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Construction and application 
of a co-expression network in 
Mycobacterium tuberculosis
Jun Jiang*, Xian Sun*, Wei Wu, Li Li, Hai Wu, Lu Zhang, Guohua Yu & Yao Li

Because of its high pathogenicity and infectivity, tuberculosis is a serious threat to human health. 
Some information about the functions of the genes in Mycobacterium tuberculosis genome was 
currently available, but it was not enough to explore transcriptional regulatory mechanisms. Here, 
we applied the WGCNA (Weighted Gene Correlation Network Analysis) algorithm to mine pooled 
microarray datasets for the M. tuberculosis H37Rv strain. We constructed a co-expression network 
that was subdivided into 78 co-expression gene modules. The different response to two kinds of vitro 
models (a constant 0.2% oxygen hypoxia model and a Wayne model) were explained based on these 
modules. We identified potential transcription factors based on high Pearson’s correlation coefficients 
between the modules and genes. Three modules that may be associated with hypoxic stimulation 
were identified, and their potential transcription factors were predicted. In the validation experiment, 
we determined the expression levels of genes in the modules under hypoxic condition and under 
overexpression of potential transcription factors (Rv0081, furA (Rv1909c), Rv0324, Rv3334, and 
Rv3833). The experimental results showed that the three identified modules related to hypoxia and that 
the overexpression of transcription factors could significantly change the expression levels of genes in 
the corresponding modules.

Mycobacterium tuberculosis (MTB) is a pathogenic bacterium that causes tuberculosis. MTB infects about a 
third of the global population and leads to more than two million deaths each year1. Because of latency and 
drug-resistance, MTB can survive in almost all environments. The functions of some essential MTB genes are still 
not well known, and the regulatory mechanisms also need to be further investigated. In recent years, biochip tech-
nologies have developed and cumulative MTB data (microarray data, genome sequence data, and CHIP-Seq data) 
are now publicly available, which has promoted the understanding of transcriptional regulatory mechanisms in 
this bacterium. We studied the MTB transcriptional regulation networks reported previously2–7 and identified 
some limitations. First, estimated gene expressional levels are semi-quantitative in microarray analysis. So false 
positive result may be encountered. Second, in reported regulatory networks, the complexity of transcriptional 
regulatory mechanisms were unable to reveal. For example, a particular gene might be regulated by different 
transcription factors (TFs) in different stress situations. Third, because gene numbers in the reported networks 
varied from 900 to 3000, they cannot be considered as a global regulatory network.

The authors of the gene expression datasets with Gene Expression Omnibus (GEO) accession numbers 
GSE87868 and GSE93319 proposed different functions about DosR (also known as DevR). As we’ve known, 
DosR is a transcriptional regulator that forms part of a two component system. Voskuil et al. concluded that the 
respiration-limited environment of the oxygen-depleted non-replicating persistent model recreated at least one 
fundamental factor (DosR) for which the MTB genome encodes a decisive adaptive program. Rustad et al. showed 
that a DosR deletion mutant entered bacteriostasis in response to in vitro hypoxia with only a relatively mild 
decrease in viability, and in the murine infection model, the phenotype of the mutant was indistinguishable from 
that of the parent strain. The results of Rustad et al. suggested that additional genes may be essential for entry into 
and maintenance of bacteriostasis. This controversy has not yet been successfully explained.

Here we present the results of an extensive study of the MTB transcriptional regulation network. We build a 
dataset containing 3411 genes and their expression profiles from 303 microarrays (see Supplementary Data for 
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details:data_303 file), and then clustered the genes into 78 co-expressed modules. To address the DosR functional 
controversy, we performed a time-course analysis at the module level. We also identified some modules related to 
hypoxia and predict the potential TFs involved. We conducted a validation experiment to confirm the accuracy 
of the bioinformatic predictions.

Results
Construction and analysis of gene co-expression network. MTB microarrays contained some con-
ditions, which were hypoxia, intracellular, infected mouse model, and DosR mutations. We only selected 70 bio-
chips from four datasets, which contained these conditions. Also these biochips had high quality. To reduce the 
possible data bias, we mixed data for other conditions into our dataset, which ultimately comprised 303 microar-
rays and 3411 genes that represented 85% of the MTB genome. To ensure consistency of our analysis results, 
H37Rv was the only experimental strain chosen.

