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Missing gene identification using 
functional coherence scores
Meghana Chitale1, Ishita K. Khan1 & Daisuke Kihara1,2

Reconstructing metabolic and signaling pathways is an effective way of interpreting a genome 
sequence. A challenge in a pathway reconstruction is that often genes in a pathway cannot be easily 
found, reflecting current imperfect information of the target organism. In this work, we developed a 
new method for finding missing genes, which integrates multiple features, including gene expression, 
phylogenetic profile, and function association scores. Particularly, for considering function association 
between candidate genes and neighboring proteins to the target missing gene in the network, we used 
Co-occurrence Association Score (CAS) and PubMed Association Score (PAS), which are designed for 
capturing functional coherence of proteins. We showed that adding CAS and PAS substantially improve 
the accuracy of identifying missing genes in the yeast enzyme-enzyme network compared to the cases 
when only the conventional features, gene expression, phylogenetic profile, were used. Finally, it was 
also demonstrated that the accuracy improves by considering indirect neighbors to the target enzyme 
position in the network using a proper network-topology-based weighting scheme.

Genome sequences are now routinely determined in biology labs using the recent fast sequencing technol-
ogy. Interpretation of a determined genome sequence, including function annotation of individual genes in 
the genome, is a crucial, fundamental step for deducing biological information embedded in the sequence. 
Substantial efforts have been paid in recent years to develop gene function prediction methods that can provide 
more effective accurate function annotation1–3. As a systematic interpretation of a genome, metabolic and sig-
naling pathways can be constructed with annotated proteins in the genome. This step, called pathway (or net-
work) reconstruction4–7, provides a two-dimensional structure and biological context from the one-dimensional 
genome sequence, leading to the possibility of computational simulations of pathways8–10. However, pathway 
reconstructions is inherently incomplete as it reflects the current imperfect information of the organism. There 
are two types of missing information in pathway reconstructions: The first type is a reaction that is missing in a 
network, which leads to a dead-end of production or excessive consumption of metabolites11–13. The second type 
is a reaction that is known to exist in the target organism but the gene that encodes the enzyme that carries out 
the reaction is not identified yet. Such reactions are called orphan reactions and the problem to identify the corre-
sponding enzymes is called the missing enzyme problem14,15. It is estimated that enzymes for over 20% of known 
reactions are still missing16–18. Orphan reactions are classified into global, where no genes for that reaction are 
found in any organisms, and local, where a corresponding gene is not found in an organism of interest15.

A main reason that local orphan reactions occur is that the corresponding gene in the organism has substan-
tially diverged from known sequences of the enzyme in other organisms for sequence similarity-based tech-
niques19–21 to identify it. Thus, to complement sequence-based assignments, methods have been developed that 
use genomic or proteomic contexts of genes for identifying missing proteins. The underlying idea behind these 
methods is that the missing gene in the network tend to have a similar context to neighboring enzymes in the net-
work. Context features used include gene expression data22–24, comparative genomics features such as gene fusion, 
conserved gene order, and phylogenetic profiles25–28. Phylogenetic profile and conserved gene order information 
are combined in a method proposed by Yamanishi et al.29. Chen et al. used a combination of sequence similarity, 
common operon structure, and phylogenetic profile to identify missing genes30. Gene order, gene fusion events, 
phylogenetic profile, gene expression, and protein-protein interaction were combined as features in a machine 
learning framework by Church and his colleagues31.

At this juncture, it would be appropriate to discuss the relationship of the missing gene identification with 
general gene function prediction. They are similar in the sense that both of them map a protein to biological 
function and in techniques used for the mapping. However, the direction of the mapping is different between the 
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two. In regular protein function prediction, input data is a representation of a target protein, typically the amino 
acid sequence32–35 or the tertiary structure of the protein36–38, and the output is predicted biological function of 
the protein. There are function prediction methods that consider multiple different features of a target protein39–41 
but still the logical flow of such methods is the same. In contrast, in the missing gene identification, input is the 
biological context (e.g. the name of the enzyme) of the missing gene, and output is prediction of a gene in a target 
genome, which is predicted to be the missing gene. Thus, the logical flow of the missing gene identification is 
opposite from the regular protein function prediction method, because a method takes biological function as 
input and output a gene that fits to the function. Another difference is that the missing gene problem occurs spe-
cifically when pathways are reconstructed from genes in a genome. Thus, information of neighboring genes in the 
pathway is available. On the other hand, general protein function prediction usually needs to predict its function 
only from the information of the single protein.

In this work, we developed a new method named GO-MEP (Gene Ontology-based Missing Enzyme 
Predictor) for finding missing genes that integrates multiple features, including gene expression, phylogenetic 
profile, and function association scores developed in our group. Particularly, for considering function associ-
ation between candidate genes and neighboring proteins to the target missing gene in the network, we used 
Co-occurrence Association Score (CAS) and PubMed Association Score (PAS), which were developed in our 
previous work42. The two scores are designed for capturing functional coherence, rather than simple functional 
similarity of proteins, and aim to identify proteins that play coherent roles in the same functional unit. CAS and 
PAS were computed from the frequency of GO term pairs used to annotate individual genes and those which 
occur in the same PubMed abstracts, respectively. Compared to existing GO term similarity scores developed43,44, 
PAS and CAS are unique in that they can be defined for GO term pairs from different categories, e.g. for a term 
in Molecular Function (MF) and another one from Biological Process (BP). CAS and PAS are general-purpose 
scores for quantifying coherence of GO term pairs. The new contribution of this work is the development of 
GO-MEP, which combines multiple features including CAS and PAS, and that we showed that CAS and PAS is 
effective in improving accuracy of identifying missing genes. This study of GO-MEP showed that adding CAS 
and PAS substantially improved the accuracy of identifying missing genes in the yeast enzyme-enzyme network 
compared to the cases when only the conventional features, gene expression, phylogenetic profile, were used. 
The accuracy of GO-MEP was further boosted when function similarity between candidate genes to the missing 
enzyme was taken into account, even in the cases that the exact function of candidates are not revealed. Finally, it 
was also demonstrated that the accuracy improves by considering indirect neighbors to the target enzyme posi-
tion in the network with a proper network-topology-based weighting scheme used.

