
RESEARCH ARTICLE

Emotion diffusion effect: Negative sentiment

COVID-19 tweets of public organizations

attract more responses from followers

Haiyan Yu1, Ching-Chi YangID
2*, Ping Yu3, Ke Liu1

1 Center for Data and Decision Sciences, Chongqing University of Posts and Telecommunications,

Chongqing, China, 2 Department of Mathematical Sciences, University of Memphis, Memphis, TN, United

States of America, 3 School of Computing & Information Technology, University of Wollongong, Wollongong,

NSW, Australia

* cyang3@memphis.edu

Abstract

Coronavirus disease 2019 (COVID-19) has triggered an enormous number of discussion

topics on social media Twitter. It has an impact on the global health system and citizen

responses to the pandemic. Multiple responses (replies, favorites, and retweets) reflect the

followers’ attitudes and emotions towards these tweets. Twitter data such as these have

inspired substantial research interest in sentiment and social trend analyses. To date, stud-

ies on Twitter data have focused on the associational relationships between variables in a

population. There is a need for further discovery of causality, such as the influence of senti-

ment polarity of tweet response on further discussion topics. These topics often reflect the

human perception of COVID-19. This study addresses this exact topic. It aims to develop a

new method to unveil the causal relationships between the sentiment polarity and

responses in social media data. We employed sentiment polarity, i.e., positive or negative

sentiment, as the treatment variable in this quasi-experimental study. The data is the tweets

posted by nine authoritative public organizations in four countries and the World Health

Organization from December 1, 2019, to May 10, 2020. Employing the inverse probability

weighting model, we identified the treatment effect of sentiment polarity on the multiple

responses of tweets. The topics with negative sentiment polarity on COVID-19 attracted sig-

nificantly more replies (69±49) and favorites (688±677) than the positive tweets. However,

no significant difference in the number of retweets was found between the negative and pos-

itive tweets. This study contributes a new method for social media analysis. It generates

new insight into the influence of sentiment polarity of tweets about COVID-19 on tweet

responses.

1. Introduction

Social media such as Twitter has become a popular platform for thousands of people to

exchange their thoughts about current affairs in the form of tweets [1]. It has a significant,
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global influence on public opinions about current affairs [2, 3]. As of December 14, 2020,

Coronavirus Disease 2019 (COVID-19) has infected 72.17 million people and resulted in

1.61million global deaths, according to the Johns Hopkins University COVID-19 Tally [4].

The disease burden of the pandemic unavoidably impacts population health and well-being,

health resource utilization, social dynamics, world economies, and health technology develop-

ment. Stakeholders around the world (i.e., governments, non-profit organizations, and health-

care communities) have taken active actions to respond to the COVID-19 epidemic.

Unsurprisingly, the COVID-19 pandemic has been triggering massive short informal texts

on Twitter, expressing public anxieties, worries, and a new byproduct of discrimination [5].

Therefore, understanding and drawing insights from the massive number of social media

posts, i.e., Tweets, has never been more critical. This understanding will assist in designing

public health programs or events on social media to correct misinformation and overcome the

current fear and stigma about COVID-19 globally. For example, the World Health Organiza-

tion (WHO) tweeted on February 28, 2020 “everyone should know the #COVID19

symptoms?. . . Most people will have mild disease and get better without needing any special

care.” This tweet provides the domain knowledge about COVID-19 symptoms to the public

and attracts positive sentiment. On March 11, 2020, WHO also tweeted, “some countries are

struggling with a lack of capacity (resources, resolve)”. This tweet shows WHO’s negative sen-

timent (i.e., concern) about these countries’ capacity to prevent, monitor, and control

COVID-19.

Sentiment analysis is also known as opinion or emotion artificial intelligence [6]. It refers

to the use of natural language processing (NLP), text analysis, computational linguistics, and

machine learning to systematically analyze people’s written language [7]. This result of senti-

ment analysis is acquired people’s opinions, sentiments, evaluations, attitudes, and emotions.

Sentiment analysis has been widely applied to draw insights from social media posts. It aims to

determine the polarity of a piece of text as positive, negative, or neutral. Methods for these

analyses often include counting the number of positive and negative words to determine the

document’s sentiment polarity. These methods often employ a dictionary of words with an

assigned sentiment value, such as the lexicon of AFINN in the tidytext package [8]. The terms

in AFINN are assigned scores from -5 to 5, with a negative score indicating negative polarity

and positive polarity.

A high number of responses indicates a favorable effect of disseminating the message of the

original tweet; therefore, understanding responses to a tweet has been a major topic of senti-

ment analysis. For example, cross-cultural polarity on COVID-19 related tweets was examined

with emotion detection methods [9]. To date, few studies have examined the impact of a

tweet’s sentiment polarity (SP) on its responses (i.e., replies, favorites, and retweets). This

study aims to fill this gap. We investigated the influence of sentiment polarity on the responses

to COVID-19 in Twitter and examine the hypothesis: negative sentiment on COVID-19 will

attract more responses in terms of replies, favorites, and retweets than positive sentiment. We

conducted a quasi-experimental study on the publicly available Tweet data published between

December 1, 2019, to May 10, 2020. These data were extracted using the keyword “coronavi-

rus” or “COVID.” The research method used is an innovative, causality discovery approach

instead of the often-used association relationship.

