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Abstract: Over recent decades, it has become clear that epigenetic abnormalities are involved in
the hallmarks of cancer. Histone modifications, such as acetylation, play a crucial role in cancer
development and progression, by regulating gene expression, such as for oncogenes or tumor
suppressor genes. Therefore, histone deacetylase inhibitors (HDACi) have recently shown efficacy
against both hematological and solid cancers. Designed to target histone deacetylases (HDAC), these
drugs can modify the expression pattern of numerous genes including those coding for micro-RNAs
(miRNA). miRNAs are small non-coding RNAs that regulate gene expression by targeting messenger
RNA. Current research has found that miRNAs from a tumor can be investigated in the tumor itself,
as well as in patient body fluids. In this review, we summarized current knowledge about HDAC
and HDACi in several cancers, and described their impact on miRNA expression. We discuss briefly
how circulating miRNAs may be used as biomarkers of HDACi response and used to investigate
response to treatment.

Keywords: microRNA; HDAC inhibitors; exosome; cancer

1. Introduction

In recent decades, non-coding RNAs have been described as key regulators of cellular functions
and differentiation. This includes long non-coding RNAs with a size above 200 nucleotides (nt) and
small non-coding RNAs (under 200 nt) consisting of numerous subtypes. Micro-RNAs (miRNAs)
are endogenous small non-coding RNA of about 19 to 22 nucleotides that modulate gene expression
through translational repression, or degradation of the target messenger RNA (mRNA) [1]. A single
miRNA has the capacity to inhibit numerous different mRNA targets [2] explaining why miRNAs are
potent regulators of gene expression. miRNAs are also important regulators since more than 60% of
human genes are regulated by them, as demonstrated by Friedman et al. [3]. In cancer, miRNAs can act
as tumor suppressors (TS-miR) or oncogenes (oncomiR), depending on their targets. Recent research
has found that miRNAs can not only be detected in tissues but also in all body fluids such as blood,
saliva, urine, and milk [4], where they can be used as biomarkers [5]. MicroRNAs harbor attractive
features for uses ranging from translation to clinical practices, such as an easy extraction from body
fluids, a resistance to molecular degradation by their encapsulation in exosomes, or by their interaction
with lipids and proteins, and their easy quantification by different methods including quantitative
PCR [6].

In the following sections, we will discuss how miRNAs are regulated by epigenetic drugs, such
as histone deacetylase inhibitors (HDACi) used in cancer. We will also succinctly discuss the use of
circulating miRNAs as a predictor of response to epigenetic clinical therapies.
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2. Epigenetic Drugs in Cancer

Epigenetic drugs consist of compounds that inhibit proteins implicated in the writing, the reading,
or the erasing of epigenetic marks such as DNA methylation or post-translational modifications (PTM)
of histones. Concerning DNA methylation, epigenetic drugs include, for example, the food and
drug administration (FDA)-approved decitabine targeting DNMT1 (DNA methyltransferase 1), or
AG-221 (or enasidenib), currently tested in a phase III clinical trial (NCT02577406), targeting IDH2
(Isocitrate DeHydrogenase 2), an enzyme providing cofactor for the DNA methylation eraser protein
TET1 (ten eleven translocation 1). Concerning PTM, most of the focus has been on histone acetylation
erasers that will be described below, but some of them have also been developed against histone
methylation writers or erasers, as well as histone acetylation readers, i.e., bromodomain-containing
proteins (see review [7]). In this review, we decided to focus on the largest class of epigenetic drugs,
the histone deacetylase inhibitors. It is a family of promising epigenetic agents for cancer treatments.
Indeed, during cancer initiation, a decrease of histone acetylation leads to the repression of genes
resulting in uncontrolled cell proliferation, differentiation and decreased apoptosis. Later, during
cancer progression, increasing histone deacetylases (HDAC) activity leads to a loss of cell adhesion,
resulting in cell migration, invasion and angiogenesis.

2.1. Histone Deacetylase

Previous works have identified 18 deacetylases. These enzymes are classified in four categories
depending on homologies with yeast deacetylases, function, localization and substrates (Table 1, more
details in the review [8]). Essentially, nucleic HDAC removes the acetyl group on the N-ε-lysine
side chain of the histone N-terminal tail, increasing its positive charge, and stabilizing DNA-histone
complexes by electrostatic interactions. This induces chromatin compaction and transcription repression.
Cytoplasmic HDACs can deacetylate non-histone proteins [9–18].

Table 1. Classification of histone deacetylase inhibitors.

Class Targeted Histone
Deacetylases (HDACs) Localization Zn2+ Expression

I 1, 2, 3, 8 Nucleus Yes Ubiquitous
IIa 4, 5, 7, 9 Nucleus and cytoplasm Yes Tissue specific
IIb 6, 10 Cytoplasm Yes Tissue specific
III Sirtuins 1–7 Nucleus, cytoplasm and mitochondria No Variable
IV 11 Nucleus and cytoplasm Yes Ubiquitous

2.2. Histone Deacetylase Inhibitors

HDACi were first identified from natural sources, currently however, new molecules have been
developed with an improved activity and specificity. To date, a high number of compounds are available
and evaluated in preclinical or clinical studies. HDACi are classified in four classes according to their
chemical structure [19], hydroxamates is the largest one. These compounds are usually pan-HADCi
acting in the range of micro to nanomolar concentrations. The well-known members of this family are
vorinostat (SAHA), belinostat (PDX101) and panobinostat (LBH589). All of these are approved by
the USA food and drug administration (FDA) for the treatment of respectively (i) cutaneous T-cell
lymphoma (CTCL) [20], (ii) patients with relapse or refractory peripheral T-cell lymphoma (PTCL) [21],
or (iii) multiple myeloma (MM) [22]. Trichostatin A (TSA), the first natural hydroxamate, was excluded
from clinical uses due to its high toxicity [23] despite its interesting effects at nanomolar concentrations
on cancer cells. The two other groups are benzamides and cyclic peptides which target mainly class I
HDAC. The prototypes of these families are entinostat (MS-275) and romidepsin (FK2208) respectively.
Romidepsin was approved by FDA for the treatment of CTCL [24] and PTCL [25]. Finally, short chain
carboxylic acids, such as valproic acid (VPA) or sodium butyrate (NaBu), inhibit class I and class
IIa HDACs.
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2.3. FDA-Approved Histone Deacetylase Inhibitors