Results
We constructed an Enzyme-Enzyme Network (EEN) of Saccharomyces cerevisiae (yeast) (See Methods). The EEN 
contains 688 known enzymes with 5185 edges. GO-MEP uses six different scores, gene expression correlation 
(EXPR), phylogenetic profile (PHYL), CAS, PAS, funsim, and PROFILE, either individually or in combination of 
two or more scores to evaluate fitness of candidate genes to a target enzyme in the EEN. For a target enzyme posi-
tion in the EEN, a prediction is considered as correct if the correct gene is ranked the top by the score among all 
the candidates. The prediction performance of GO-MEP with a score is evaluated by the score rank of the correct 
gene among all the candidates for a target enzyme.

First, we examined performance of individual scores from different angles. Then, we discussed prediction 
accuracy of GO-MEP using combination of scores. We further tested GO-MEP in a more difficult situation when 
genes for 20% of the nodes among the 688 nodes in the EEN are missing and needed to be filled.

Network distance dependency of the scores. To begin with, we examined how each individual score 
changes relative to the networks distance. In Fig. 1, average of five scores, CAS, PAS, funsim, EXPR, PHYL com-
puted for two nodes at different distances in the EEN are shown. All the scores showed a significant drop when 
the distance of the two nodes increased from 1 to 2 and from 2 to 3. At the network distance of 3 or more, CAS 
and PAS did not change much, whereas funsim, EXPR, and PHYL further showed gradual descent of the average 
scores as the network distance increases. The results of EXPR and PHYL are consistent with a previous work25.

In Fig. 2, we tested the individual scores for correct gene recognition at each of 688 enzyme position in the 
EEN. Given an enzyme position under consideration, the relatedness score (Eq. 7) was computed with an indi-
vidual score for 1st, 2nd, and 3rd level neighbors (i.e. k =  1, 2, 3) for 5200 candidate proteins (1 correct enzyme, 
and 5199 negative proteins). Then, the cumulative number of times that the correct enzyme was ranked within 
a certain top rank in terms of the relatedness score was reported in Fig. 2. In the best case, the feature score will 
be able to top rank the correct enzyme at the every position, and in the worst case the enzyme is ranked 5200th.

It is shown that for all the feature scores, the scores using the first (N1) and the second (N2) level neighbors 
showed comparable performance whereas the performance drops significantly when ranking was computed on 
the score using the third level (N3) neighbors. The performance difference between the first, second, against 
the third level scores were large for the GO annotation based scores, CAS, PAS, and funsim. Comparing the five 
feature scores with the first level network neighbors, CAS performed best considering the cumulative correct 
enzyme assignment within top 100 ranks. CAS ranked 416 enzymes correctly out of 688 target enzymes within 
top 100 and PAS, funsim, PHYL, and EXPR follow in this order with 263, 226, 183, and 143 correct assignments, 
respectively. CAS was also the best in terms of the Mean Reciprocal Rank metric (Equation 9) when N1 level 
neighbors were considered. MRR for N1 for each score type was: CAS, 0.199; PAS: 0.07, funsim: 0.173, PHYL: 
0.054, and EXPR: 0.055, respectively.
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Effect of GTOM weights for the score performance. Next, we examined the performance of individ-
ual scores with GTOM weights with two network neighbor levels. As described in Methods, GTOM quantifies 
a topological distance between two nodes in a network (Equation 6). Among neighboring nodes at the same 
network distance (e.g. 2) to a target enzyme position in the EEN, nodes have higher GTOM weights than others 
if they share more common connected nodes between the target. For each score type, prediction performance 
of six score forms that come from combinations of two network neighbor levels (N1 and N2) and three GTOM 

