisons. 
Mono, monocyte; NK, natural killer cell; ILC, innate lymphoid cell; pDC, plasmacytoid dendritic cell
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Figure 6 MMoCHi reveals additional transcript markers distinguishing naive and central memory T cells. a-b. Performance of gene expression (GEX)-only 
classification of Naive/TCM CD4+ (a) and CD8+ (b) T cells. Column-normalized confusion matrices (left) comparing classification to held-out, high-confidence 
threshold labels. Violin plots (right) display the distribution of antibody derived tag (ADT) expression for each population as classified by MMoCHi trained on 
multimodal data (ADT+GEX) or GEX-only. Violins are colored by the median log-normalized ADT counts per thousand. c-d. Dot plots displaying expression of 
important features for GEX-only classification of Naive/TCM CD4+ (c) or CD8+ (d) T cells. Dot size represents the percent of cells in the group expressing a gene, 
and dots are colored by the mean log-normalized GEX counts per ten thousand. The top important features associated with a single subset (log2(fold change) > 
2 and greater than 10% change in dropout rate) are displayed. All features displayed were within the top 1000 important features when training with GEX-only on 
all tissues, and with blood (BLD) only. The importance of each feature is shown in a bar chart. All displayed features were significantly differentially expressed (p 
< 0.05). e-f. Bar plots comparing performance of Naive/TCM CD4+ (e) or CD8+ (f) T cell classifiers trained using multimodal data (ADT+GEX), GEX only, GEX with 
only BLD cells, or only the top 1000 important GEX features. g-h. Volcano plots displaying differential gene expression between sorted blood Naive and TCM CD4+

(g) or CD8+ (h) T cells. Points represent genes and are colored by differential expression (|log2(fold change)| > 1 and P < 0.05). Important features for classification 
that were differentially expressed are highlighted. f-j. Column-normalized heatmaps displaying performance of GEX only classifiers trained on organ donor BLD 
applied to sorted Naive/TCM CD4+ (i) and CD8+ (h) T cells. Statistical significance was calculated using a two-sided Wilcoxon with tie correction, followed by a 
Benjamini–Hochberg adjustment for multiple comparisons.

C
D

4+
 T

C
M

C
D

4+
 N

ai
ve

CCR7

ADT+GEX GEX-trained

CD62L

CD45RA

CD45RO

C
D

4+
 T

C
M

C
D

4+
 N

ai
ve

C
D

8+
 T

C
M

C
D

8+
 N

ai
ve

ADT+GEX GEX-trained

C
D

8+
 T

C
M

C
D

8+
 N

ai
ve

CCR7

CD62L

CD45RA

CD45RO
C

D
4+

 N
ai

ve

C
D

4+
 T

C
MPredicted 

label:

CD4+ Naive

CD4+ TCM

Th
re

sh
ol

d 
la

be
l

0.71 0.02

0.29 0.98

GEX-trained

0.97 0.05

0.031 0.95

GEX-trained

C
D

8+
 T

C
MPredicted 

label:

C
D

8+
 N

ai
ve

CD8+ Naive

CD8+ TCM

Th
re

sh
ol

d 
la

be
l

CD4+
 N

aive

CD4+
 T CMPredicted 

label:

CD4+ Naive

CD4+ TCM

So
rt

ed
 C

el
l 

Ty
pe

0.82 0.22

0.18 0.78

GEX-trained (BLD)

0.81 0.26

0.19 0.74

GEX-trained (BLD)

CD8+
 T CMPredicted 

label:

CD8+
 N

aive

CD8+ Naive

CD8+ TCM

So
rt

ed
 C

el
l 

Ty
pe

Median ADT 
expression

log(CP1k+1)

0 1 2 3

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.06.547944doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.06.547944
http://creativecommons.org/licenses/by-nc/4.0/


UMAP1

U
M

A
P

2
Other batchesBatch 1

Training data
for batch 1

b.