The co-expression network was constructed using the WGCNA10,11 package in R software. The results of the 
parameter analysis are shown in Fig. 1. After determining the optimal parameter (β =  5), the WGCNA algorithm 
was used to transfer the correlation coefficient between genes into the adjacent coefficient. Then, the dissimilarity 
of the topological overlap matrix was calculated based on the adjacent coefficient. Using the calculated dissimi-
larity, we carried out hierarchical analysis by agglomerative hierarchical clustering, also known as the bottom-up 
method. Other assumptions that we made were: (i) distances between different classes were measured by the 
average connectivity; and (ii) there should be at least 10 genes in each gene module. (We had tried to put this 
threshold smaller (< 10). But we found these small modules were no biological significance).

Based on these assumptions, we obtained 78 gene modules as shown in Fig. 2. We got 78 gene modules by the 
function cutreeDynamic in WGCNA package. We have chosen the soft thresholding power 5, a relatively large 
minimum module size of 10, and a medium sensitivity (deepSplit =  2) to splits cluster. By the Pearson correlation 
coefficient between modules, we constructed the network. When the absolute value of correlation was more than 
0.45, we would link two modules. The network was shown as in Fig. 3. Gene list information is in module-info 
supplementary.

To determine the reliability of analysis results, we chose the target genes of two well-studied TFs (DosR and 
KstR)5 as the testing gene sets. A Fisher’s exact test was used to assess the significance of the correlations between 
the two testing gene sets and our gene modules. Table 1 shows that the red and ivory modules had significant 
correlations with target DosR and KstR gene sets, respectively. Our dataset included a large number of microar-
rays on hypoxia, intracellular, infected mouse model, and DosR mutation conditions. To exclude biased results, 
we constructed a new co-expression network with 233 microarrays without latency conditions and still obtained 
significant correlations. These results indicate that the co-expression network is capable of providing accurate 
predictions about the regulatory relationships.

We also obtained useful information about gene function from the co-expression network. First, when related 
genes under different experimental conditions clustered into one module, the results can be used to analyse 
high-throughput experimental data (e.g., transcription profiles) and to identify potential functional genes. 
Second, the subnetworks of some interesting modules where the nodes were not modules but genes, can be 

Figure 1. Determination of parameter β of the adjacency function in the weighted gene correlation 
network analysis (WGCNA) algorithm. The adjacency function was weighted by the power of the correlation 
data between different genes; i.e., aij =  (Sij, β) =  |Sij|β. The weighted parameter β in the formula was determined 
by the scale-free network law, which means that the probability (p) that a node is connected with k other nodes 
(p(k)) satisfies the criterion that the co-efficiency of log(k) and log(p(k)) is at least 0.8. To ensure that the average 
connectivity of the network is smooth, we chose β =  5 based on the diagnosis chart.
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Figure 2. Construction of the gene co-expression network. Each colour represents a certain gene module. 
There should be at least 10 genes in each gene module.

Figure 3. Relationships among the gene modules. Two gene modules are connected if the correlation between 
them, which takes into account the correlation coefficient between each particular gene and these two modules, 
is greater than a selected threshold. Different modules are shown in different colours and different sizes. A larger 
size indicates more connections with other modules; a smaller size indicates fewer connections.

TFs
Intersection 

number
Number of 

module genes
Number of 

testing gene set P-value

1st DosR 40 88 45 1.04E-62

KstR 19 28 53 7.24E-30

2nd DosR 31 49 45 5.11E-52

KstR 15 25 53 2.52E-22

Table 1.  Correlation analysis between the gene modules and the target gene sets of the regulation factors, 
DosR and KstR. The target gene set of the regulation factor come from the intersection of the target gene sets 
and the 3411 genes in the dataset. The second network is the co-expression network with the microarray data 
from 233 biochips after ruling out the microarray data on the hypoxia, intracellular, infected mouse model, and 
dosR mutation conditions. The first network is the co-expression network using all 303 microarray biochips.
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constructed. Genes with high connectivity generally have complicated regulatory mechanisms or specialised 
functions. Third, by calculating the Pearson correlation coefficient between every gene and a certain gene mod-
ule, the relationship between that module and the genes outside that module can be estimated. Fourth, based on 
the correlation information between modules, a connectivity network that provides more understanding about 
the situation of every module can be constructed. The relationships among gene modules are presented in Fig. 3. 
Fifth, potential motifs in a certain gene module can be confirmed using the MEME12 software. The motif-based 
sequences are listed in the supplementary materials (motif information file).