Figure 1. Correlation between the feature scores and the network distance. The average of feature scores 
relative to the network distance is plotted. (A) CAS; (B) PAS; (C) funsim; (D) EXPR; and (E) PHYL.
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Figure 2. Enzyme assignment performance of the feature scores using different network neighbor levels. 
For each of the 688 enzyme positions in the EEN, five individual feature scores were used to rank the correct 
enzyme together with the 5199 negative proteins were ranked. Then, the cumulative number of enzymes 
(y-axis) having ranks better than a value on the x-axis was plotted. The score of a candidate protein for a target 
enzyme position was computed according to Eq. 7, with a consideration of the first (N1), second (N2) and 
third (N3) level neighbors (k =  1, 2, 3 in Eq. 7). (A) CAS. Mean Reciprocal Rank (MRR) of N1, N2, and N3 
results were 0.199, 0.186, and 0.014, respectively. (B) PAS. MRR of N1, N2, and N3 were 0.072, 0.059, and 0.007, 
respectively. (C) funsim. MRR of N1, N2, and N3 were 0.173, 0.114, and 0.021, respectively. (D) EXPR. MRR of 
N1, N2, and N3 were 0.055, 0.06, and 0.020, respectively. (E) PHYL. MRR of N1, N2, and N3 were 0.054, 0.061, 
and 0.020, respectively.
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weights (no weight as shown in Eq. 7, GTOM1 and GTOM2 as shown in Eq. 8) was examined in Fig. 3. MRR of all 
the score variations are shown in the figure caption. In terms of MRR, the GTOM1_N1 and GTOM1_N2 options 
showed a better or the same performance as the non-weighted options (i.e. N1 and N2) for all the score types 
but one (PHYL for GTOM1_N1 and EXPR for GTOM1_N2), although often the improvement was marginal. For 
CAS, funsim, and PHYL, GTOM1_N2 (triangles in the graphs) performed best with a relatively large margin to 
the other score variations.

Performance comparison with different GO annotation levels. Levels of function annotation in the 
current database varies from gene to gene with a substantial fraction of genes under-annotated with less specific 
GO terms or no annotation due to lack of experimental evidence. There are also cases that annotations are based 
on computational predictions with rather general GO terms, e.g. transporter, kinase, etc. In this section, to mimic 
the situation where complete annotation information is not available for candidate proteins, we examined how 
the accuracy of the enzyme assignment changes by using different lower levels of GO annotations.

We used five levels of candidate protein GO annotations for enzyme recognition for the EEN and tested the 
four GO term-based scores, i.e CAS, PAS, funsim, and PROFILE. PROFILE directly computes similarity of a target 
enzyme function that are converted from its Enzyme Commission (EC) number to GO annotations of candidate 
genes (See Methods). Annotation levels included all GO annotations in the database and parental terms mapped 
from the original GO annotations to level (depth) 3, 4, 5, and 6 in the GO hierarchy. In the parental term map-
ping, terms that are at a deeper level than the target level were mapped to their parental terms at the target level, 
but those that are at a shallower level are kept intact. The level of a GO annotation term is defined as its maximum 
distance from the Gene Ontology root node “all”. For example, using a GO term in the MF category, “MAP kinase 
tyrosine phosphatase activity (GO:0033550)”, is located at the 9th level in the hierarchy; its 6th level parental term 
is “phosphatase activity (GO:0016791)”. Its 5th, 4th, and 3rd parental terms are “phosphoric ester hydrolase activ-
ity (GO:0042578)”, “hydrolase activity acting on ester bonds (GO:0016788)”, “hydrolase activity (GO:0016787)”, 
respectively.

For CAS (Fig. 4A), interestingly, prediction performance did not deteriorate much with the parental terms up 
to the 5th level. Using the 4th level terms (empty circles), early rank recognition of the correct enzyme, e.g. within 
the top 10 ranks, declined to about half, however, the difference was smaller when top 100 ranks were considered. 
Reflecting the deterioration of the early rank recognition using the 4th level terms, MRR using the 4th level terms 
(0.104) showed a 56.5% drop from that of the 5th level terms (0.184), which is larger than the drop from 6th level 
(0.207) to 5th level (88.9%). When parental terms on the 3rd level were used, the recognition worsened largely even 
at lower rank cutoffs. MRR for the 3rd level was 0.021, 20.2% of that of the 4th level.

The accuracy by PAS (Fig. 4B) was more affected by lowering the resolution of GO terms than CAS. In the case 
of funsim (Fig. 4C), accuracy did not change much up to the 4th GO level and a substantial decline of the accuracy 
started from the 3rd level. PROFILE showed a different trend from the other three scores (Fig. 4D). Lowering the 
resolution of GO terms affected to the accuracy more sensitively than the other scores for earlier rank recognition. 
The number of EEN positions that ranked the correct enzyme at the top was 389 when all the annotated GO terms 
were used, which decreased almost evenly to 322, 224, and 152 using GO terms mapped to 6th, 5th, and 4th levels, 
and larger to 16 using 3rd levels, respectively. This is consistent when MRR was considered. MRR changed almost 
evenly from 0.617 using all the GO annotations to 0.541, 0.416, and 0.314 using the 6th, 5th, and 4th level GO terms, 
and dropped largely to 0.058 using the 3rd level GO terms. The deterioration of the performance by lowering GO 
levels was observed at early recognition. When the top 100 ranks were considered, the accuracy up to the GO 
term level 4 showed similar performance.

To summarize, for all four scores, low resolution GO terms at the 3rd level substantially deteriorated the accu-
racy of identifying correct enzymes. Deterioration of the performance by lowering GO resolution was observed 
mainly at early recognition within the top 100 ranks. While PROFILE showed the most sensitive decline of accu-
racy as lower GO term resolutions were used, the other three scores showed stable performance to the parental 
term mapping at up to the 5th level.

Missing enzyme identification with different feature scores. Up to the previous section, we exam-
ined individual score types in different settings. Here, we directly compared the performance of six individual 
feature scores in the missing enzyme recognition. For a score type, the best score form among the six variations 
(Eqns 7 and 8) was used, which gave the largest cumulative number of correct enzymes as the rank 100. In Fig. 5, 
two results are shown: the left panel shows the results when all the original GO annotations were used for the 
candidate proteins, while in the right panel a GO term was mapped to its parental term at the 4th level in the GO 
hierarchy. As were done in the previous sections (Figs 2, 3 and 4), for each of the 688 positions in the EEN, the 
correct enzyme together with 5199 other proteins were ranked in terms of the score, and the rank of the correct 
enzyme was reported.