2. Literature review

Studies of tweet responses have attracted substantial attention because they represent the

human information sharing process on social media. The importance of tweet responses

increases with Twitter being reported to outperform the mainstream media in numerous ways
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[5]. For example, Li et al. found noticeable spikes in Twitter usage during disasters and other

large events, suggesting Twitter is increasingly used as a fast response news service to voice

public sentiment [5]. Araujo et al. recommend companies and brands should use Twitter to

increase content distribution range and endorsement level [10].

There are three types of Tweet responses: reply, favorite, and retweet. The reply is the sim-

ple reply of a reader to the original tweet. It allows the reader to respond to the original tweet.

Favorite allows the reader to express approval of the tweet. Retweet allows the reader to start a

new discussion topic prompted by the original tweet, with the target audience being the read-

er’s (retweets’) followers. Naveed N et al. found bad News travel fast through content-based

analysis of retweets [11].

Tweet responses are widely used for public sentiment analysis to investigate social-psycho-

logical trends. For example, Bae et al. measured the positive or negative influence of popular

users on their Twitter audiences [12]. Their results suggest that popular users’ impact on social

media is consistent with their fame in the real world. Hswen et al. identified the psychological

characteristics of Twitter users who self-identified with autism spectrum disorder [13]. Teufel

et al. investigated the impact of German Chancellor Angela Merkel on the public’s psychologi-

cal distress, behavior, and risk perception during COVID-19 [14]. Their finding suggests that

not all world leaders use Twitter in response to COVID-19 pandemic affairs. Eichstaedt et al.

found that capturing community psychosocial characteristics through social media is feasible,

and these characteristics are strong markers of cardiovascular mortality at the community

level [15]. Balakrishnan et al. used the machine learning approach to analyze Twitter users’

psychological features and improve the detection of cyberbullying [16]. They identified the

correlation between the (positive) sentiment score of tweets and their responses; however,

their study did not analyze the treatment effect of sentiment polarity on the number of

responses.

These research projects have all employed the sentiment polarity of tweets, labeled as posi-

tive (+1) or negative (-1), to identify social psychological trends in sentiment analysis [17].

There are two contradictory views about the impact of positive (or negative) sentiment polarity

on tweet responses; one suggests that (positive) sentiment polarity enhances a tweet’ responses

in terms of replies, favorites, and retweets [18]; and these will further improve information

sharing on social media. The opposing view suggests the other way around; the negative polar-

ity leads to the above positive effects, i.e., increasing the number of replies and favorites, but

without a significant effect on retweets [19]. This research aims to uncover the truth of these

opposing views.

Sentiment score is commonly recorded as a positive number for positive sentiment and a

negative number for negative sentiment. For example, the sentiment score of an entry great is

(positive) 1.2, stating this entry has positive polarity with an evaluative score of 1.2 (see more

details in [17]). The sentiment score of an entry acceptable is (positive) 0.1, suggesting that the

entry acceptable has positive polarity 0.1, lower than that of the term great [17]. The sentiment

triggered by the entry victim [16] is usually associated with negative emotions such as anxiety
(-2) in tweets within the corpus AFINN [8]. However, it is still not clear how sentiment polar-

ity impacts responses (replies, favorites, and retweets).

Experiments are difficult to conduct when researching social media data. The main reason

lies in challenges in recruiting a large number of research participants (comparable to the nor-

mal population) and replicating the social reactions in laboratory settings. Quasi-experimental

research provides a feasible and low-cost approach to identify the treatment effect of sentiment

polarity [17–20]. Therefore, studies of the treatment effect of social media, i.e., Twitter, mainly

implement a quasi-experimental study design to examine the causal effect of a Tweet’s senti-

ment polarity. For example, using a fixed-effect model, Mousavi et al. addressed potential
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endogeneity in the 111th U.S. senators’ Twitter adoption decisions in 24 months [20]. They

used the method of propensity score matching [21] and difference-in-differences approaches

[22] to identify causal relationships of lawmakers’ voting orientations. Semiparametric estima-

tion can also be employed for inference about the treatment effect when treatment intake is

likely not randomized [23].

The literature on covariates of tweet responses is mainly focused on discovering determi-

nants for Tweet response rates [18]. Many factors, such as the number of tweets, average docu-

ment (tweet) length, and the number of discovered events/topics, are applied as the covariates

in the temporal mining of micro-blog texts [24]. For COVID-19 related studies, Pan et al.

employed other external features (i.e., confirmed cases and deaths due to COVID-19) as the

covariates for a public health intervention study [25]. Although there are some drawbacks (i.e.,

high signal-noise ratio) with the covariates from tweet features, the bias [26] could be quanti-

fied through the process of covariate balance with inverse probability weighting [21]. Terry

investigated the critical differentiator for social media [27]. On choosing the study population

of tweets, Terry chose professional journalists (or other paid content providers) and ordinary,

common users. In Terry’s terms, the content created by professional users or other paid con-

tent providers is different from that generated by common users without professional training,

thus the former should be given higher weight.