a. 1. Calculate nearest    
    neighbors and clusters

2. Label "noise" events with
    no neighbor agreement 

3. Label "in-danger" events with
    partial neighbor agreement 

UMAP1

U
M

A
P

2

UMAP1

U
M

A
P

2

4. Identify "in-danger"
    rare clusters 

5. Remove "noise" and
    amplify "in-danger"

UMAP1

U
M

A
P

2

UMAP1

X5

X5

U
M

A
P

2

X5

Extended Data Figure 1 Selection and cleanup of training data. a. Prior to training, high-confidence events were resampled to remove potentially mislabeled events 
("noise") and amplify events potentially challenging to classify ("in danger"). Nearest neighbors are calculated on high-confidence events (1). Events with no neighbors 
in agreement with their high confidence label are identified as "noise" (2). Events with only some neighbors in agreement or in poorly represented clusters are identified 
as "in danger" (3,4). Events labeled "noise" are removed from the training data. Events labeled "in danger" are duplicated 5 times in the training dataset (5). b. Training 
data is selected from a random sample of cleaned-up high-confidence calls with rare subsets oversampled so all subsets are equal in the training data. In the case of 
insufficient training events in individual batches, high-confidence events are spiked into the training data from other batches.
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Extended Data Figure 2 Generation and analysis of MMoCHi validation dataset. a. Gating strategy for fluorescence-activated cell sorting (FACS) of T cell memory 
subsets and monocytes. b. Violin plots displaying the distribution of antibody derived tag (ADT) expression for select markers for each sorted population, and each 
MMoCHi classification. Violins are colored by the median log-normalized ADT counts per thousand. The number of events in each grouping are displayed above the 
violin plots. c-e. Violin plots displaying distribution of ADT expression for select markers for Leiden clusters of gene expression (GEX; c), ADT expression (d), or totalVI 
latent space (e). Clusters are grouped by their manual annotation.  f-g. UMAPs of principal component analysis used for GEX annotation (f), or ADT annotation (g), 
colored by sorted cell type (identified by hashtag oligo; HTO) or manual annotation. 
TCM, central memory T cell; TEM, effector memory T cell; TEMRA, terminally differentiated effector memory T cell
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Extended Data Figure 3 MMoCHi classification is robust to downsampled reads. a-b. Line plots depicting the effect of downsampling reads of gene expression 
(GEX; a) or antibody derived tag (ADT) expression b) on total counts per event. c-h. Classification accuracy of sorted T cell memory subsets and monocytes, with 
MMoCHi classifiers trained using high-confidence thresholding on downsampled events (c-e) or trained using the hashtag oligo (HTO)-derived sort labels as reference, 
and tested on 20% held-out data (f-g). Classifiers were exposed to downsampled GEX and normal ADT expression (c,f), normal GEX and downsampled ADT 
expression (d,g), or downsampled GEX and ADT expression (e,h) for both training and prediction.
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a. b.

Extended Data Figure 4 Time and memory performance of MMoCHi classification. a-b. Memory usage (a) and run time (b) to classify 26 subsets using CITE-seq 
of two human organ donors across multiple tissues. Tests were performed on predefined hierarchy and thresholds with multiprocessing enabled for random forest 
training on a computer with 3rd Generation Intel Xeon Scalable processors (3.5 GHz), with 32 vCPUs and 32 GiB of RAM. Tests at different event counts were performed 
with random subsampling prior to classification. 
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Extended Data Figure 5 Random forests perform well at each level of MMoCHi hierarchy. a-p. Training data and performance of each classification node (Fig. 3D). 
Column-normalized confusion matrices depicting performance by comparing the classification to held-out high-confidence threshold labels at each node. UMAPs of 
totalVI latent space, where events used for training are colored by their high-confidence threshold label. Dot size is proportional to the percent of the training dataset 
they represented after resampling of training data (see Extended Data Fig. 1).
TCM, central memory T cell; Treg, regulatory T cell; TEM, effector memory T cell; TRM, resident memory T cell; TEMRA, terminally differentiated effector memory T cell; ILC, 
innate lymphoid cell; NK, natural killer cell; pDC, plasmacytoid dendritic cell; DC, dendritic cell; Mono, monocyte
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Extended Data Figure 6 MMoCHi classifies cell types across donor. a. UMAP of donor-integrated totalVI latent space, colored by donor. b. Similarity matrix of each 
classified cell type for each donor with over 100 events, calculated using Pearson correlation on the totalVI latent space. Outer bars (top, right) colored by MMoCHi 
classification (outer) and donor (inner). Matrix is colored by Pearson correlation.
LNG, lung; BAL, bronchoalveolar lavage; LLN, lung lymph node; SPL, spleen; JEL, jejunum epithelial layer; JLP, jejunum lamina propria; BOM, bone marrow; BLD, 
blood; TCM, central memory T cell; Treg, regulatory T cell; TEM, effector memory T cell; TRM, resident memory T cell; TEMRA, terminally differentiated effector memory T cell, 
NK, natural killer cell; ILC, innate lymphoid cell; DC, dendritic cell; pDC, plasmacytoid dendritic cell; Mono, monocyte.
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Extended Data Figure 7 Manual annotation of Leiden clusters by marker gene and protein expression. a. UMAP of totalVI latent space displaying Leiden clusters. 
b. Expression of select markers for each cluster, grouped by manually annotated cell type. Dot plots display gene expression (GEX). Dot size represents the percent 
of cells in the group expressing a gene, and dots are colored by the mean log-normalized GEX counts per ten thousand. Violin plots display the distribution of antibody 
derived tag (ADT) expression for each sorted population, and each MMoCHi classification. Violins are colored by the median log-normalized ADT counts per thousand.