Vorinostat. Vorinostat or suberoylanilide hydroxamic acid (SAHA) is a HDACi belonging to the
hydroxamate family, acting on class I and class II HDAC (Tables 1 and 2). This compound is probably
the most used HDACi for preclinical and clinical evaluations. In October 2006, Vorinostat was approved
in the USA by the FDA for the treatment of CTCL [26]. When used as a single agent, a poor efficacy was
observed on solid tumours [27]. Thus, combination strategies have been or are tested (approximately
134 phase II clinical trials and nine phase III clinical trials in progress in 2019, ClinicalTrials.gov).
For examples, Vorinostat is currently evaluated in phase III clinical trials in combination with alkylating
agents, proteasome inhibitors, anthracyclines, anti-angiogenics and/or antimetabolites.

Table 2. Structure and applications of the four food and drug administration (FDA)-approved histone
deacetylase inhibitors.

Name Structure Year of Approval Application

Vorinostat
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Romidepsin. Romidepsin is a bicyclic peptide (Table 2) isolated from a bacteria named
Chromobacterium violaceum [28,29]. This molecule inhibits mainly class I HDACs (Table 1). Romidepsin
is a prodrug that has to be activated in cells to be efficient by the reduction of the disulphide bond
included in its structure with the zinc ion present in the HDAC catalytic site. This molecule was
approved by the FDA in 2009 for the treatment of patients with CTCL who have received at least
one prior systemic therapy [30]. In 2011, the FDA approved romidepsin for the treatment of patients
with PTCL who have failed or who were refracted to at least one prior systemic therapy [31]. As for
Vorinostat, a poor activity was observed on solid tumours leading to the evaluation of combination
strategies in clinic (52 phase II clinical trials and four phase III clinical trials, ClinicalTrials.gov).

Belinostat. Belinostat, a hydroxamate HDACi, presents a broad-spectrum of action (class I and
class II HDACi). Belinostat was approved by FDA in 2014 for the treatment of patients with PTCL that
was refractory or had relapsed after prior treatment [21,32]. A second phase II clinical trials confirmed
these results and showed a better activity of belinostat on PTCL compared to CTCL [33]. The poor
activity of belinostat on solid tumor [34] has led to the evaluation of this HDACi in combination with
current chemotherapeutic agents (24 phase II clinical trials, ClinicalTrials.gov), notably alkylating
agents (cisplatin and carboplatin).

Panobinostat. Panobinostat is a pan-HDACi of the hydroxamate family. A phase III clinical
trials, named PANORAMA1, was at the origin of the approval of panobinostat by FDA in 2015, in

ClinicalTrials.gov
ClinicalTrials.gov
ClinicalTrials.gov
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combination with bortezomib and dexamethasone, for the treatment of patients with multiple myeloma
who have received at least two prior regimens, including bortezomib and an immunomodulatory
agent [35]. Numerous phase II or III clinical trials, on different cancers, were conducted or are in
progress to evaluate the efficacy of this molecule alone or in combination.

3. Effect of Histone Deacetylase Inhibitors on Tumor Cells

According to the large number of genes regulated by HDAC, HDACi can affect numerous cellular
mechanisms implicated in oncogenic properties of cancer cells. It was notably shown that these
molecules induce proliferation arrest, sensitivity to apoptosis, decrease angiogenesis and affect DNA
damage repair machinery (Figure 1). Here, we will present only the major pathways affected by
HDACi (for more details, see reviews [36,37]).
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Figure 1. The main cellular processes affected in cancer cells by HDACi treatments. The decrease of
histone acetylation by HDACi leads to the modification of the expression of several genes implicated in
oncogenic properties of cancer cells. From top left to bottom right, HDACi reduces angiogenesis and
tumor growth, HDACi improves treatments by inhibiting DNA repair, HDACi induces cell cycle arrest
and stimulates apoptosis.

3.1. Cell Cycle

HDACi induced a cell cycle arrest in G0/G1, G1/S or G2/M phase depending on the cancer cell line
and on the used HDACi [38]. Induction of expression of the cyclin-dependent kinase (CDK) inhibitor
gene CDKN1A, coding for p21, seems to be a major mechanism in the cell cycle arrest effect of HDACi
even if other CDK inhibitors genes are induced by these molecules [39]. The protein p53 was described
as a regulator of p21 expression through binding to its promotor [40]. However, the induction of p21
following HDACi treatment is independent on p53 status of cells [41–43] whereas some studies have
described an activation of p53 after HDAC inhibition [44,45]. Other mechanisms could explain this
observation such as dephosphorylation of retinoblasma protein (Rb) [46–48] and inhibition of E2F
transcriptional activity [49].
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3.2. Cell Death