The types of health topics discussed on Twitter were investigated in [28] and they found

that tweets can both augment existing public health capabilities and enable new ones. Through

the analysis of a unique Twitter dataset captured in the early stage of the current Ebola out-

break, the results provided insight into the intersection of social media and public health out-

break surveillance [29]. Their study suggests that Twitter mining is useful to inform public

health education. Moreover, a systematic review also suggests that there is an essential need for

an accurate and tested tool for sentiment analysis of tweets using a health care setting [30]. For

example, the natural language processing approach and healthcare-specific corpus of manually

annotated tweets were implemented to learn the sentiment from Texas Public Agencies’ tweets

and public engagement during the COVID-19 pandemic [31].

This study aims to investigate the impact of the sentiment polarity on the responses to

COVID-19 related tweets. The response rate refers to the average number of responses to

an organization’s weekly tweets. It is calculated by dividing the total number of responses to

an organization’s weekly tweets by the number of weekly tweets published by this

organization.

Hypothesis 1: For an organization’s weekly tweets, there is no significant difference between

the response rate of replies with a negative sentiment polarity and that with a positive senti-

ment polarity.

Hypothesis 2: For an organization’s weekly tweets, there is no significant difference between

the response rate of favorites with a negative sentiment polarity and that with a positive

sentiment polarity.

Hypothesis 3: For an organization’s weekly tweets, there is no significant difference between

the response rate of retweets with a negative sentiment polarity and that with a positive sen-

timent polarity.

As the organizations’ weekly tweets on COVID-19 are not neutral sentiment polarity but

either being positive or negative (see Section 4.1), the hypothesis only compares negative and

positive sentiments.
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3. Models and statistical analysis

3.1 Study context and measurements

The population is the tweets collected in 24 weeks (from December 1, 2019 to May 10, 2020)

from nine Twitter accounts: five government organizations and four major news agencies [32]

(see Table 1). The government organizations are the Australian Government Department of

Health (AUDoH with healthgovau as its Twitter account), Chinese Center for Disease Control

and Prevention (CNCDC), National Health Service (UKNHS with NHS England as its Twitter

account), CDC of the US (USCDC) and World Health Organization (WHO). The news agen-

cies are The Australian (australian), China Daily (CDaily), BBC in the UK, and CNN in the

US. These four agencies are the most popular, with a massive number of followers on the Twit-

ter platform from the four countries. The reasons for including the news agencies along with

government organizations lie in two aspects. First, news agencies were often employed in the

literature to investigate the social media impact on an emergent event, e.g., the use of social

media in the Westgate mall terror attack in Kenya [33]. Second, this paper employed the news

agencies that are the representative media account on the Twitter platform from the four

countries. These news agencies are one of the main communication channels of the stakehold-

ers (i.e., governments, non-profit organizations, and healthcare communities that have taken

active actions to respond to the COVID-19 epidemic) to the public.

We collected data about the weekly number of tweets from the five government organiza-

tions and four news agencies as distinguished by each Twitter account. One week is defined

from Sunday 12 am to the next Saturday at 12 am. The overall study period is 24 weeks. Tweet

responses (as dependent variables) include replies, favorites, and retweets (see Table 2). The

unit of analysis is the weekly average number of replies (RP), average number of favorites (FV),

and average number of retweets (RT) for weekly tweets of each of the nine organizations.

Because the treatment variable of interest is the sentiment polarity (SP), we divided the data

into two groups: the positive group with the treatment factor SP = 1, the negative group with

SP = 0.

Eight covariant variables are also employed in this study (see Table 2). Five covariates were

adopted from Mousavi et al. [20] investigating the impact of Twitter adoption on lawmakers’

Table 1. Statistics of the Twitter accounts of the nine studied public organizations.

ID Entity Org. Location Joined Tweets1 Following Followers Tweets2

1 CDCgov USCDC US May-10 26.6K 267 2.6M 441

2 ChinaCDC CNCDC China Jan-20 112 35 216 85

3 healthgovau AUDoH Australian Mar-10 15K 135 79.6K 457

4 NHSEngland UKNHS UK Apr-12 42.8K 2379 415K 313

5 WHO WHO Inter-national May-09 12.8K 1744 74.5K 2039

6 australian Australian Australia Oct-07 242.1K 545 717.9K 1084

7 bbcworld BBC UK Feb-07 296K 70 25.3M 1411

8 ChinaDaily CDaily China Nov-09 97K 490 3.95M 6394

9 cnn CNN US Feb-07 248K 1107 42.1M 7694

Notes: US: United States; UK: United Kingdom; NA: Missing; K denotes thousand; M denotes million.

WHO: World Health Organization; Org.: Organization.

Joined: Date of the organizational account joining the Twitter platform; May-10 means May 2010.

Tweets 1: Number of total tweets.

Tweets 2: Number of Tweets during the study period.

ChinaCDC: China CDC Weekly, Platform of Chinese Center for Disease Control and Prevention.

https://doi.org/10.1371/journal.pone.0264794.t001
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voting orientation. Two covariant variables were identified from COVID-19 weekly statistics.

The remaining covariate (OG) is a blocking factor for the data set, indicating whether the

entity comes from the media agencies.