Enrichment analysis of gene modules. To study the potential functions of the gene modules, we per-
formed module enrichment analysis using three well-known annotation databases: GO, KEGG, and the TF gene 
set in testing dataset. The GO and KEGG functional annotations of the MTB genes were assigned from homology 
comparisons; therefore, the results may not be very accurate. However, from the overall trend, we considered 
that these transcriptional regulatory mechanisms tend to be similar to homology comparisons. In addition, the 
regulation network constructed by Sanz et al.5 contained a certain proportion of the gene connectivities from 
experiments or microarray data. Therefore, some target genes regulated by the same TFs and were generally 
highly coordinated, despite the possibility of false positive results.

To further ensure the reliability of our results, we conducted a statistical comparison between the modules 
and the gene sets mentioned in Annotation databases, as well as between the random permutation modules and 
the gene sets in testing dataset. We applied fisher exact test and student test to do enrichment analysis and signif-
icant analysis. As showed in Table 2, the gene modules contained many more genes in TF target gene sets than 
did the random modules. The target gene sets regulated by the special regulation factor and enriched in our gene 
modules are shown in Table 3. However, it should be noted that the gene module regulated by a precise regulation 
factor does not necessarily contain this regulation factor. Indeed, a specified gene module either may not contain 
any regulation factors or may contain several regulation factors. When a module contains numerous regulation 
factors, this situation must be analysed under different circumstances. Such a situation may be explained by the 
complicated transcription regulation mechanisms that bacteria may use to regulate specific gene modules in 
response to different growth situations and environments. Genes in a modules had similar expression trend in 
different conditions, although these genes would be regulated by different TFs in various conditions. We iden-
tified several highly correlated regulatory factors in our results. In the subsequent analysis, we used the Pearson 
correlation between gene modules and regulation factors to filter the potential regulation factors under certain 
circumstances. The possible gene-module-related physiological functions and metabolic pathways for the genes 
in the KEGG and GO datasets that were enriched in different gene modules are listed in Table 4. (We thought 
these genes in the same module would have similar functions. So gene functions also could be identified. For 
example, we predicted the “red” module may be related to hypoxic stress. In validation, we also proved this pre-
diction. So these genes in “red” module had highly possible function about stress to hypoxia.)

Analysis of two hypoxic models at the module level. The hypoxic model has been used to study the 
MTB dormant mechanism, and two kinds of hypoxic models have been used in many biochips designed to mimic 
low-oxygen stress. One model had a constant concentration of hypoxia environment in the chemostat (the typical 
oxygen concentration was 0.2%). The other was the Wayne growth model, where the experiment was conducted 
in a hermetically sealed tube over a long time period, so that the oxygen concentration gradually decreased.

Voskuil et al.8 and Rustad et al.9 provided time-course data of two hypoxic models (GSE8786 in Wayne and 
GSE9331 in constant concentration). These researchers conducted approximate comparative analyses for differ-
ences and similarities in gene expressions, and studied the DosR regulator and a few genes with functions that 
were well known in these conditions. The experimental results obtained in these two studies lead to different 
conclusions about DosR.

To replay and explain DosR functional controversy, we identified the gene modules and the gene expression 
changes at certain time points using the NetReSFun2,4 algorithm. The results are shown in Fig. 4. For the Wayne 

GO KEGG TFs target

The number of genes enriched by 
experiment gene modules 13 6 26

The average number of genes 
enriched by random gene modules 1.96 1.49 1.44

The variances of the number of genes 
enriched by random gene modules. 1.46 1.46 1.23

Z-Value 7.56 3.08 19.94

p-Value 2.02E-14 0.001 < 1.00E-16

Table 2.  Differences between the enrichment of specific gene sets by gene modules and random modules. 
The first line is the number of genes in the GO, KEGG, and TF target gene sets enriched by 78 gene modules. 
The second line is the average number of genes enriched by 78 random modules in 1000 replications. The third 
line is the variance of genes enriched by 78 random modules in 1000 replications. The fourth and fifth lines 
are the Z value and corresponding P value of the comparison between experimental data and random data. 
Considering the low intensity of genes enriched by the random modules, we used P <  0.01 as the significant 
threshold, while for the experimental gene modules we used P <  10−5 as the significant threshold. Fisher’s exact 
test was used for the enrichment analysis calculation.
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model in GSE8786, the DosR regulator (red module) was conspicuously up-regulated at day 4 and day 6, and then 
plateaued without further fluctuation until it was down-regulated at day 30. These results correlated well with the 
results of the original study. For the wild-type MTB bacteria under the constant hypoxia model in GSE9331, the 
DosR regulator was significantly up-regulated at the 4-hour time point compared with the starting point (0-hour 
point), and then notably down-regulated at the 8-hour time point. The expression level of DosR then reverted to 
the initial value after one day (24-hour point), which is in line with the original results of Rustad et al. However, 
the expression of the DosR regulator was not altered in the DosR mutant strains. Thus, the expression trends of 
other modules along the time course were similar in the wild-type and mutant strains. Analysis of the results 
showed that the number of unregulated genes (almost of DosR regulon family), which eventually reached about 
230, gradually stabilised with time in the wild-type as well as in the DosR mutant strains, suggesting that the DosR 
mutation does not affect the number of varying genes. This finding was also consistent with our module analysis, 
indicating that our analysis method is viable for processing new datasets.