When original GO annotations were used (Fig. 5A), PROFILE significantly outperformed the other scores. 
In particular, when rank 1 correct enzyme recognition was considered, the cumulative number of correctly rec-
ognized enzymes was more than twice larger (389) than the other scores. MRR gives a consistent view. MRR of 
PROFILE is 0.617, which is 2.1 times larger than that of CAS (0.294), the second best performing score. funsim 
and PAS follow to CAS in this order, thus the four GO-term based scores showed better performance than PHYL 
and EXPR in terms of the correct enzyme ranking and MRR. EXPR had the least relevant information for identi-
fying missing enzymes.

When only low resolution GO terms at the 4th level or lower are available (Fig. 5B), PROFILE still showed the 
best performance although the number of correctly recognized enzymes at rank 1 and MRR dropped to about 
half (152 and 0.314, respectively). Note that the performance of PHYL and EXPR are the same between Fig. 5A,B 
because they are not relevant to GO annotations. CAS and funsim now showed almost the same performance, 
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Figure 3. Score performance with multi-level neighbors and GTOM weights. For each feature score, six 
combinations of network neighbor levels and GTOM weights were compared in terms of the cumulative ranks 
of correct enzyme among 5200 candidates. The six variations of a score of type t are two neighbor levels from 
Eq. 7, and four combinations of two neighbor levels of the score, and two neighbor levels for GTOM weights. 
(A) CAS. MRR for N1, N2, GTOM1_N1, GTOM1_N2, GTOM2_N1, and GTOM2_N2 were 0.199, 0.186, 0.223, 
0.294, 0.192, and 0.219, respectively. (B) PAS. MRR were 0.072, 0.059, 0.077, 0.083, 0.072, and 0.070, for the 
same order of the score forms as CAS. (C) funsim. MRR values were 0.173, 0.114, 0.186, 0.191, 0.164, and 0.143, 
respectively. (D) EXPR. MRR were 0.055, 0.032, 0.055, 0.046, 0.053, and 0.034, respectively. (E) PHYL. MRR 
were 0.054, 0.061, 0.060, 0.096, 0.056, and 0.069, respectively.
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which was still better than PHYL. Interestingly, PAS was severely affected by lower resolution GO terms and its 
performance became worse than EXPR. PAS’s MRR became less than half (0.024) from EXPR’s (0.055).

Predicting missing enzymes using and score combinations. Finally, we combined the feature scores 
using L2 normalized logistic regression classifier and examined its performance. We built classifiers with three dif-
ferent feature combinations. The first one combines EXPR and PHYL, the two features used in previous works 22,25,31.  
The second combination is with CAS, PAS, EXPR, PHYL, and funsim, and PROFILE was added to those as the 
third combination. Similar to Fig. 5, we used two GO term settings, one with all the annotated GO terms and 
lower resolution mapping to the 4th level.

In the both GO term settings, neighboring protein information by adding GO-based features, CAS, PAS, and 
funsim, made substantial improvement over EXPR+ PHYL in selecting correct enzymes for enzyme positions in 

Figure 4. Performance of GO-based Feature scores with different GO levels. The performance of CAS, PAS, 
funsim, and PROFILE (the cumulative number of correct enzyme recognized within certain top ranks) was 
examined using five different resolution levels of GO terms of candidates, parental term mappings to the 3rd, 4th, 
5th, and 6th level in the GO hierarchy as well as the original GO annotations. The relatedness score (Eq. 7) with 
the 1st level neighbors (k =  1) was used (showed N1 in the figure legend). (A) CAS. MRR using the GO level 3, 
4, 5, 6, and the original annotation were 0.002, 0.104, 0.184, 0.207, and 0.199, respectively. (B) PAS. MRR were 
0.004, 0.023, 0.054, 0.081, and 0.072, respectively, for the same order of GO annotation levels as CAS.  
(C) funsim. MRR were 0.041, 0.104, 0.135, 0.155, and 0.173, respectively. (D) PROFILE. MRR were 0.058, 0.314, 
0.416, 0.541, and 0.617, respectively.
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the EEN. The combination of five feature scores ranked 611 enzyme positions correctly within top 100 as com-
pared to 374 by the combination of EXPR and PHYL. In terms of MRR, the five score combination improved 
MRR to 0.535 from 0.244 by EXPR and PHYL. Apparently, the result by the five feature score combination is a 
significant improvement over the performance when the five scores was used individually (Fig. 5A). Although 
the EXPR and PHYL combination fell behind, the combination’s performance is still a large improvement over 
the individual scores, which ranked 144 and 183 enzyme positions correctly within the top 100 ranks when 
they are used individually (Fig. 5A). MRR of EXPR and PHYL only were 0.055 and 0.096 in Fig. 5A, which was 
increased to 0.244 by the combination of the two. Adding the PROFILE score further improved the performance. 
Compared to the PROFILE-only result, MRR by the six score combination with PROFILE increased by 17.2% 
from 0.617 to 0.723 when the original GO annotations were used (Figs 5A and 6A). When the level 4 GO anno-
tations were used (Figs 5B and 6B), the performance improvement in terms of MRR by the six score combination 
over the PROFILE-only is further increased to 85.7% from an MRR of 0.314 (Fig. 5B) to 0.583 (Fig. 6B). This may 
be probably because the PROFILE’s sensitivity to GO annotation levels observed in Fig. 5 was compensated by the 
other scores that are less sensitive to lower GO annotation levels.