The former five covariates included the weekly number of tweets (NT) of an organization,

length of text (LT) of the organization’s weekly tweets, the median frequency (MF) of the

weekly tweets, number of items /words (NI), and highest frequency (HF) of the weekly tweets.

They can be extracted from tweet text mining [34].

The latter two covariates included the weekly confirmed COVID-19 cases (CC) and the

weekly number of deaths (ND) caused by COVID-19. These data were collected from the

Johns Hopkins COVID-19 Daily Tally: the weekly number of confirmed cases and the weekly

number of deaths caused by COVID-2019 in the region of the nine authoritative public orga-

nizations to be studied and worldwide for WHO. For example, the confirmed cases and deaths

in Australia are linked with the Twitter accounts of healthgovau and australian. The data in

China are linked with China CDC Weekly and China Daily’s Twitter accounts. Moreover, the

worldwide confirmed cases and deaths are associated with the Twitter accounts of WHO. All

the covariates are stock variables representing the samples’ historical data at the data acquisi-

tion time.

3.2 Study design

Randomization inference with the quasi-experimental design is the approach taken for causal-

ity discovery. A quasi-experimental design will allow the investigator to control the assignment

Table 2. Variable definitions and measurements.

Variables Definitions Measurements

Dependent variable (multiple responses)

RP Mean of replies The average number of replies for an organization’s weekly tweet.

FV Mean of favorites The average number of favorites for an organization’s weekly tweet.

RT Mean of retweets The average number of retweets for an organization’s weekly tweet.

Objective

DET Differential effect of

treatment

DET = mean of Y (SP = 1,X)—mean of Y (SP = 0,X)

Control variable (Treatment)
SP Sentiment polarity A dummy variable indicating the status of the sentiment score. 1 indicates the

positive score, otherwise 0.

Covariates (X)

NT Number of tweets The number of an organization’s weekly tweets.

LT Length of Text The total length of an organization’s weekly tweets.

MF Median frequency Median frequency of terms in an organization’s weekly tweets.

NI Number of items The total number of terms in an organization’s weekly tweet.

HF Highest frequency Highest frequency of terms in an organization’s weekly tweets.

CC Confirmed cases The number of weekly confirmed COVID-19 cases in an organization’s

registered country, and total number of worldwide cases for WHO.

ND Number of deaths The number of weekly deaths due to COVID-19 in an organization’s

registered country, and total number of worldwide deaths for WHO.

OG Indicator of

organizations

OG = 0 indicating the entity is a government organization; OG = 1 indicating

a news agency.

Notes: Unit of analysis for each variable is the weekly count data (from last Saturday to this Sunday) of a Twitter

account.

Terms: words in a tweet.

https://doi.org/10.1371/journal.pone.0264794.t002
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to the treatment condition, using certain criteria (i.e., covariate balance diagnosis) other than

random assignment. Therefore, we conducted a quasi-experimental study to answer the

research question (i.e., what is the treatment effect of sentiment polarity on tweet responses).

Sentiment polarity (SP) is inferred from the Tweet responses (replies, favorites, and

retweets) and used as the treatment variable, with two levels (positive or negative). Thus, the

population (weekly tweets) is divided into negative and positive groups by this treatment vari-

able. This quasi-experimental study is aimed at estimating the causal impact of the interven-

tion (SP) on the target population without random assignment. Fig 1 presents the research

framework.

The differential effect of treatment (DET) refers to the difference between the mean of the

responses (i.e., weekly RP, RT, and FV) between the treatment (SP = 1) and control (SP = 0)

group conditioned on their balanced covariates. The covariates (i.e., the number of tweets,

average document (tweet) length, the number of discovered events/topics) are applied to pre-

dict the balancing score of each weekly tweet with logistic regression. This score is further used

in the inverse probability weighting model, which produces the covariate-adjusted means for

the treatment effect. This model reduces the bias caused by the covariates.

The sentiment polarity is measured based on the sentiment score (SS) [17]. For a tweet, it is

calculated weekly.

SP ¼ 1
ð
P

w2Twitteri
ScoreðwÞ>0Þ

; ð1Þ

where Score wð Þ ¼ log
2

freqðw;positiveÞ�freqðnegativeÞ
freqðw;negativeÞ�freqðpositiveÞ ; freq w; positiveð Þ is the number of times a term w

occurs in positive tweets, freq (positive) is the total number of each term in positive tweets; sim-

ilar terminologies are defined for freq (w, negative) and freq (negative) for the negative tweets.

SP is an indicator function, representing the positive polarity of responses. As introduced

above, SP is a binary variable (see Table 2).

3.3 Data collection

The study organizations were chosen following the recommendation of [32]. Although pub-

lished research [35] set up a comprehensive timeline of the spreading of COVID-19, we con-

sidered it useful to start initial data collection one week before the first reported case in

Wuhan to set up the pre-COVID benchmark. The data collection was concluded at the week

including May 10, 2020, to avoid the impact of the Black Lives Matter (BLM) movement [36]

(see Fig 2). The COVID-19 data were collected from the Johns Hopkins University COVID-19

Tally [4]. Tweets were collected in three time periods.