HDACi modulates both the intrinsic and extrinsic pathways of apoptosis. Concerning the
extrinsic pathway, HDACi increased Death Receptor (DR4, DR5) expression in cancer cells [49–52].
Interaction of DR4 and DR5 with tumor necrosis factor (TNF)-super family receptor ligands (Fas-L,
TRAIL (TNF-Related Apoptosis Inducing Ligand), TNFα) induced apoptosis by the activation of
caspase 8 and 10. Additionally to these regulations, HDACi can also modulate the level of intracellular
adaptor molecules, such as the inhibitor of apoptosis named cellular FLICE (Caspase 8)-inhibitory
protein (c-FLIP) [50,52,53], or by modulating the interaction between Fas-associated death domain
(FADD) and the death-inducing signaling complex (DISC) [50,54]. Intrinsic apoptotic pathways
are classically activated by cellular stress stimuli such as free radicals, misfolded proteins or DNA
damages. Chemotherapeutic agents can also induce these stress stimuli leading to an increased
permeability of the mitochondria and to caspases activation following the release of pro-apoptotic
proteins. Intrinsic apoptosis in cells is regulated by the balance of expression of pro-apoptotic (Bak and
Bax) and anti-apoptotic BCL-2 proteins (BCL-2, BCL-XL, MCL-1). BH3-only proteins (Bad, Bik, Bid,
Bim, Puma, Noxa), a third family of pro-apoptotic proteins, are sensors of cellular stress, and fine tune
apoptosis in cells. It is now well established that HDAC inhibition leads to an increasing expression of
the pro-apoptotic BCL-2 protein members or BH3-only proteins, such as Bim [55].

3.3. Angiogenesis

HDACi have a mainly anti-angiogenic action, modulating angiogenesis by decreasing VEGF
expression and hypoxia-inducible factor-1α (HIF1α), but also inducing VEGF (vascular endothelial
growth factor) expression in several models of cancers [56–60]. Additional mechanisms were described
such as an upregulation of the tumor suppressor gene von Hippel Lindau (VHL) and an alteration of
the HSP90 (Heat Shock Protein 90) chaperone function, by modification of its acetylation, all leading to
the degradation of HIF1α [61,62]. A direct action of HDACi on the HIF1α stability was described as
well, through its acetylation [12]. Finally, HDACi can also affect the capacity of endothelial cells to
induce angiogenesis in functional tests [63–67].

3.4. DNA Damage

Sensitivity of cancer cells to chemotherapeutic agents, such as alkylating agents or topoisomerase
inhibitors, and radiotherapies, can depend on DNA damage repair (DDR) machinery. An increase of the
duration of DNA damage induced by irradiation of cancer cells was observed following treatments with
HDACi such as VPA, NaBu, vorinostat and MS-275. This demonstrates the incapacity of cells to repair
double strand break (DSB) following HDAC inhibition [68–71]. These observations can be explained by
the capacity of HDACi to repress proteins such as Rad50, Ku70 and Ku80, implicated in DDR [71,72].
Others studies showed that TSA, vorinostat and abexinostat can repress BRCA1 (Breast Cancer
1) and RAD51 (Recombination Protein A) expressions [73,74] and thereby inhibit the homologous
recombination and the non-homologous recombination end joining DDR mechanisms [70,74–76].
Finally, cancer cells treatment with HDACi leads to the induction of reactive oxygen species (ROS)
which cooperate with the DDR inhibition to induce DNA damages [77,78]. Proposed mechanisms
for the induction of ROS by HDACi are a (i) downregulation of the expression of thioredoxin (TRX),
reducing protein, (ii) an induction of the expression of the thioredoxin-binding protein-2 (TBP-2) gene
as shown in prostate cancer cells [79], and (iii) the induction of the thioredoxin-interacting protein
(TXNIP), an inhibitor of TRX, as demonstrated in human gastric cancer cells and HeLa cells [80,81].

4. Effect of Histone Deacetylase Inhibitors on microRNA Expressions in Cancer

HDACi treatments can modulate miRNA expressions in tumor cells. Indeed, the first step of
miRNA biogenesis is the transcription of the miRNA gene. As classical genes, miRNAs, located
outside or inside a coding gene, have their own promoter, TSS (transcription start site), and terminator



Cancers 2019, 11, 1530 6 of 22

signals, that are sensitive to epigenetic modifications, such as lysine acetylation which classically opens
chromatin structure and enhances transcription activation.

4.1. microRNAs Dysregulated in Cancer

miRNA dysregulation in cancer was first reported in 2002, when miR-15 and miR-16 were
identified at 13q14.3, a frequently deleted region in chronic lymphocytic leukemia (CLL), leading to the
overexpression of their target, i.e., BCL-2 (B cell lymphoma 2) [82]. Different miRNAs have been then
labeled as TS-miR (tumor Suppressor miR) or oncomiR based on the nature of their target mRNAs.
OncomiRs can repress expression of protein-coding tumor suppressor genes and are frequently
upregulated in cancer, whereas TS-miRs target cancer-promoting genes and are downregulated [83].

Let-7c is a one of the most described TS-miRs. It belongs to the let-7 family, highly conserved
between species [84]. Let-7c is frequently downregulated in cancer, or even deleted since it is located
in a region of frequent homozygous deletion [82]. Let-7c targets various oncogenes and cancer related
genes such as IL6-R (interleukin-6 receptor) [85] or E2F5 (E2F transcription factor 5) [86] (Table 3). Its
downregulation is also associated with poor prognosis in non-small cell lung carcinoma (NSCLC) [87],
in colorectal cancer, or in metastatic prostate cancer [88].

The miR-17-92 cluster highly conserved among species, comprises six miRNAs (miR-17-5p,
miR-18a, miR-19a, miR-20a, miR19b-1 and miR-92a-1), that are overexpressed in many human cancers.
miR-18a is one of the most expressed of this cluster, and is considered as an oncomiR. It has been found
to be upregulated in breast cancer, head and neck squamous cell carcinoma, esophageal squamous
cell carcinoma, gastric carcinoma, pancreatic carcinoma, hepatocellular, and colorectal carcinoma [89].
Interestingly the concentration of miR-18a in plasma or serum of patients with cancer is much higher
than that of healthy persons [89]. So aberrant expression of miRNA might serve as a biomarker of
cancer or to evaluate cancer response to treatment in non-invasive liquid biopsy.

Over these two examples, numerous miRNAs are dysregulated in malignancies and many data
are currently available on their expression for diagnostic or prognostic uses (see review [90]).

Table 3. Let-7c target genes described in cancer diseases.