Lastly in this section, we discuss GO-MEP’s results in comparison with earlier works which performed miss-
ing enzyme finding for a yeast enzyme network. Note that a completely fair comparison is not possible because 
each work used different testing data and feature combinations, even in cases that same type of features were 
used. Kharchenko et al.22 used gene expression profiles of neighboring genes of a target enzyme to find missing 
enzyme in an yeast EEN. Out of 564 metabolic enzymes, they identified 23 (4.08%) at top rank and approximately 
23% within top 50 ranks. Similarly, Chen et al.25 used a phylogenetic profile and ranked 50% enzymes within 
the top 100 ranks in a leave one out analysis. Another work by Kharchenko et al.31 combined information from 
phylogenetic profile, expression profile, gene fusion, and chromosome clustering to predict missing enzymes 
in the yeast EEN and showed almost 50% of the enzymes were ranked within top 10 ranks. Compared to these 
methods, GO-MEP with the Profile+ CAS+ PAS+ funsim+ EXPR+ PHYL combination ranked the correct gene at 
the top rank for 49.9% (343 out of 688) of the enzyme positions and 73.7% (507 out of 688) within top 10 ranks 
using level 4 GO annotations (Fig. 6B). The comparison indicates that GO-MEP performs better than the exiting 
methods and that GO-based features are effective to identify missing genes.

Filling multiple missing enzymes in the network. We further tested GO-MEP in a more difficult situ-
ation when genes for 20% of the nodes (137 nodes) among the 688 nodes in the EEN are missing. L2 regularized 
logistic regression with five features scores, CAS, PAS, EXPR, PHYL, and funsim, were trained on the rest of the 
80% of the nodes (i.e. 551 nodes), each of which have the correct enzyme and 1000 negative proteins. Mapped 

Figure 5. Performance comparison of individual feature scores. Best performing form among six variations 
(Eqns 7 and 8) from CAS, PAS, EXPR, PHYL, funsim as well as PROFILE were compared in terms of ranks of 
correct enzymes at each EEN position. N1 and N2 in the figure legend stand for k =  1 and 2 for Rel_Score.  
(A) Feature scores computed using the original GO annotations. MRR for CAS, PAS, EXPR, PHYL, funsim, and 
PROFILE were 0.294, 0.077, 0.055, 0.096, 0.191, and 0.617, respectively. (B) Scores computed using parental GO 
terms mapped at the 4th level. MRR for CAS, PAS, EXPR, PHYL, funsim, and PROFILE were 0.156, 0.024, 0.055, 
0.096, 0.134, and 0.314, respectively.
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GO terms at the 4th level were used. PROFILE was not included in the score because it directly evaluates compat-
ibility between a missing enzyme position and candidate genes and thus does not depends on gene assignment of 
neighboring nodes. After the training, proteins were assigned to missing enzyme positions in the network in an 
iterative fashion. As performed in the previous sections, the correct gene was included among the other 5199 neg-
ative proteins. At the beginning, a random candidate was assigned to each missing node, while in the subsequent 
iterations (Iteration 1 and the following iterations in Fig. 7A) a candidate protein that has the highest probability 
to a node was assigned to the node, if the probability is larger than a cutoff, 0.99. In the second and later iteration, 
proteins assigned to neighboring nodes in the previous iteration contribute in providing functional coherence 
scores (i.e. CAS, PAS, and funsim) for a missing enzyme position. The iterative process was repeated for 50 times.

Figure 7A shows the performance of GO-MEP at selected iterations. Overall it turned out that there was not 
much change in the performance over the iterative process. MRR computed at the iteration 1, 5, 10, 20, 30, 40, 
and 50 are very close to each other ranging between 0.377 to 0.387. MRR increased from 0.378 at the iteration 
1 to 0.387 at iteration 5, but it then slightly deteriorated in the later iterations. Figure 7B shows that correlation 
between the rank of the correct enzyme and the probability assigned for the correct enzyme for 137 test nodes. 
Notably, the probability and rank of the correct enzyme at test nodes correlate well, indicating that assignment 
with a high probability, e.g. 0.9, has a high chance that the predicted protein at the top rank is correct, or if not, 
that the correct enzyme is included within proteins with the top ~10 ranks. In Fig. 8, using two example genes, 
YER031C and YEL032W, we examined the probability assigned to the correct enzyme for the 137 test nodes 
relative to the probability computed for each of the example genes. As shown in Fig. 8A,B, for most of the test 
nodes the actual enzyme has a higher probability, which is closer to 1.0 whereas the two example genes have a 
probability of less than 0.9 for almost all the cases.

To summarize this section, Fig. 7A shows that in an extreme case where as large as 20% of genes are missing in 
the network, GO-MEP is able to identify missing enzymes among top ranks of candidates, e.g. within top 10 ranks 
for more than half of the cases. Moreover, it is shown in Figs 7B and 8 that the probability assigned to candidates 
can accurately indicate the likelihood that the prediction is correct, because the rank of the correct enzyme and 
the probability correlates well.