Fig 1. The study framework.

https://doi.org/10.1371/journal.pone.0264794.g001
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Stage 1. Commenced December 1, 2019, to February 2, 2020, one week before the first

reported case in Wuhan, and ended on February 2, 2020, when the centralized treatment

and isolation strategy was established in China.

Stage 2. February 3, 2020, to March 12, 2020, the period marked by the inception of the isola-

tion strategy in China and the travel ban to the US from Europe, when the WHO declared

the COVID-19 outbreak a global pandemic.

Stage 3. March 13, 2020, to May 10, 2020, a period marked by the start of the travel ban in the

US and concluded on May 10, 2020, the inception of the ‘Black Lives Matter’ movement.

Using web crawler technology with Twitter API, the text data from Twitter were collected

on May 20, 2020. The libraries, tm, NLP, and plyr were incorporated to conduct text mining in

R (RStudioTeam, 2016) [37].

The nine organizations posted a total of 56,557 tweets during the 24 week study period. The

data was filtered with the terms that were referenced from Wikipedia [38]: “Coronavirus dis-

ease 2019”, “COVID-19”, “Coronavirus”, “Corona”, “COVID”, “2019-nCoV acute respiratory

disease”, “Novel coronavirus pneumonia”, “Severe pneumonia with novel pathogens”,

“Wuhan Acute Respiratory Syndrome (WARS)”, and “SARS-CoV-2”.

A total of 19,918 tweets remained in the data set after filtering with these terms. The tweets

were aggregated into weekly records, i.e., one organization only has one tweet record per

week. Thus, the resulting aggregated data has 216 (= 9�24) rows.

3.4 Analysis models

The data was first fitted with the balancing score model that takes into account the treatment

and covariates (X), as shown in Eq (2). Then the model was fitted with responses (Y) for the

treatment effect of emotion diffusion (sentiment polarity), as shown in Eq (3) and (4). All vari-

ables are defined in Table 2.

piðSPi ¼ 1jXÞ ¼ logit
b0 þ b1NTi þ b2LTi þ b3MFi þ b4NIi
þb5HFi þ b6CCi þ b7NDi þ b8OGi

 !

ð2Þ

DET ¼ meanðYjSP ¼ 1;XÞ � meanðYjSP ¼ 0;XÞ ð3Þ

Fig 2. Weekly number of COVID-19 confirmed cases and deaths.

https://doi.org/10.1371/journal.pone.0264794.g002
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DET0 ¼
1

n

X

i

½Yi � 1ðSP¼1Þ�

pi
�

1

n

X

i

½Yi � 1ðSP¼0Þ�

ð1 � piÞ
ð4Þ

where β0 is the constant term, and β1,. . ., β8 are the coefficients of the covariates (X); pi is the

balancing score of the treatment on the covariates. It is the function of the observed covariates

such that the conditional distribution of covariates (given pi) is the same for the unit (one of

the 216 samples) in the two groups (SP = 0, 1). In the treatment (SP = 1) group, the weight of

each unit is 1/pi; in the control (SP = 0) group, the weight of each unit is 1/(1−pi). For example,

when the balancing score of a unit is 0.4, the weight is 2.5 for the unit in the treatment group

with pi = 0.4; and the weight is 1.6667 (= 1/0.6) for the unit in the control group with pi = 0.4.

When the balancing score of a unit is 0.5, the weights are 2 for the units in both the treatment

and the control group with pi = 0.5.

Eq (2) presents a logistic regression model that captures the covariates’ influence on the

treatment effect. Eq (3) expresses the differential effect of treatment, which is the difference in

emotion diffusion between the negative and positive sentiment groups. Each term in Eq (4) is

a mean response adjusted by covariates. Eq (4) is an inverse probability weighting (IPW) esti-

mator of the treatment effect inference model, which is built with the IPW method [21].

4. Results

4.1 Descriptive results

In the original 216 samples (see Table 3), the sentiment score ranged from -232 to 900, with a

mean of 24.21 and a median of zero. There were fourteen rows with zero scores because most

organizations did not release tweets related to COVID-19 topics in the first two weeks. To fit

the regression model with the two groups (positive and negative), these samples were removed;

thus, only 198 samples were used to fit the models (N = 198). Meanwhile, the average number

of replies (RP) ranged from 0 to 303.6, with a mean of 37.65 and a median of 10. The average

number of retweets (RT) ranged from 0 to 2667, with a mean of 173.9 and a median of 31.08.

The average number of favorites (FV) ranged from 0 to 4305, with a mean of 363.2 and a

median of 60.61.

Table 3. Statistics of the Twitter accounts of nine authoritative public organizations.

Variable Name Min. 1Q Median Mean 3Q Max.