By comparing the significantly up-regulated gene modules in the two datasets (GSE8786 and GSE9331), we 
attempted to explain the divergence of MTB transcriptional responses to the two hypoxia models. Figure 4 shows 
that except for the red module (DosR regulator), four gene modules (skyblue1, ivory, dark orange, and brown with 
the red bold marker) in the two datasets were significantly up-regulated, which represented a common adaption 
of MTB in the two hypoxia models. Especially in GSE8786, the expressions of five modules (white, dark orange2, 
light yellow, dark green, and yellow-green) were distinctly increased. In GSE9331, four specific gene modules 
(brown2, dark violet, black, and plum3 with the blue bold marker) were up-regulated. The module orangered3 
(green bold marker) showed opposing expression trends in the two datasets. These gene modules may provide 
clues as to how MTB adjusts to the different hypoxia models.

To investigate the regulatory mechanisms of these modules in greater detail, we performed a synthesis of 
the relativity between the first principal component (PC1) of some important modules and the TFs. Based on 
the GSE9331 and GSE8786 time course analyses, we used the modules related to hypoxia to build subnetworks 
(Fig. 5). The aim of creating sub network about hypoxia was to show one network’s application, which might bring 
convenience to solve specific issue, such as hypoxia conditions. The hypoxic sub-network could give us a figure, 
which showed relationship between hypoxic modules. Meanwhile, we plotted the relationship between TFs and 
the PC1 of modules in the two datasets in time-course order (Fig. 6). In Fig. 6, we selected TFs in the particular 
dataset that might potentially regulate the expression of genes in the module.

The results show that MTB responses to the hypoxia models had shared values in some modules and different 
values in other modules, which provided clues to the stress response mechanism of MTB. For example, when the 
red and white modules were considered for the role of DosR in the Wayne model, their expressive tendencies were 
very similar. The white module showed analogous expression in the Wayne environment (oxygen concentration 
gradually changes). Interestingly, the expressions of three modules (dark green, yellow-green, and orange red3) 
increased with time, indicating that these modules may play roles in different stages during dormancy, implying 
that the dormancy mechanism of MTB is complex and precise.

Experimental validation of modules and correlations between potential TFs and their potential 
targets. Experimental validation of modules under hypoxia condition. To verify the modules we predicted, 
real-time RT-PCR was performed to detect the expression change in the non-replicating persistent NRP2 stage 
using the H37Rv strain under hypoxia condition. We selected 40 candidate genes in three modules (red, white, 
and dark violet). We successfully got positive results of 38 genes (40 candidate genes). The selection criteria was 

Gene set Gene Module p Value Gene Set Gene Module p Value

Rv0260c mediumorchid 1.88E-08 Rv2034 plum3 2.77E-07

Rv0348 magenta 3.94E-10 (sigC) Rv2069 skyblue2 3.65E-14

orangered3 3.19E-07 (furB) Rv2359 blue2 8.18E-11

red 9.37E-10 skyblue2 1.83E-19

hspR (Rv0353) plum3 8.68E-07 (ideR) Rv2711 lightcyan1 6.62E-36

regX3 (Rv0491) skyblue2 1.85E-10 skyblue2 2.13E-12

Rv0494 magenta 2.20E-12 (virS) Rv3082c green 8.80E-09

(phoP) Rv0757 navajowhite2 1.92E-07 (devR) Rv3133c red 1.23E-54

turquoise 9.72E-08 (sigH) Rv3223c darkorange 3.89E-16

Rv0818 mediumorchid 1.75E-07 (sigF) Rv3286c firebrick4 2.61E-07

(mprA) Rv0981 magenta 1.41E-14 (whiB3) Rv3416 plum3 1.89E-09

red 3.33E-15 Rv3557c mediumorchid 3.75E-08

(sigE) Rv1221 skyblue2 7.66E-07 (kstR) Rv3574 ivory 2.86E-33

Rv1359 mediumorchid 3.08E-06 Rv3849 navajowhite2 2.18E-07

(argR) Rv1657 firebrick4 4.25E-10 (sigM) Rv3911 grey60 6.82E-07

Rv1931c mediumorchid 1.59E-06 navajowhite2 2.41E-08

(mce3R) Rv1963c darkgreen 7.38E-08

Table 3.  Target gene sets of regulation factors enriched by the gene modules. Fisher’s exact test is used for 
the enrichment analysis calculation. The significant threshold was set as P <  10−5.
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Database geneset annotation module p-value