Conclusion
Pathway reconstruction for an organism is an effective way for elucidating characteristics of the organism and 
also a crucial step to lead to quantitative pathway simulations. A practical challenge in the reconstruction is 
that not all the enzyme genes can be easily found due to lack of significant sequence similarity to known genes 
for target enzymes. In previous works, other features of genes, including gene expression profiles, phylogenetic 
profiles, and comparative genomics features were used to find similarity between candidate genes and known 

Figure 6. Missing enzyme prediction by combining feature scores. The six feature scores were combined 
in three different ways, EXPR+ PHYL, CAS+ PAS+ funsim+ EXPR+ PHYL, and Profile+ CAS+ PAS+ funsim+ 
EXPR+ PHYL, in the framework of L2 normalized logistic regression. The combinations were used for ranking 
correct enzyme along with 5199 negative proteins for each of the 688 enzyme positions in the EEN. For all 
the feature scores except for PROFILE, two forms of the scores, GTOM1_Rel_Score1 and GTOM1_Rel_Score2 
were used. (A) Feature scores computed using the original GO annotations. MRR were 0.244, 0.535, and 0.723 
for the EXPR+ PHYL, CAS+ PAS+ funsim+ EXPR+ PHYL, and Profile+ CAS+ PAS+ funsim+ EXPR+ PHYL 
combinations, respectively. (B) Scores computed using parental GO terms mapped at the 4th level. MRR were 
0.241, 0.386, and 0.583 for the score combinations in the same order.
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enzymes that are in the neighborhood to the target enzyme in the EEN. The contributions of the current work 
is three fold: First, we have developed a missing gene prediction method, GO-MEP, which showed substan-
tially better performance than previous works. Particularly, we demonstrated that GO-based scores including 
CAS and PAS are effective for identifying missing genes. Second, we introduced the GTOM weights to the 
missing gene finding problem and showed that the weights shows some improvement in accuracy of individ-
ual feature scores. Third, in addition to the test to fill one node at a time as performed in previous works, we 
demonstrated that GO-MEP can also identify missing genes even in the case that 20% of the genes are missing 
in the EEN. Moreover, the probability computed for candidate genes correlates well to the accuracy of the 
assignment.

Figure 7. Performance on predicting multiple missing genes. Among the 688 nodes in the EEN, genes 
for 20% (i.e. 137 nodes) are predicted using GO-MEP trained on the rest of 80% (551 nodes). For each node 
used for training, one correct enzyme and 1000 negative proteins were used. Five feature scores, all except 
for PROFILE were used. (A) The number of correct enzymes ranked within certain ranks were reported at 
iterations 1, 5, 10, 20, 30, 40, and 50. In each iteration, proteins with a probability of 0.9 or above were assigned. 
MRR for each iteration was 0.378, 0.387, 0.382, 0.382, 0.382, 0.378, and 0.377 at the 1st, 5th, 10th, 20th, 30th, 
40th, and 50th iteration, respectively. (B) Assigned probability of correct enzymes at the 137 nodes relative to 
their ranking in the first iteration.

Figure 8. Probability comparison between the actual enzymes and other proteins. Using (A) YER031C and 
(B) YEL032W as examples, probability of the actual enzymes of the 137 positions in the EEN and that of the 
example protein are compared. Probability computed for the first iteration of the computation was used.
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The current work was limited in its scope in identifying missing enzyme genes in the EEN. However, the 
developed method, GO-MEP, could be applied to more general missing gene finding problems in other biological 
contexts, such as finding genes in transport systems or host cell invasions. Extending the method to such a general 
framework is left as a future work.

Methods
Enzyme-Enzyme Network (EEN). We constructed an Enzyme-Enzyme Network (EEN) of Saccharomyces 
cerevisiae (yeast) in a similar way as in a previous work31. In the EEN each node represents an enzyme and each 
edge represents that the connected enzymes share metabolites in the reactions they catalyze. From the BiGG data-
base45 1149 validated enzymatic reactions of Saccharomyces cerevisiae were obtained. Out of the 1149 reactions, 
810 were associated with 750 enzyme proteins while 339 reactions are unassigned to any protein. Enzymes are 
connected by an edge if they share a common metabolite in their reactions unless the metabolite is among abun-
dant metabolites, which consist of ATP, H2O, AMP, ADP, CO2, NH4, NAD(H), NADP(H), CoA, glutamate-L, 
phosphate, diphosphate, and hydrogen, because these metabolites produce non-functional specific connections if 
considered22,31. When there are more than one enzymes associated with a single reaction then all of them are con-
nected in the EEN. When a reaction does not have any ORF associated with it, the reaction was associated with 
a pseudo enzyme with the reaction identifier and used in the EEN connections based on its shared metabolites. 
The resulting network had 1009 nodes (more than the number of known enzymes since pseudo enzymes were 
considered) and 8362 edges. In the study below, prediction accuracy was measured for known 688 enzymes with 
5185 edges that are connected to the EEN.

New missing enzyme prediction method, GO-MEP. We developed a new method named GO-MEP 
(GO-based Missing Enzyme Predictor) for finding missing genes that integrates multiple features, gene expres-
sion, phylogenetic profile, two function association scores, Co-occurrence Association Score (CAS) and PubMed 
Association Score (PAS)42, and two GO similarity scores, funsim and PROFILE. Below we first explain each scor-
ing feature, and then weights assigned to features that reflect the distance on the network topology (GTOM), and 
finally how the weighted features are combined in GO-MEP.