SS Sentiment score -232 -9.25 0 24.2 15.5 900

RP Mean of replies 0 0 10 37.7 54.8 303

FV Mean of favorites 0 0 60.6 363 581 4305

RT Mean of retweets 0 0.21 31.1 174 258 2667

NT Number of tweets 0 1 24.5 92.2 108 757

LT Length of Text 0 3.75 459.5 1576 1407 12639

MF Median frequency 0 0.75 1 1.03 1 7

NI Number of items 0 3.75 195.5 567 708 3552

HF Highest frequency 0 0.75 28 83.4 78.5 714

CC Confirmed cases 0 0 92 38424 10084 619634

ND Number of deaths 0 0 1.5 2602 428 50045

OG Indicator of organizations 0 1 1 0.587 1 1

Note: Q: quarter. The aggregated data has 216 (= 9�24) rows. Each row represent the statistics of an organization’s weekly tweets or cases. The 24 weeks are from

Decision 1, 2019 to May 10, 2020.

https://doi.org/10.1371/journal.pone.0264794.t003
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The weekly number of confirmed COVID-19 cases (see Fig 2) showed two trends: a peak in

the middle of February in China, and a sharp growth after March 13 in the US and UK. The

weekly number of COVID-19 related deaths increased after March 13 in the US and UK. How-

ever, these numbers in Australia remained low in comparison with the other regions.

In the positive tweet group, except for the CDCs of the US and China (USCDC and

CNCDC), the sentiment scores of the tweets from the other seven organizations significantly

increased after March 13, 2020 (see Fig 3). Twenty-one out of the 24 weekly tweets published

by the USCDC had positive sentiment scores, except three negative weekly tweets in March

and May (see Fig 3A). The tweets from the CNCDC had negative but close to zero scores (Fig

3C). The tweets from UKNHS and the Australian Government Department of Health

(AUDoH) showed a similar, increasingly positive trend. The WHO’s tweets had negative

polarity in February and May, but positive in the rest of the study period. There was a peak in

the number of tweets from the four news agencies in February (see Fig 3B). China Daily pub-

lished positive sentiment tweets in most of the study period except the week of December 8 to

14, 2019 (negative). The BBC and The Australian had negative tweets all of the time. Tweets

from CNN were mostly negative but were positive for two time periods: from February 9 to

19, and from March 1 to March 14, 2020. On the response rates, the USCDC received the high-

est number of responses, followed by WHO, UKNHS, and AUDoH (Fig 3E). The CNCDC

received the least (almost zero response). Of the four news agencies, the tweets of CNN

attracted the largest response rate, followed by the BBC (Fig 3F). China Daily and The Austra-

lian attracted the least number of responses.

With positive tweets, the USCDC attracted the largest number of replies, favorites, and

retweets, followed by the WHO (see Fig 4A, 4C and 4E). Ranked third and fourth were the

UKNHS and AUDoH. The CNCDC received the least response. The response rate to the nega-

tive tweets (see Fig 4B, 4D and 4F) of the five government organizations showed a similar

trend to those for the positive tweets. All the tweets from the AUDoH were positive but did

not receive any response. The BBC’s negative tweets attracted a larger number of replies than

those in the positive group.

4.2 Distributions of balancing scores and weights

The results of the balancing score modeling (see Eq (2) in section 3.4) are presented in Fig 5.

Each sample case’s weight is obtained with the inverse probability (balancing score) for the

positive and negative tweet groups.

The balancing scores did not overlap between the two groups (Fig 5A). This result suggests

that the covariates of the two groups lack balance. The average balancing score of the negative

tweets (group) is less than 0.5 and has a large variance. The average balancing score of the posi-

tive tweets (group) is larger than 0.5 and has a small variance.

The lack of covariate balance often leads to bias in inference about treatment effect. The

inverse probability weight was used for adjusting the mean response’s estimation with the

covariate-adapted mean. This has resulted in the negative group having a wide range of

weights from 1 to 10, while the positive group has a narrow range of weights mainly from 1 to

2.5. To reduce the impact of covariate imbalance, samples’ trimming is set at the thresholds of

0.3 and 0.7 of the balancing score. The cut-offs of the weights are set as 1.43 and 3.33 (Fig 5B).

4.3 Differential effects

Using the model (4) in section 3.4, the differential effect of treatment is obtained with the

covariate-adapted mean of the outcomes (average number of responses to the weekly tweets).

It implies the difference in response between the negative and positive tweet groups. The larger
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Fig 3. Sentiment score, their density and scatter plots of responses to nine organizations’ weekly tweets.

https://doi.org/10.1371/journal.pone.0264794.g003
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Fig 4. Number of responses (replies, favorites, retweets) to positive and negative tweets from the five government

organizations and four news agencies.

https://doi.org/10.1371/journal.pone.0264794.g004
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the absolute value of the treatment effect, the larger the size of the sentiment polarity’s impact

on the response to the weekly tweets. The results (see Fig 6) with the weighting method are

compared with those of the unadjusted for the three data sets: the pooled data of the govern-

ment and news agency, the government organization data, and the news agency data. Tweets

with negative sentiment polarity on COVID-19 attracted more replies and favorites than the

positive ones. However, no significant difference was found between the retweets of these neg-

ative and positive tweets.

For the replies (see Fig 6A), the differential effects of treatment with the weighting method

are -69.95 (±49.01), -96.48(±138.52), and -54.78 (±69.25) with the pooled, government organi-

zation and news agency data. For the pooled data, the results suggest that the replies to the

organizations are more (69.95±49.01) for the negative topics on COVID-19 than the positive

ones. By contrast, the treatment effects with the unadjusted method are smaller in absolute

value than those of the weighting method. The differential effects of treatment with the unad-

justed method are -25.86 (±15.59), 10.73 (±22.00), and -50.59 (±21.30) with the three data sets.