Disease Targets Function Reference

Glioma E2F5 Control of cell cycle [86]
Melanoma CALU Protein folding and sorting [91]

Lung cancer RAS Oncogene [92]
NSCLC ITGB3/MAP4K3 Metastatic abilities [87]

Cholangiocarcinoma (CCA) IL6-R Immune response [85]
EZH2/DVL3/βcatenin Metastatic abilities [93]

Oral squamous cell carcinoma IL8 Immune response [93]
Lung adenocarcinoma BCL-XL Inhibitor of cell death [94]

Ovarian carcinoma CDC25A Control of cell cycle [95]
Hepatocellular carcinoma (HCC) CDC25A Control of cell cycle [96]

Colorectal cancer MMP11/PBX3 Metastatic abilities [97]
Erythroleukemia PBX2 Transcription [98]

Breast cancer ERCC6 Transcription/excision repair [99]

E2F5: E2F transcription factor 5, CALU: calumenin, ITGB3: integrin beta 3, MAP4K3: mitogen-activated protein
kinase kinase kinase kinase 3, IL6-R: Interleukin 6 receptor, EZH2: enhancer of zeste 2 polycomb repressive complex
2 subunit, DVL3: dishevelled segment polarity protein 3, IL8: Interleukin 8, BCL-XL: BCL2-like 1, CDC25A: cell
division cycle 25A, MMP11: matrix metallopeptidase 11, PBX3: pre-B-cell leukemia homeobox 3, PBX2: pre-B-cell
leukemia homeobox 2, ERCC6: excision repair cross-complementation group 6

4.2. miRNA Regulated by Histone Deacetylase Inhibitors

A few years back, there were discrepancies about miRNA expression modifications by HDACi in
tumors [100,101] probably resulting from different parameters such as cell lines and/or concentrations
used. Since then, involvement of miRNAs in HDACi effects on tumors have been well documented.
In vitro, miRNAs have an important role in HDACi effects such as in colorectal cancer, where it has
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been demonstrated that vorinostat modulates not less than 275 miRNAs resulting in a myriad of
possible targets and pathways affected [102]. Moreover, in some cases, miRNAs modulated by HDACi
have been correlated with tumor stage or clinical outcome. In this section, we will describe the main
miRNAs involved in HDACi effects on tumors. In the current state of the art, it is challenging to
find a link between miRNAs, HDACi and/or a specific cancer or pathways, and so the following
section is ordered regarding both HDACi approval and actions of miRNAs involved (namely, TS-miRs
and oncomiRs).

4.2.1. FDA-Approved HDACi and miRNAs

As mentioned earlier, only four HDACi have been approved by the FDA, namely: Vorinostat
(SAHA), Panobinostat (LBH589), Belinostat (PXD101), and Romidepsin (FK288). Several studies on
various tumor models have been led to understand the mechanisms of these molecules and especially,
the importance of miRNAs in tumor-suppressive effects of these HDACi (Table 4).

HDACi-induced TS-miRs. Treatment by HDACi leads to an increase expression of TS-miR from
the let-7 family in several models. Similarly, in hepatocellular cancer, in vitro and in vivo treatment
with vorinostat or panobinostat triggers let-7b upregulation, leading to the downregulation of BCL-XL,
TRAIL (tumor necrosis factor (ligand) superfamily, member 10) or the oncoprotein HMG2A (high
mobility group box 3) [103] (Figure 2). Other upregulation, induced by vorinostat, of almost all
let-7 family members have been reported in ovarian cancer by Balch et al. [104] as well as in renal
cancer by Pili et al. [105]. Conversely, studies described downregulation induced by vorinostat of
let-7 family members (let-7b, let-7c, let-7f) in other types of tumors such as lung [106] and thyroid
cancers [107]. However, these last studies only described miRNAs modification without going further
into let-7-related mechanisms and functions. These discrepancies can also be a consequence of the
methods used to purify and screen miRNAs.
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to the modulation of several miRNAs within the cell including especially, and surprisingly, an 
upregulation of miR-19a and miR-19b [116]. This highlights the fact that despite its role as an onco-
miR in some cases, treatment mechanisms involving miR-19 are diverse and still need to be fully 
elucidated. Modulation of this cluster by HDACi has also been confirmed in solid tumors [117]. miR-
20a and other miRNAs from the miR-17~92 cluster showed an altered expression in hepatocellular 

Figure 2. miRNAs modulated by HDACi treatments in cancer. HDACi upregulate TS-miR and
downregulate oncomiR to inhibit proliferation and metastasis and to favor apoptosis.

Another example of TS-miR is the miR-200 family, consisting of five members divided into two
clusters, namely, miR-200b, -200a, and -429 (cluster I); and miR-200c and -141 (cluster II). They are
often found to be lost in cancers with different pathways involved [108]. This family appears to be
linked with HDACi effects especially in breast cancers were two studies described upregulation of
miR-200a and miR-200c induced by vorinostat resulting in (i) an upregulation of antioxidant pathway
Nrf2 and (ii) a decrease of proliferation, invasion and migration in tumor cell lines [109,110].
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Other miRNAs have been described as playing a crucial role in these HDACi-induced modifications
depending on cancer type. Panobinostat treatment has lead to increased cell senescence through
miR-31 in breast cancer cells [111]. In pancreatic cancer cells, vorinostat induced many modifications
of cell phenotype through miR-34a [112]. One of the most common mechanisms described in the
literature is the ability by several HDACi to increase apoptosis in various tumor cell lines in a
miRNA-dependent manner (leukemia, lymphoma, pancreatic cancer). This mechanism has been
explained by a HDACi-induced upregulation of several miRNAs such as miR-15a, miR-16, miR-34a or
miR-195 leading to a downregulation of their target mRNAs mainly (but not only) from the BCL-2
family in vitro and in vivo in mice [104,113,114] (Figure 2).