Phylogenetic profile correlation score. To identify missing genes in the network, six different scores 
were considered, which describe different biological contexts of candidate genes. The first score is a phylogenetic 
profile. A phylogenetic profile of a protein indicates existence or absence of its homologs in genome sequences, 
which is represented as a vector of ones and zeros. Orthologs of a protein in the EEN was identified by running 
BLAST46 with an E-value cutoff of 10−3 against a collection of 70 evolutionarily dissimilar prokaryotic and eukar-
yotic genomes47. The genome sequence files were obtained from the KEGG database4. For two proteins similarity 
of phylogenetic profile was quantified with the Pearson’s correlation (1.0, the highest similarity, − 1.0, the least 
correlation).

Expression profile correlation score. For each protein in the EEN an expression profile was created using 
the Rosetta’s compendium reference dataset48. The dataset is based on cellular perturbations across 300 diverse 
mutations and chemical treatments. For a pair of proteins, the absolute value of Spearman’s rank correlation was 
used to quantify correlation of their expression patterns.

CAS and PAS association scores. Three Gene Ontology (GO)-based function scores were used as pro-
tein functional features, Co-occurrence Association Score (CAS), PubMed Association Score (PAS)42, and the 
funsim score33,49. GO annotations for yeast enzymes are obtained from the GOA database50. Inferred Electronic 
Annotations (IEA) were excluded from GO annotations for better reliability. CAS and PAS are designed for quan-
tifying protein function coherence rather than simple functional similarity so that they can identify proteins 
involved in the same biological context42. For a pair of GO terms CAS is defined as the ratio of the frequency that 
both GO terms are used to annotate single gene relative to the frequencies of the individual GO terms to annotate 
the genes independently.

Similarly, PAS for a pair of GO terms has been defined as the ratio of number of abstracts in which the GO 
term names co-occur as opposed to the number of times the individual GO term names occur independently 
in the abstracts. More concretely, we used the NCBI’s Entrez ESearch utility for obtaining the count of PubMed 
abstracts related to the particular GO terms. For example, for computing the PubMed association between 
terms GO:0003700 and GO:0051169, we first obtain their respective term names as ‘transcription factor activity’ 
and ‘nuclear transport’ from the GO database and remove words ‘and, or, not’ from their GO term names. The 
remaining words in the name are used to construct URL, e.g. http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.
fcgi?db= pubmed&retmode= xml&rettype= full&term= transcription+ factor+ activity, which yields an xml that 
is then parsed to obtain the count of PubMed abstracts associated with the given term. For retrieving the counts 
of abstracts with two GO terms we appended the terms in the query URL and obtain the count. The search counts 
any abstract that simply mentions all the words that are appended in the URL. The ESearch query interface uses 
the MeSH indexing to incorporate the synonyms and the term variations. This provides us with a convenient way 
to retrieve the information that has been represented using different terms for the same concepts. The January 
2010 version of the PubMed database was used.

For pair of proteins X and Y, each of which have multiple GO term annotations, CAS and PAS scores are 
computed as shown in Eqns 1 and 2, respectively, by averaging the pairwise CAS and PAS scores between their 
GO annotations:

http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&retmode=xml&rettype=full&term=transcription+factor+activity
http://eutils.ncbi.nlm.nih.gov/entrez/eutils/esearch.fcgi?db=pubmed&retmode=xml&rettype=full&term=transcription+factor+activity
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here Ax and Ay are the number of GO annotations for proteins X and Y respectively, and Pxi is ith annotation for 
protein X and Pyj is jth annotation for protein Y.

funsim similarity score. The funsim score49 was used as an additional function-based score to compute 
similarity between candidate protein and its neighbors in the EEN. Consider GO terms c1 and c2 whose similarity 
is computed as Eq. 3 where c represents their common ancestor and p(c) is defined as the fraction of proteins in 
GOA database annotated with GO term c.
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For two proteins X and Y, funsim(X, Y) is defined as Eq. 5 where GOscorecategory is the similarity between GO 
annotations of X and Y for a particular GO category BP, MF or CC. GOscorecategory is computed by averaging the 
sim scores between GO annotations of X and Y in the given category as presented in Eq. 5, where Ax and Ay are 
the number of annotations for proteins X and Y respectively in that category, and Pxi is ith annotation for protein 
X and Pyj is jth annotation for protein Y.

The funsim score was also used to directly compare GO terms of candidate proteins against GO term profile of 
the target enzyme (PROFILE), which were mapped from its enzyme commission (EC) number51 and subcellular 
localization information. The GO term mapping of the Molecular Function (MF) and Biological Process (BP) cat-
egory was obtained by an automatic mapping provided by the Gene Ontology website (www.geneontology.org).  
BP terms were also often manually mapped from the subsystem information in the BiGG database. Cellular 
Component (CC) terms were mapped from the localization information of genes provided in the BiGG data-
base, which classifies the localization into eight locations (cytosol, extracellular, Golgi apparatus, mitochondria, 
nucleus, endoplasmic reticulum, vacuole and peroxisome). The funsim score between the target and a candidate 
genes is called the PROFILE score.