The number of replies is much larger for the negative topics on COVID-19 than for the posi-

tive topics for tweets from both government and news agency organizations. The treatment

effect of negative polarity on the replies of weekly tweets has a larger impact (69.95>25.86)

than those with the unadjusted method.

For the favorites (Fig 6B), the treatment effects with the weighting method are -688.45

(±677.05), -1594.09 (±2351.73), and-371.64 (±499.27) with the pooled, the government-orga-

nizational and news agency data sets. The result of the pooled tweets’ favorites suggests that

the negative tweets win a larger (688.46±677.05) number of favorites than the positive ones. By

contrast, the treatment effects with the unadjusted method are much smaller in the absolute

value of the treatment effect. Their treatment effects of sentiment polarity are -185.67

(±166.75), 63.78 (±306.73), and -426.58 (±174.79) with the three data sets. For the govern-

ment-organizational data set, the treatment effect of sentiment polarity on the favorites has a

standard deviation too wide to derive a scientific result. The treatment effect of negative polar-

ity on the favorites of weekly tweets also has a larger impact (688.45>185.67) than those with

the unadjusted method.

For the retweets (Fig 6C), the treatment effects with the weighting method are -325.20

(±416.25), -1027.15 (±1493.90), and -133.80 (±156.45) with the pooled, the government-orga-

nizational and news agency data sets, respectively. By contrast, the treatment effects with the

Fig 5. Distributions of the balancing score and case weights.

https://doi.org/10.1371/journal.pone.0264794.g005
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unadjusted method are -33.61 (±79.47), 16.19 (±189.95), and -151.47 (±55.17) with these three

data sets. The treatment effects on the retweets have a standard deviation that is too wide,

which is larger than the values of the mean. Thus, the results suggest that there is no difference

in the sentiment polarity’s impact on the responses of retweets to the weekly tweets.

In summary, the results (in Fig 6) are significant for replies (p = 0.001 with unadjusted and

p = 0.006 with weighted) and favorites (p = 0.029 with unadjusted and p = 0.046 with

weighted). Although the p-value of retweets reduced from 0.405 to 0.124, it is still not signifi-

cant. The treatment effect values with the weighting method are lower than the unadjusted val-

ues. Their standard deviations with the weighting are wider than the unadjusted values.

4.4 Stability of the effect

Statistical stability can effectively aid the pursuit of interpretable and reliable scientific models.

The stability of statistical results is relative to reasonable perturbations to data and the model

used. The following results with bootstrap (parameter n = 500) show the stability of the differ-

ential effect of sentiment polarity on the responses to the weekly tweets.

Fig 6. The differential effect of treatment on the responses (replies, favorites, and retweets) before and after justification for the covariates.

The larger the absolute value of the treatment effect is, the larger the size of sentiment polarity’s impact is on the responses of the weekly tweets.

The treatment effects represent the mean difference in responses to the tweets with negative sentiment and those responses to the tweets with

positive sentiment from the five government organizations and four news agencies. pooled data = government organizations + news agencies.

https://doi.org/10.1371/journal.pone.0264794.g006
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The points in Fig 7 denote the responses with the weighting method. The lines are fitted

with the linear models. The results show that the slopes of the fitting lines are negative, consis-

tent with the treatment effects (provided in Section 4.3).

T-test result suggests that the differences in responses to the tweets with negative and posi-

tive sentiments are significant for replies (p = 0.001) and favorites (p = 0.029) but not signifi-

cant for retweets (p = 0.405). Thus, we can reject the null hypothesis (on replies and favorites)

and accept the corresponding alternative hypothesis (the negative sentiment polarity impacts

the response rates of replies and favorites). The results suggest that there are true differences in

RP and FV between the negative and positive tweets. Meanwhile, we can accept the null

hypothesis and reject the corresponding alternative hypothesis on retweets, with no differences

between the negative and positive tweets’ impacts on the response rate of retweets.

Therefore, the differential effect of treatment shows the influence of sentiment polarity on

the responses of Twitter within COVID-19 data. Sentiment polarity has a negative effect on

the replies and favorites of the tweets. The negative topics on COVID-19 have more replies

and favorites than those positive topics for both organizational and media tweets. However,

Fig 7. Stability of the differential effect of treatment (linear regression of sentiment score on multiple responses). Gov Org:

Government organization.

https://doi.org/10.1371/journal.pone.0264794.g007
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there isn’t any significant difference between the retweets of both negative and positive topics

on COVID-19.

5. Discussion

5.1 Principal results

With the data of 19,918 tweets on COVID-19, this study modeled the impact of the tweet’s sen-

timent polarity (SP) on the responses, including replies, favorites, and retweets. The main

results are summarized as follows.