GO GO:0001101 Response to acid green 5.19E-07

GO:0001666 Response to hypoxia red 2.09E-11

GO:0006412 Translation

salmon4 9.54E-15

orangered3 1.86E-09

blue 3.65E-05

blue2 9.68E-04

GO:0010033 Response to organic substance mediumorchid 3.90E-04

GO:0010106 Cellular response to iron ion 
starvation lightcyan1 2.47E-06

GO:0040007 Growth
orangered3 2.13E-05

salmon4 3.09E-04

GO:0044117 Growth of symbiont in host
magenta 7.19E-06

lavenderblush3 8.41E-04

GO:0052572 Response to host immune response lightcyan1 9.96E-04

GO:0071500 Cellular response to nitrosative 
stress red 1.24E-20

GO:Unannoted grey60 2.71E-06

darkgreen 9.75E-04

GO:0005622 Intracellular

salmon4 2.95E-16

orangered3 2.99E-09

blue 3.27E-04

GO:0005840 Ribosome

salmon4 1.66E-15

orangered3 6.42E-10

blue 4.39E-05

blue2 6.30E-04

GO:0005886 Plasma membrane salmon4 1.55E-04

GO:0003735 Structural constituent of ribosome

salmon4 1.66E-15

orangered3 6.42E-10

blue 4.39E-05

blue2 6.30E-04

GO:0005515 Protein binding blue 8.32E-04

GO:0008137 NADH dehydrogenase activity magenta 6.40E-14

GO:0046933 Proton-transporting ATP synthase 
activity, rotational mechanism plum2 1.30E-07

GO:0046961 Proton-transporting ATP synthase 
activity, rotational mechanism plum2 1.30E-07

KEGG mtu00190 Oxidative phosphorylation magenta 3.60E-07

plum2 1.94E-04

mtu00281 Geraniol degradation lavenderblush3 2.42E-07

mtu00330 Arginine and proline metabolism firebrick4 1.03E-07

mtu00362 Benzoate degradation ivory 4.30E-04

mtu00400 Phenylalanine, tyrosine and 
tryptophan biosynthesis darkolivegreen4 1.54E-05

mtu00621 Dioxin degradation ivory 6.40E-04

mtu00623 Toluene degradation darkmagenta 2.64E-04

mtu00626 Naphthalene degradation lavenderblush3 1.80E-06

mtu00670 One carbon pool by folate midnightblue 5.98E-04

mtu00760 Nicotinate and nicotinamide 
metabolism darkturquoise 5.60E-04

mtu01053 Biosynthesis of siderophore group 
nonribosomal peptides lightcyan1 4.79E-12

mtu03010 Ribosome

salmon4 3.94E-21

orangered3 1.12E-09

blue 9.17E-05

blue2 7.88E-04

Unannotated grey60 5.57E-05

Table 4.  Gene module enrichment in the KEGG and GO datasets. Fisher’s exact test was used for the 
enrichment analysis calculation (P <  10−3).
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Figure 4. Gene modules with significant change. (A) Gene modules with significant change in GSE8786.  
(B) Gene modules with significant change in GSE9331. A modified NetReSFun algorithm was used to 
determine whether there was a significant change at a certain time. Modules with significant changes (≥ 0.22) 
are shown by rectangles: blue (left) indicates the saturation revealed the log converted Z-value of the significant 
change of this module; blue or green (right) indicates this gene module was up- or down-regulated, respectively. 
A colour gradient map is shown to the right of (A). The red module contains most of the DosR regulon and is 
highlighted in yellow. Modules in a red font were up-regulated in both datasets; green font indicates modules 
that were regulated in different directions; and blue font indicates modules that were significantly up-regulated 
and were unique to the dataset they belonged to.
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that because DosR had been deeply studied, our main purpose of red module was to validate our method is effec-
tive. We only selected 4 genes reported. But in white and dark violet module, we selected 22 genes and 12 genes 
randomly. In two modules, most of genes were not reported that they were associated with hypoxia.