Generalized Topological Overlap Measure (GTOM). For a target missing enzyme position in the EEN, 
a candidate gene is evaluated considering feature correlation of the candidate against neighboring enzymes in the 
EEN. Among neighboring genes at the same distance to the target position, we can consider that some of them 
are more closely related than others to the target if they share more common nodes between the target. To capture 
this topological distance between a neighboring enzyme and the target, we used a weighting scheme, named 
Generalized Topological Overlap (GTOM) measure52. GTOM was designed to capture the functional relatedness 
between pairs of proteins in a network based on the number of shared interconnections between them. For a pair 
of proteins X and Y, GTOMm score is defined as

=
∑ +

∑ − ∑ − +
≠

≠ ≠{ }
GTOMm X Y

a a a

a a a a
( , )

min , 1
,

(6)

u x y xu yu xy
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,

if x ≠  y, and 1 if x =  y. a is the mth level adjacency matrix for the network. In case of GTOM1 (i.e. m =  1), axy will 
represent the first level neighborhood for node x with 1 indicating an edge between two nodes x and y and 0 
otherwise. For GTOM2, axy will be 1 if the node x is connected to node y within a path length of 2 and it will be 0 
otherwise. Thus GTOMm(X, Y) measures the ratio of number of shared neighbors between m neighborhoods of 
two proteins X and Y, against the minimum degree (i.e. number of connections) among both the proteins. Here 
we have combined GTOM score between candidate and neighbors of a particular node in the EEN with the pair-
wise association scores between them.

http://www.geneontology.org
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Combination of features in GO-MEP. To identify missing genes for an enzyme position in the EEN, six 
different scores discussed above were considered in GO-MEP, i.e. gene expression similarity (EXPR), correlation 
of phylogenetic profile (PHYL), and four function association scores, i.e. CAS, PAS, funsim, and PROFILE. These 
scores except for PROFILE were computed between a candidate gene to enzymes in the EEN that are 1st and 2nd 
level topological neighbors of the target enzyme. Below we explain how the score from each feature were com-
bined in GO-MEP.

For a given enzyme position i in the EEN and a given candidate gene j, the score of type t that evaluates the 
relatedness of the candidate to the target enzyme, Rel_Score, is computed considering the k-th level neighbors as 
follows:

∑_ =
∈

Rel Score enzyme position i candidate j
n

score candidate j P( , ) 1 ( , )

(7)

t k
k l k level

neighbor of i

n

t l,
th

k

here nk is the total count proteins at the kth level neighbors to the enzyme i, k is either 1 or 2, Pl is a protein in 
the kth level neighbors, and scoret is the score of type t, where t is one from EXPR, PHYL, CAS, PAS, or funsim. 
The score is further weighted by considering the GTOMm weight between the target enzyme in the EEN and its 
neighboring enzymes as follows:
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where m =  1, or 2 and k =  1, or 2. Thus, for EXPR, PHYL, CAS, PAS, and funsim, six combinations of scores with 
m and k (including without the GTOMm weighting, i.e. Eq. 7) were computed. For example, the gene expression 
similarity score, EXPR, Rel_ScoreEXPR,1, Rel_ScoreEXPR,2, which is based on Eq. 7 with the 1st and 2nd level neighbors 
to the target enzyme, as well as GTOM1_Rel_ScoreEXPR,1, GTOM1_Rel_ScoreEXPR,2, GTOM2_Rel_ScoreEXPR,1, and 
GTOM2_Rel_ScoreEXPR,2, which were computed based on Eq. 8. In addition, the PROFILE score was computed as 
the pairwise funsim score between GO functional profile constructed for enzyme position i in the EEN and the 
GO annotations of the candidate j.

These scores were combined using the L2 regularized logistic regression available in the LIBLINEAR package53.  
As discussed in the Results section, different combinations of scores were tested. For the results shown in Fig. 6, 
three different combinations of score types were used: (EXPR and PHYL), (CAS, PAS, funsim, EXPR, and PHYL), 
and (PROFILE, CAS, PAS, funsim, EXPR, and PHYL). For the results in Fig. 7, the five score type combination 
was used: CAS, PAS, funsim, EXPR, and PHYL. For each score type except for PROFILE, two forms of the scores, 
GTOM1_Rel_Score1 and GTOM1_Rel_Score2 (i.e. GTOM1 with two network neighbor levels, N1 and N2) were 
used because the performed well in Fig. 3. We conducted a leave one out analysis on the enzyme nodes in the EEN 
wherein when processing a particular enzyme position, we used positive and negative candidate examples from 
all the other 687 enzyme positions than the one under consideration. For training the classifier, negative proteins 
for a target enzyme were a sample of 1000 proteins out of 5199 yeast proteins excluding the 688 known enzymes 
was used. For countering bias of a higher number of negative examples in the training set, a weight of 0.001 was 
used for negative proteins. Since CAS and PAS has a large range of raw score values42, logarithmic conversion has 
been applied to the scores.

Performance of GO-MEP was measured in terms of the rank of the actual enzyme for the position based on 
the classification probability relative to the other 5199 negative proteins. In the results figures (Figs 2, 3, 4, 5, 6 
and 7A), cumulative number of enzyme positions where the correct gene is selected within each score rank is 
reported. We also reported Mean Reciprocal Rank (MRR)54:

∑=
=

MRR
N R
1 1

(9)E i

N

i1

E

where NE is the number of enzyme positions queried and Ri is the rank of the correct gene among candidates for 
the i-th enzyme position in the ENN. If a prediction method always selects the correct gene at the top of the rank, 
MRR is 1.0, the highest value possible.

The source code of GO-MEP is made available at http://kiharalab.org/gomep for the academic community.
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