UMAP1

U
M

AP
2

0

1

2

3

4

5

6

7

8

9

1 0

1 1

1 2

1 3

1 4
1 5

1 6

1 7

1 8

1 9

2 0

2 1
2 2

2 3

2 4

2 5

2 6

2 7

2 8

2 9

3 0

3 1

3 2

3 3

3 4

3 5

3 6

3 7

3 8

Leiden clustering

1

CD4
+ Naiv

e

10
3

CD4+
 T CM

5 12 37 15

CD4
+ T re

g

20

CD4+
 T EM

33 13

CD4+
 T RM

11

CD8+
 T EM

29 36 4

CD8+
 T RM

6 7
CD8+

 T EMRA

24 17
0 14 8 19 26 27 31 2 22 16

Non
-C

las
sic

al 
Mon

o.

9 21 23 18 28 30 32 34 35 38 25

ILC
 1
ILC

 3

CD56d
im

 NK

CD56
br NK

B M
emory

Plasm
a ce

ll
pDC DC

Class
ica

l M
ono.

Macro
phage

Mast 
ce

ll

Non-im
mune

Pro
genito

r

CD3
TCRαβ
TCRγδ

CD4
CD8

CD62L
CD45RA

CD69
CD127
CD16
CD56
CD1c

HLA-DR
CD33
CD64
CD14

CD206
CD27
CD19
CD20

CD123

CCL5
FOXP3
NCR2

EOMES
JCHAIN
FCN1
C1QA

MS4A7
CALD1
CPA3

TPSB2
CD34
CYTL1

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 7, 2023. ; https://doi.org/10.1101/2023.07.06.547944doi: bioRxiv preprint 

https://doi.org/10.1101/2023.07.06.547944
http://creativecommons.org/licenses/by-nc/4.0/


CD3
TCRαβ
TCRγδ

TCRVδ2
CD4
CD8

CD62L
CD45RA

CD69
CD103
CD49a
CD127
CD16
CD56
CD1c

HLA-DR
CD33
CD64
CD14

CD206
CD27

IgD
CD19
CD20

CD123
CD326

SELL
CCL5
FAS

FOXP3
NCR2

EOMES
JCHAIN
FCN1
C1QA

MS4A7
CALD1
CPA3
TPSB2
CD34
CYTL1

CD4+
 N

aive

CD4+
 T CM

CD4+
 T re

g

CD4+
 T EM

CD4+
 T RM

CD8+
 N

aive

CD8+
 T CM

CD8+
 T EM

CD8+
 T RM

CD8+
 T EMRA

γδ
 T

 ce
ll
ILC

 1
ILC

 3

CD56d
im  N

K

CD56b
r  N

K

B N
aive

B M
emory

Plasm
a ce

ll
pDC DC

Class
ica

l M
ono.

Non-C
lass

ica
l M

ono.

Macro
phage

Mast 
ce

ll

Non-im
mune

Pro
genito

r

MMoCHi Classification

CD4+
 Naive

CD4+
 T CM

CD4+
 T re

g

CD4+
 T EM

CD4+
 T RM

CD8+
 T EM

CD8+
 T RM

CD8+
 T EMRA

ILC
 1
ILC

 3

CD56d
im  N

K

CD56b
r  N

K

B M
emory

Plasm
a ce

ll
pDC DC

Class
ica

l M
ono.

Non-C
lass

ica
l M

ono.

Macro
phage

Mast 
ce

ll

Non-im
mune

Pro
genito

r

Manual Cluster Annotation

Extended Data Figure 8 Marker gene and protein expression on manually annotated and MMoCHi classified populations. Expression of select cell type markers 
on cells grouped by either their MMoCHi classification (left) or their manual cluster annotation (right). Dot plots displaying gene expression (GEX), Dot size represents 
the percent of cells in the group expressing a gene, and dots are colored by the mean log-normalized GEX counts per ten thousand. Violin plots display the distribution 
of antibody derived tag (ADT) expression for each sorted population, and each MMoCHi classification. Violins are colored by the median log-normalized ADT counts 
per thousand.
TCM, central memory T cell; Treg, regulatory T cell; TEM, effector memory T cell; TRM, resident memory T cell; TEMRA, terminally differentiated effector memory T cell, NK, 
natural killer cell; ILC, innate lymphoid cell; pDC, plasmacytoid dendritic cell
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