Among 38 genes, the four selected genes (nrdZ (Rv0570), Rv1996, ctpF (Rv1997), and otsB1 (Rv2006)) were 
significantly up-regulated in the red module(Fig. 7A). In the white module, nearly half the selected genes (mmaA1 
(Rv0645), Rv0885, PE_PGBS31 (Rv1768), Rv1833c, Rv2527, mrr (Rv2528c), Rv2529, nusB (Rv2533c), Rv2534c, 
and Rv3435c) were significantly up-regulated and three (Rv1788 (PE18), Rv2549c, and Rv3365c) were signifi-
cantly down-regulated (Fig. 7B). In the dark violet module, the majority of the selected genes were significantly 
up-regulated (Rv3833, Rv0326, Rv0384c (clpB), Rv1048c, Rv1766c, Rv1767, and Rv2963c) (Fig. 7C). The results of 
anaerobic stimulated experiment indicated that the overwhelming majority genes in the modules we predict were 
positively related to hypoxia environment.

Although some genes have been reported in these modules (nrdZ (Rv0570), Rv1996, Rv1977, otsB1 (Rv2006), 
Rv0885, vapC17 (Rv2527), clpB (Rv0384c), Rv1048c, and Rv1766), there are also some new genes related to hypox-
ia(mmaA1 (Rv0645), Rv0885, PE_PGBS31 (Rv1768), Rv1833c, Rv2527, mrr (Rv2528c), Rv2529, nusB (Rv2533c), 
Rv2534c, and Rv3435c). These genes remains to be studied further.

Experimental validation of correlations between TFs and their targets. Several TFs (Rv0081, furA (Rv1909c), 
and Rv0324, Rv3334 and Rv3833) were present in the three selected modules (red, white, and dark violet). To 
investigate if these TFs regulate the expression of genes in these modules, we overexpressed the five TFs in H37Rv 
strain under both hypoxia and normal cultivation conditions and detected the expression level of these genes 
in the corresponding modules. During the NRP2 stage, overexpression of Rv0081 up-regulated the expression 
levels of all the genes in module red (nrdZ (Rv0570), Rv1996, ctpF (Rv1997), and otsB1 (Rv2006)) (Fig. 8A). In the 
white module, overexpression of furA (Rv1909c) significantly up-regulated the expression levels of some of the 
genes (Rv1531, PE_PGBS31 (Rv1768), Rv2549c, Rv3433c, and Rv3434c), and significantly down-regulated most 
of the other genes in this module (Rv0885, Rv1788 (PE18), Rv1833c, Rv2527, mrr (Rv2528c), Rv2529, Rv2533c 
(nusB), Rv2534c, and Rv2535c) (Fig. 8B). The dark violet module contained three TFs (Rv0324, Rv3334, and 
Rv3833). Overexpression of Rv0324 up-regulated the expression of Rv3334, Rv0326, Rv1048c, Rv1049, Rv1766c, 
and Rv2963c, and down-regulated Rv0384c (clpB) (Fig. 8Ca). Overexpression of Rv3334 up-regulated the expres-
sion of Rv0326, Rv1048c, Rv1766c and Rv2963c, and down-regulated the expression of Rv0324, Rv0327c, Rv0384c 
(clpB), and Rv1767 (Fig. 8Cc). Overexpression of Rv3833 significantly down-regulated most of the genes in this 

Figure 5. Significantly up-regulated gene modules. Up-regulated gene modules were screened out from 
the overall network (Fig. 3) and formed a subnetwork. Different modules are shown in different colours and 
shadowed by three colours: pink shadowing indicates the module was up-regulated in both datasets, blue 
indicates the module was unique to the dataset it belonged to, and green indicates the module was up-regulated 
in GSE8786 but down-regulated in GSE9331. By choosing TFs that were highly correlated with the modules and 
calculating the correlation between their expression profile and each gene module, we could screen them out. 
The screened TFs for each module are listed in the grey boxes.
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Figure 6. Predict the potential transcription factors (TFs) of gene modules. The abscissa represents the 
time. Left ordinate indicate a TF’s expression value, which is marked with red points. And the first principal 
component of module is indicated on the right ordinate and marked with blue points. R2 is the Pearson’s 
correlation coefficient between TF and the first principal component in the co-expression network, and R2 is 
their correlation in a particular dataset. (A) Correlation schematics of a potential TF (Rv0081 Rv3133c) and 
the first principal component of the red module in GSE8786. (B) Correlation schematics of a potential TF 
(furA (Rv1909c) Rv2358) and the first principal component of the white module in GSE8786. (C) Correlation 
schematics of the TF (Rv2745c) and the first principal component of theskyblue1 module in GSE8786 and 
GSE9331.
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module (Rv0324, Rv3334, Rv0325, Rv0327, Rv0384, Rv1049, and Rv1767), and significantly up-regulated three 
genes (Rv0326, Rv1766c, and Rv2963c).