HDACi-induced oncomiR. The role of miR-17~92 cluster members in promoting tumorigenesis
has been widely demonstrated and thus, effects of HDACi on these miRNAs has also been evaluated.
Even though the oncogenic role of the miR-17~92 cluster has been largely described, the six miRNAs
composing this cluster are not equivalent when it comes to promoting tumorigenesis. Consistently,
HDACi affect these miRNAs towards repressing the tumor-promoting tendency of this cluster. In the
literature, vorinostat mechanisms often seem to rely on miR-17~92 miRNAs. Indeed, in lymphoma,
vorinostat decreases miR-17-5p and miR-18 through c-myc, leading to more sensitivity to apoptosis of
tumor cells [115] (Figure 2). In another hematopoietic cancer, Lepore et al. demonstrated that vorinostat
in human leukemia cell lines, leads to increasing apoptosis through repression of BARD-1 (BRCA1
associated RING domain 1) protein. This vorinostat-induced BARD-1 repression was due to the
modulation of several miRNAs within the cell including especially, and surprisingly, an upregulation
of miR-19a and miR-19b [116]. This highlights the fact that despite its role as an onco-miR in some cases,
treatment mechanisms involving miR-19 are diverse and still need to be fully elucidated. Modulation of
this cluster by HDACi has also been confirmed in solid tumors [117]. miR-20a and other miRNAs from
the miR-17~92 cluster showed an altered expression in hepatocellular cancer, by vorinostat resulting
in an upregulation of MICA protein levels and a better recognition of these tumor cells by innate
immune cells and especially NK cells [118]. Moreover in colorectal and renal cancer, the decreased
cell proliferation induced by vorinostat have been linked to a repression of the miR-17~92 cluster
expression [119,120].

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers.

Cancers HDACi miRNAs miRNA Targets Pathways Ref.

Breast

Vorinostat
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-200a
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Keap1
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Nrf2 antioxidant
pathway

[109]
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-200C
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

CRKL
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Invasion [110]
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Migration

Panobinostat
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-31, miR-125a,
miR-125b, miR-205,
miR-141, miR-200c
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

NF-kB inducing
kinase, ITGA5, SEPHS1,
RSBN1, TFDP1
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Cellular senescence [111]
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

BMI1 and EZH2
(indirect)

Colorectal Vorinostat

Changes in 275 out of
the 723 studied human
miRNAs

see article for predicted targets [102]
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-17-92 cluster
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

PTEN Proliferation (opposite
effects depending on
members of the cluster) [119]
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

mRNA levels of
c-MYC, E2F1, E2F2 and
E2F3
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Table 4. Cont.

Cancers HDACi miRNAs miRNA Targets Pathways Ref.

HCC

Vorinostat
Panobinostat
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

let-7b
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

p21
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

E2F1 transcriptional
activity [103]
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

MYC, MET, HMGA2,
TRAIL, BCLX
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Cell proliferation

Vorinostat
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-17, miR-18a,
miR-19a, miR-20a,
miR-93, miR-106b
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

MICA, MICB
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Recognition of tumor
by innate immune cells

[118]

Leukemia

Vorinostat
Romidepsin
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-15a, miR16,
miR29b
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

MCL1, BCL-2
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Apoptosis [113]

Vorinostat
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

23 miR (e.g. miR-19a,
miR-19b)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

BARD-1
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Sensitivity to
vorinostat [116]
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

26 miR (see article)

Cancers 2019, 11, x 9 of 22 

 

cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Apoptosis
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-196a
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

BCR/ABL
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Transcriptional activity
of the pluripotency factors

[121]
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Cell cycle progression
genes
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Sentivity to imatinib
mesylate (a Tyrosine
Kinase inhibitor)

Panobinostat

miR-26a, miR-133a,
miR-181b, miR-182,
miR-200c, miR-211,
miR-320a, miR-320c,
miR-423-5p, miR-638,
miR-877, miR-1307,
miR-1308, miR-1268
miR-516a-3p, miR-605
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Homologous
recombination repair
pathway (RAD51,
BRCA1, NBS1)

Cancers 2019, 11, x 9 of 22 

 

cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Homologous
recombination repairdelay
DNA repair
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Sensitivity to CNDAC
(prodrug used in AML)

[122]

Lung Vorinostat
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

let7b, miR-17*,
miR-92a

expected targets for each miR listed in the article [106]
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-373
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

LAMP1, VSP4B,
IRAK2, BRMS1L, SYDE1,
CYBRD1, PDIK1L,
C10orf46, TGFBR2

Associated with poorer
disease-free survival [123]

Lymphoma Vorinostat
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-15b, miR-17-3p,
miR-17-5p, miR-18,
miR-34a, miR-155
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

c-myc
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Sensitivity to apoptosis [115]

Ovarian Vorinostat
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Let-7, miR-99, miR-100, miR-125 . . . (see figure in article) [104]

Pancreatic Vorinostat
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-34a
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 
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Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
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↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
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↗ Apoptosis 
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SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 
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Cyclin D1, CDK6,
SIRT1, survivin, BCL-2,
VEGF, Notch pathway
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  
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miR-92a 

expected targets for each miR listed in the article [106] 
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
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↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
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(prodrug used in AML) 
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Lung Vorinostat 

↘ let7b, miR-17*, 
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Apoptosis, cell cycle
arrest