First, this study’s results support the argument that negative sentiment polarity attracts

more replies (RP) and favorites (FV) than positive polarity but has no significant effect on

retweets (RT). The negative topics on COVID-19 have more replies (69.95±49.01) and favor-

ites (688.46±677.05) than the positive ones for the tweets. Li and Rao [5] suggest noticeable

spikes in Twitter usage during disasters and other large events. Our findings also assist in

understanding social media’s mechanism of using negative sentiment to spread emotions in a

compelling, effective, and fast way.

Second, the t-test results confirm the above results, with the difference between negative

and positive sentiments being significant for replies (p = 0.001) and favorites (p = 0.029), but

not retweets (p = 0.405). The existing evidence [16] suggests that the correlations between

(positive) sentiment polarity of tweets and their responses are statistically significant. Our

results provided empirical evidence (Fig 6) about the effect of the text’s sentiment polarity on

the responses they received on the Twitter platform.

Third, this study implemented the inverse probability weighting method to obtain the

covariate-adjusted means. This approach reduced the bias of the treatment effect. The weight-

ing results are -69.95 (±49.01), -688.46 (±677.05), and -325.20 (±416.25) for replies, retweets,

and favorites, respectively. The result (-69.95) suggests that the treatment effect of the senti-

ment polarity on the negative group responses is higher than in the positive group. Comarela

et al. [18] suggest that the covariates increase the fraction of replied or retweeted messages,

while these covariates are balanced in the inverse probability weighting model. The covariate

balance reduces the bias for identifying the treatment effect of sentiment polarity.

Moreover, this study applied a differential effect of treatment inference methodology to

analyze social media data, which shows the potential strengths of randomized inference with

multiple social media responses. The previous studies applied machine mining [16] and net-

work analysis techniques [39] to extract hidden topics or examine the conversation stimulation

mechanism on social media. Our study developed methods to analyze sentiment polarity

impact on their responses on Twitter (Fig 1). This study provides quantitative evidence about

the differential effect of sentiment polarity on the response. The results confirmed that the sen-

timent polarity with negative values would increase their responses on Twitter. Our study gen-

erates causal inference to support the argument that there is an increment of the replies and

favorites in information sharing for the negative sentiment polarity, but no significant evi-

dence with retweets.

5.2 Limitations

Our study limitations lie in the following aspects. First, all data on sentiment analysis and

responses were collected from social media (the Twitter platform). The sample data were col-

lected from a limited number of Twitter accounts. They were selected as the representative

accounts because they had an enormous number of followers in the four counties (Australia,

China, the UK, and the US). Despite separating the weekly data by every Sunday, the tweet
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replies may also include the replies for other weekly data subsets. Therefore, a selection bias

may exist in the measurement.

Second, this study considered the organizations and news agencies at the block level.

Although the blocking factor increased the goodness of fit, it did not impact the treatment

effect of randomized inference. The identification of the block effect (of different regions,

organizations, or countries) is beyond this study’s scope. Nevertheless, this blocking factor did

not change the results of the treatment effect. The reason lies in the covariate balance. The bias

due to the covariates is reduced by the weighting method when the negative and positive

groups’ entries overlap. The time factor is orthogonal to the treatment factor; thus, this study

did not analyze the impact of time on the responses.

Third, the covariates contain the essential variables while omitting the others. Our study

should be regarded as a starting point for further investigation rather than examining the

determinants of response rates of tweets or final causal statements about the influence of senti-

ment polarity on tweets’ response rates. Other determinants may also affect the number of

response rates of tweets (e.g., the tweets’ political attitudes). Relevant data can be collected to

reduce the bias of results in future works. The logistical regression is only employed to obtain

the balancing score (probability) and weights; thus, the regression coefficients are no longer

useful parameters and are not reported.

The drawback of sentiment analysis is that the model is only focused on the terms but

omits the meaning of an entire tweet. Additional results can be achieved through further

exploration of more topics and Twitter accounts.

6. Conclusions

Social media is one of the essential channels for people to receive news. Different from the tra-

ditional media, on social media, multiple organizations can disclose different sentiments on

the same event; and the readers can rapidly respond to these tweets. Its convenience and inter-

activity have seen social media, i.e., Twitter becomes one of the essential, shared resources for

disclosing and tracking the trend of the COVID-19 pandemic. This has seen social media (i.e.,

Twitter) increasingly become a public channel for understanding people’s feedback on current

affairs with different narratives. It is also essential to study the readers’ emotions along with

the COVID-19 trend. This study provides a systematic way to understand people’s reactions to

negative and positive reports of the COVID-19 pandemic. The empirical findings prove that

"Good things don’t go out, bad things spread for thousands of miles".

The multiple responses (replies, favorites, and retweets) reflected the followers’ spontaneous

response in reading the tweets with different sentiment polarity. The results also provide new

insights into the intersection of social media and public health outbreak surveillance. The

Twitter data mining provided empirical evidence on the public organizations’ engagement

during the COVID-19 pandemic. This method is also useful to inform public health education

on social media and compare the interactions of those public organizations on their communi-

cations channels to the public through social media. This study examined the tweets’ responses

within the COVID-19 topic with sentiment polarity. It contributes new insight for understat-

ing the influence of sentiment polarity on the tweets’ responses on COVID-19. To reduce the

selection bias, we will collect more relevant data, analyze and compare the topics to further

understand social media dynamics in the future.
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