During normal cultivation, overexpression of Rv0081 significantly down-regulated the expression level 
of all the genes in the red module (nrdZ (Rv0570), Rv1996, ctpF (Rv1997), and otsB1 (Rv2006)) (Fig. 9A). In 
the white module, overexpression of furA (Rv1909c) significantly up-regulated the expression level of most 
genes (Rv0213c, Rv0245, mmaA1 (Rv0645), Rv0885, Rv1531, PE_PGBS31 (Rv1768), Rv1829, Rv1833c, Rv2527, 
Rv2530c, Rv2531c, Rv2534c, Rv2535c, Rv2549c, Rv3365c, Rv3433c, Rv3434c, and glmS (Rv3436c)), and signifi-
cantly down-regulated Rv1788 (PE18) (Fig. 9B). The dark violet module contains three TFs (Rv0324, Rv3334, 
and Rv3833). Overexpression of Rv0324 up-regulated the expression of Rv0326, Rv1048c, Rv1766c, Rv1767, and 
Rv2963c, and down-regulated Rv3334, Rv0325, and Rv0327c (Fig. 9Ca). Overexpression of Rv3334 up-regulated 
the expression of four genes in this module (Rv3833, Rv0384c (clpB), Rv1049, and Rv1767) and down-regulated 
six genes (Rv0325, Rv0326, Rv03827c, Rv1048c, Rv1766c, and Rv2963c) (Fig. 9Cb). Overexpression of Rv3833 
significantly down-regulated most genes in this module (Rv0324, Rv3334, Rv0325, Rv0327, Rv1049, and Rv1767) 
and significantly up-regulated three genes (Rv0326, Rv1766c, and Rv2963c) (Fig. 9Cc).

Discussion
Correlation networks are increasingly being used in bioinformatics applications. For example, weighted gene 
co-expression network analysis is a systems biology method for describing the correlation patterns among genes 
across microarray samples. Weighted correlation network analysis (WGCNA) can be used for finding clusters 
(modules) of highly correlated genes, for summarizing such clusters using the module eigengene or an intra-
modular hub gene, for relating modules to one another and to external sample traits (using eigengene network 
methodology), and for calculating module membership measures. We think this method is well-established.

Using the WGCNA algorithm, we identified gene modules in which the genes showed similar expression 
trends and were governed by common TFs with a genome-wide perspective. Consequently, these modules can 
serve as credible data for transcriptional analyses of MTB and aid research into the functions of the MTB genes.

The major data sources for this study included GSE164213 (437 microarrays), exptsetno_4615 (814 microar-
rays, unpublished), a single-channel biochip concerning TF overexpression (100 microarrays, published by 
Galagan et al.3), and some hypoxia and NO stress biochips. We obtained satisfactory co-expression data from 
each of them individually; however, when we merged them, similar co-expression data were difficult to generate 

Figure 7. RT-PCR confirmation of expression fold change under hypoxia stress. Expression fold changes of 
genes in the red (A), white (B), and dark violet (C) modules. RNA samples were extracted at the exponential 
growth phase (14 days) under normal and hypoxia conditions. The results are shown as average fold changes 
(hypoxia condition/normal condition). * P <  0.05; * * 0.01 <  P <  0.0; * * * P <  0.001.
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because of the fusion of several modules. The merger of all biochips inevitably reduced the number of genes, 
which was less than 3000 and did not cover the entire MTB genome.

For a single dataset with various experimental conditions (e.g., GSE1642 and exptsetno_4615), genes in differ-
ent pathways and with regulatory mechanisms showed different expression trends; thus, most of these genes were 
separated and assigned to different modules. Because differences within datasets had more influence on the gene 
modules than differences within the biochips, the merger of some datasets resulted in some important modules 
being missed. Furthermore, if we had simplified the experimental conditions instead of diversifying them, then 
only modules associated with specific conditions would be identified. Modules have been used successfully in 
previous studies14–16.