CRKL: v-crk avian sarcoma virus CT10 oncogene homolog-like, NF-kB: nuclear factor of kappa light polypeptide
gene enhancer in B-cells 1, ITGA5: integrin, alpha 5, SEPHS1: selenophosphate synthetase 1, RSBN1: round
spermatid basic protein 1, TFDP1: transcription factor Dp-1, BMI1: BMI1 proto-oncogene, polycomb ring finger,
EZH2: enhancer of zeste 2 polycomb repressive complex 2 subunit, PTEN: phosphatase and tensin homolog, E2F:
E2F transcription factor, p21/CIP1: cyclin-dependent kinase inhibitor 1A, MET: MET proto-oncogene, receptor
tyrosine kinase, HMGA2: high mobility group AT-hook 2, TRAIL: tumor necrosis factor (ligand) superfamily,
member 10, BCLX: BCL2-like 1, MICA/B: MHC class I polypeptide-related sequence A/B, MCL1: myeloid cell
leukemia 1, BCL-2: B-cell CLL/lymphoma 2, BARD-1: BRCA1 associated RING domain 1, BCR: breakpoint cluster
region, ABL: ABL proto-oncogene 1, non-receptor tyrosine kinase, RAD51: RAD51 recombinase, BRCA1: breast
cancer 1, early onset, NBS1: nibrin, LAMP1: lysosomal-associated membrane protein 1, IRAK2: interleukin-1
receptor-associated kinase 2, BRMS1L: breast cancer metastasis-suppressor 1-like, SYDE1: synapse defective 1,
Rho GTPase, homolog 1, CYBRD1: cytochrome b reductase 1, PDIK1L: PDLIM1 interacting kinase 1 like, TGFBR2:
transforming growth factor, beta receptor II, CDK6: cyclin-dependent kinase 6, SIRT1: sirtuin 1, VEGF: vascular

endothelial growth factor A, PUMA: BCL2 binding component 3. Arrows indicate decrease (
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  
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4.2.2. Other HDACi and miRNAs

There are plenty of HDACi that have not yet been approved by the FDA. Some of them are
involved in phase III clinical trials such as Valproic acid to treat cervical and ovarian cancers or
Tacedinaline for multiple myeloma and lung cancers [124]. Others are in earlier stages but nonetheless,
interesting studies have been done to strengthen the close relationship between HDACi effects and
miRNA-related mechanisms (Table 5).

Table 5. microRNAs modulated by histone deacetylase inhibitors used in cancer models.

Cancers HDACi miRNAs miRNA Targets Pathways Ref.

Breast

LAQ824
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  
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recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

RYBP/DEDAF,
ZBTB10/RINZF

[101]

TSA
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

22 miR among which:
miR-1, miR-143, miR-144,
miR-191-3p, miR-202-5p . . .

(predicted targets for each miRNAs
provided in the article) [132]
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

10 miR among which:
miR-500, miR-645,
miR-512-3p, miR-613 . . .
(see article for complete
listing)

TSA, VPA NaBu . . .
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR125-a
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

HDAC5 mRNA
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

apoptosis [133]

CCA CG200746
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-22-3p, miR-22-5p,
miR-194-3p, miR-194-5p,
miR-210-3p, miR-509-3p

expression induced
in treated cells
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

tumor growth

Cancers 2019, 11, x 9 of 22 

 

cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

proliferation
[134]

Colorectal

PBA
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-9, miR-127,
miR-129, miR-137

[135]

Butyrate
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

18 miRNAs
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

p21 protein
expression
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

proliferation

[127]
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

26 miRNAs (among
which miR-17-92a,
miR-18b-106 and
miR25-106b clusters)

Entinostat (MS-275)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

pri and mature miR-21 [136]

Gastric
carcinoma

TSA
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-375
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

PDK1, XIAP,
14-3-3ζ (YWHAZ),
cIAP-2 (BIRC3)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Tumor cell
viability [137]

BCL2L11 (Bim)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

apoptosis

HCC

TSA
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-449
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

c-MET
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

cell proliferation
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

apoptosis
[138]

Sodium valproate
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-889
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

MICB
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

sensitivity to NK
cell-mediated lysis

[139]

Leukemia
valpromide
(=VPA analog)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-144, miR-451,
miR-155 (all cells)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

GATA-1
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

erythropoiesis
impairment

[140]
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

GATA-2
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-15a, miR-16,
miR-222 (some cells)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

ETS family
(PU.1, ETS-1,
GABP-α, Fli-1)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

megakaryocyte
features
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Table 5. Cont.

Cancers HDACi miRNAs miRNA Targets Pathways Ref.

Lung

Entinostat (MS275)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-200a
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

KEAP1/NRF2
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

cell growth [128]

TSA
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Let-7, miR-15a, miR-16-1
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

proliferation
and apoptosis [125]
induce cell cycle
arrest

Lymphoma RGFP966
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-15a, miR-195, let-7a
(in vitro and in vivo)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

BCL-2, BCL-XL
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

apoptosis [126]

Melanoma 4PBA (or 5Aza, 5Aza +
4PBS)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-34b, miR-132,
miR-142-3p, miR-200a,
miR-375, miR-489
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Proliferation,
invasion

[141]
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

wound healing
changes in cell
morphology

Multiple
Myeloma AR-42
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-9-5p
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

CD44 [142]

Ovarian AR42
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-15a, miR-34, . . .
(see figure in article)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

WT1, PAX2,
GATA6,
APO2/TRAIL . . .
(see article)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

EMT, Canonical
Wnt R signaling
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Negative
regulation of cell
cycle processes,
extrinsic apoptosis

[104]

Pancreatic AR-42
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-30d, miR-33,
miR-125b
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

p53, cyclin B2,
CDC25B
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Invasion, tumor
growth

[129]

Prostate

Mocetinostat
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-31
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

E2F6
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

apoptosis [130]

OBP-801
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-320a in vitro and
in vivo (rat)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

PSA, androgen
receptor

Cancers 2019, 11, x 9 of 22 

 

cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

Viability, cell
growth, cell
proliferation,
prostate
tumorigenesis
(in vivo)

[131]

Tongue
TSA (or Doxorubicin,
5-fluorouracil,
etoposide treatments)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

miR-375
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

CIP2A, MYC,
14-3-3z, E6AP, E6,
E7
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

cell proliferation,
migration and
invasion [143]
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 

↗ miR-31, miR-
125a, miR-125b, 
miR-205, miR-141, 
miR-200c 

↘ NF-kB inducing 
kinase, ITGA5, 
SEPHS1, RSBN1, 
TFDP1 

↗ Cellular senescence [111] 

↘ BMI1 and EZH2 
(indirect) 

Colorectal Vorinostat 

Changes in 275 out 
of the 723 studied 
human miRNAs 

see article for predicted targets [102] 

↘ miR-17-92 
cluster 

↗ PTEN Proliferation (opposite 
effects depending on 
members of the cluster) 

[119] 

 
↘ mRNA levels of c-
MYC, E2F1, E2F2 and 
E2F3 

HCC 

Vorinostat 
Panobinostat 

↗ let-7b ↗ p21 ↘ E2F1 transcriptional 
activity 

[103] 

↘ MYC, MET, 
HMGA2, TRAIL, 
BCLX 

↘ Cell proliferation 

Vorinostat 

↘ miR-17, miR-
18a, miR-19a, miR-
20a, miR-93, miR-
106b 

↗ MICA, MICB ↗ Recognition of tumor by 
innate immune cells 

[118] 

Leukemia 

Vorinostat 
Romidepsin 

↗ miR-15a, miR16, 
miR29b 

↘ MCL1, BCL-2 ↗ Apoptosis [113] 

Vorinostat 

↗ 23 miR (e.g. 
miR-19a, miR-19b) 

↘ BARD-1 ↗ Sensitivity to vorinostat [116] 

↘ 26 miR  
(see article) 

 
↗ Apoptosis 

↗ miR-196a ↘ BCR/ABL ↘ Transcriptional activity 
of the pluripotency factors 

[121] 

↘ Cell cycle progression 
genes 
↗ Sentivity to imatinib 
mesylate (a Tyrosine Kinase 
inhibitor) 

Panobinostat 

miR-26a, miR-133a, 
miR-181b, miR-182, 
miR-200c, miR-211, 
miR-320a, miR-
320c, miR-423-5p, 
miR-638, miR-877, 
miR-1307, miR-
1308, miR-1268 
miR-516a-3p, miR-
605 

↘ Homologous 
recombination repair 
pathway (RAD51, 
BRCA1, NBS1) 

↘ Homologous 
recombination repair 
delay DNA repair 
↗ Sensitivity to CNDAC 
(prodrug used in AML) 

[122] 

Lung Vorinostat 

↘ let7b, miR-17*, 
miR-92a 

expected targets for each miR listed in the article [106] 

↗ miR-373 ↘ LAMP1, VSP4B, 
IRAK2, BRMS1L, 
SYDE1, CYBRD1, 

Associated with poorer 
disease-free survival 

[123] 

p21, p53, RB

Various
models

PBA (and 5-Aza-CdR)
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cancer, by vorinostat resulting in an upregulation of MICA protein levels and a better recognition of 
these tumor cells by innate immune cells and especially NK cells [118]. Moreover in colorectal and 
renal cancer, the decreased cell proliferation induced by vorinostat have been linked to a repression 
of the miR-17~92 cluster expression [119,120].  

Table 4. microRNAs regulated by the four FDA-approved histone deacetylase inhibitors in cancers. 

Cancers HDACi miRNAs miRNA Targets Pathways Ref. 

Breast 

Vorinostat 

↗ miR-200a ↘ Keap1 ↗ Nrf2 antioxidant 
pathway 

[109] 

↗ miR-200C ↘ CRKL ↘ Invasion [110]   
↘ Migration 

Panobinostat 
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NaBu, Sodium Butyrate, E2F: E2F transcription factor, p21/CIP1: cyclin-dependent kinase inhibitor 1A, MET:
MET proto-oncogene, receptor tyrosine kinase, BCL-2: B-cell CLL/lymphoma 2, RYBP/DEDAF: RING1 and YY1
binding protein, ZBTB10/RINZF: zinc finger and BTB domain containing 10, HDAC5: histone deacetylase 5,
PDK1: pyruvate dehydrogenase kinase, isozyme 1, XIAP: X-linked inhibitor of apoptosis, 14-3-3ζ (YWHAZ):
tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta, cIAP-2 (BIRC3): baculoviral IAP
repeat containing 3, BCL2L11 (Bim): BCL2-like 11, MICB: MHC class I polypeptide-related sequence B, GATA:
globin transcription factor, KEAP1/NRF2: kelch-like ECH-associated protein 1, BCL-XL: BCL2-like 1, WT1: Wilms
tumor 1, PAX2: paired box 2, APO2/TRAIL: tumor necrosis factor receptor superfamily, member 10a, PU.1: Spi-1
proto-oncogene, ETS-1: v-ets avian erythroblastosis virus E26 oncogene homolog 1, GABP-α: GA binding protein
transcription factor, alpha subunit 60kDa, CDC25B: cell division cycle 25B, PSA: prostate specific antigen, CIP2A:
cancerous inhibitor of PP2A, RB: retinoblastoma 1, BCL6: B-cell CLL/lymphoma 6, MeCP2: methyl CpG binding
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Firstly, and expectedly, some non-approved HDACi act on similar pathways and miRNA clusters
that the ones authorized by the FDA. In lung cancer, the let-7 family miRNAs are also upregulated
by TSA, leading to increased cell cycle arrest and apoptosis of tumor cells compared to adjacent
non-tumorous lung tissue [125]. Similarly, in lymphoma, let-7a alongside with other miRNAs are
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upregulated by Romidepsin, decreasing anti-apoptotic proteins such as BCL-2 (B-cell CLL/lymphoma
2) and BCL-XL (BCL2-like 1) [126]. The miR-17~92 cluster members have been described to be
regulated by butyrate in colorectal cancer [127] and the miR-200 family is involved in reducing
tumor cell proliferation in NSCLC and SCLC (Small Cell Cancer of the Lung) treated with Entinostat
(MS275) [128]. miR-34 and miR-15a, described below, are also upregulated by AR42 in ovarian
cancer, which trigger a cascade of pathways leading to a decrease of Wnt receptor signaling and EMT
(epithelial mesenchymal transition), and an increase of negative regulation processes of cell cycle
and apoptosis [104]. The same HDACi in pancreatic cancer, decreases p53 and cyclins protein levels
thanks to variation of miR-30d, miR-33, and miR-125b, leading to the inhibition of cell proliferation,
invasion and tumor growth, and to an increase of ROS generation, DNA damage and apoptosis [129].
Mocetinostat, a clinical phase II HDACi, has been described as involving miR-31 in the inhibition
of E2F6 (E2F transcription factor 6), leading to apoptosis of the prostate tumor cells [130]. Another
HDACi, OBP-801, has been described as inducing, both in vitro and in vivo (mice), a decrease of
tumor cell growth involving an upregulation of miR-320a [131]. In the same study, they also identified
that miR-320a was almost not modified by other HDACi such as SAHA or TSA, highlighting the
mechanistic specificities of HDACi.

4.2.3. Clinical Relevance

Interestingly, miRNAs modulated by HDACi have been proven to have importance for clinical
outcomes, such as miR-200c and miR-203 in pancreatic adenocarcinomas directly resected from patients.
Indeed, the group with no recurrence within six months exerted a much higher level of these two
miRNAs than the “recurrence group” [146]. In primary resected tumors, it has been demonstrated
that miR-200c and miR-203 may also have a biomarker relevance. Indeed, Hibino et al. showed a
significant association between non-recurrence and a high expression of miR-203 and miR-200c [114].
In a clinical study on renal cancer patients, miR-605 was directly targeted by a combination of vorinostat
and bevacizumab, an antibody targeting growth factors. They demonstrated that this miRNA was
upregulated in treatment responders at baseline and that it was downregulated after treatment ([105];
clinical trial NCT00324870). This is explained by the fact that these miRNAs, modified by epigenetic
drugs such as HDACi, crosstalk with other proteins such as p53 for instance and are, therefore,
able to shift pathways into anti-tumor outcomes for the cell. To further confirm the importance of
miRNAs and their relevance in clinics, several ongoing trials plan to investigate miRNA involvement
in HDACi-related effects such as Belinostat in carcinoma patients (NCT00926640), or vorinostat in
bladder and renal cancers (NCT00926640).

Overall, as previously noticed, it appears difficult to bring out common mechanisms whether it is
regarding HDACi molecules, tumor types or miRNAs involved. Conventional clusters such as let-7,
miR-17~92, miR-200 are often described to be modified by HDACi but other less studied miRNAs have
also been recently described. As expected, effects described are consistent with pathway modifications
described in Section 3 of this review. Finally, most of the aforementioned articles have functionally
tested miRNAs (mostly with miRNA mimic and/or anti-miR), describing both the importance and the
need of these miRNAs to be involved in HDACi-induced mechanisms.

4.3. Histone Deacetylase Inhibitors and Circulating miRNAs

As mentioned earlier, miRNAs modulated by HDACi can also be screened in body fluids even
if few studies have investigated this characteristic. As a proof of concept, Pili et al. evaluated
the modulation of circulating miRNAs in clear-cell renal cell carcinoma (ccRCC) patients under
a combinatory treatment of vorinostat and bevacizumab (a humanised monoclonal antibody that
neutralises VEGF) [105]. They observed in responder patients an upregulation of miR-20a and
miR-let-7b and a downregulation of miR-142-3p, miR-154, miR-605 and miR-199a-5p after treatment.
Conversely, miR-605 was upregulated after treatment in progressor patients. Interestingly, this miRNA
participates in the p53 network [147] and is frequently upregulated or mutated in cancers [148,149].
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To our knowledge, this is the only study about the use of circulating miRNAs as a prognostic biomarker
of HDACi response, even if it is a conventional approach for other anti-tumor treatments, as recently
described in the review of Najminejad et al. [150] and Pardini et al. [151]. We believe however, that
it can be a promising approach since miRNAs are stable and easily detectable in all body fluids.
Indeed, circulating miRNA are protected from RNase activity through their conjugation with proteins,
their inclusion in lipid or lipoprotein complexes or through their loading in exosomes/microvesicles.
Exosomes are small intraluminal vesicles that are 50–150 nm in diameter. They are generated inside
multivesicular endosomes (MVB) [152] that fuse with cell membranes and release the vesicles into the
extracellular space. Exosomal miRNAs participate in intercellular communication (Figure 3). Uptake
by normal cells of the exosome cargo secreted by cancer cells can affect the behavior of recipient
cells in various ways that provide benefits to the tumor. Several studies have described how these
exosomal miRNAs, induced or not by treatment, participate in tumor immune escape [153,154] or drug
resistance [155,156].
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numerous times to conduct to a mature single strand miRNA included in the RISC complex. miRNA 
may regulate gene expression in the cell but also in other cells by their encapsulation in microvesicles 
such as exosomes. miRNA may also be disseminated through the bloodstream. MVB: endosomal 
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Figure 3. miRNA biogenesis pathway. miRNA is transcribed in the nucleus and then cleaved numerous
times to conduct to a mature single strand miRNA included in the RISC complex. miRNA may
regulate gene expression in the cell but also in other cells by their encapsulation in microvesicles
such as exosomes. miRNA may also be disseminated through the bloodstream. MVB: endosomal
MultiVesicular bodies, RISC: RNA-induced silencing complex.

5. Conclusions

Many miRNAs have shown different expression levels in response to HDACi treatment. Some of
them can potentiate the anti-tumor response, or on the contrary, decrease it. Since tumor cells release
miRNAs through exosomes that can be detected in all body fluids, such as plasma, urine or saliva,
analysis of circulating miRNAs in patient liquid biopsies provides promising biomarkers to monitor
drugs in patients. However, to date, it is still challenging to accurately identify clinically relevant
miRNAs due to the lack of standardization in their extraction or in the conservation of biopsy, which
greatly affects the stability of miRNAs.
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