When merged bigger dataset, we found the number of genes was less than 3000, which could not cover MTB 
genome. We wanted to get the co-expression modules on numerous conditions, but not a condition. So we col-
lected microarray data from a variety of experimental conditions to build small dataset by ourselves. therefore, 
we collected microarray data from a variety of experimental conditions and analysed the gene expression profiles 
differently. We chose biochips from a number of research programs (the biochips from each program could not 
be too large) and three datasets related to hypoxia, DosR mutations, and intracellular infection models in mice. 
By merging the data from these biochips, we obtained a gene expression matrix with 303 rows (biochips) and 
3411 columns (genes). After filtering the biochip data, we constructed a co-expression network based on the new 
gene expression matrix. To improve the specificity and accuracy of the co-operation analysis results, we plan to 
investigate how the difficulties concerning modular fusion in larger datasets can be overcome.

Although DosR is the best studied TF in MTB17–19, it is still unclear how MTB reacts and adapts to low-oxygen 
stress. In general, DosR is necessary for MTB’s reaction to and survival in a hypoxic environment; however, in 
the Rustad et al. study (GSE9331)9, Rustad et al. proposed that the DosR regulon was the only option for MTB in 
response to a low-oxygen environment in vitro, but that DosR was not the initial or main method.

But in the conclusion of GSE8786, it was clear that the growth defect of DosR mutants started after MTB 
entered the NRP2 (non-replicating persistence 2) stage. These observations also suggested that DosR plays a major 
role in regulating MTB entry into anaerobic dormancy. Interestingly, most genes in the DosR regulon maintained 

Figure 8. RT-PCR confirmation of expression fold changes related to up-regulated transcription factors 
under hypoxia stress. (A) Overexpressing Rv0081 up-regulated the expression levels of genes in the red 
module. (B) Impact of overexpressing furA (Rv1909c) on the expression levels of genes in the white module. 
(C) Up-regulated transcription factors Rv0324 (i), Rv3334 (ii) and Rv3833 (iii) changed the expression levels 
of genes in the dark violet module. RNA samples were extracted at exponential growth phase (14 days) under 
normal and hypoxia conditions. The results are shown as average fold change (upregulated plasmid/empty 
plasmid as control). * P <  0.05; * * 0.01 <  P <  0.05; * * * P <  0.001.
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a high level of expression in NRP2 and the expression reduced only after 30 days. At last, they concluded that the 
DosR regulon was not necessary for dormancy, but influenced the process of entering the dormancy state.

Based on the results of expression responses at the module level in the two hypoxia models, we infer that 
there are different master regulator TFs involved in two hypoxia models. The genes in these modules, which have 
similar expression profiles, can be considered to be regulated in a general way. Besides, Wayne model condition 
and constant hypoxia condition could activate different master TFs and then lead to specific expression profiles 
of many modules in two models, which remain to be furtherly explored.

DosR is the regulatory protein of a 3-component system. In hypoxia, self-phosphorylation of DosT and DosS, 
the receptor sensor histidine kinase, could promote DosR transcriptional activity. The difference between the 
constant hypoxia model and the Wayne growth model was neither the oxygen concentration (the oxygen con-
centration of the Wayne model at the beginning was only 0.2% higher than the constant hypoxia condition) nor 
the length of time, but the rate of oxygen concentration variation. This finding demonstrated that DosT probably 
can respond to changes in hypoxia, but not to hypoxia itself. In GSE9331, DosR increased significantly in the first 
four hours because of the sudden decrease in the oxygen concentration, and later returned to its normal level. In 
GSE8786, where the oxygen concentration continued to drop, DosR expression was kept at a high level; however, 
when MTB entered into the NRP2 stage the bacteria were almost completely inactive (the turbidity showed no 
further increase). Thus, the lack of oxygen consumption either led to a stable oxygen concentration or the concen-
tration was too low to induce a reaction from the two-component system, which lost regulatory activity causing 
the DosR regulon to be down-regulated. We concluded that the DosR family was sensitive to the rate of oxygen 
concentration variation, rather than to the hypoxic condition. We would use experiment to prove our conclusion.

From the time-course analysis at the module level, we identified important modules and predict the functions 
of the gene in these modules. For simplicity, we selected modules that were significantly up-regulated in GSE8786; 
for example, the orangered3 module that contained 15 genes, including eight genes encoding a ribosomal protein 
and two genes encoding parts of the RNA polymerase (rpoB and rpoC).

We plan to further filter the regulatory factors and normal coding genes that were highly related to this mod-
ule in GSE8786 to help reveal the vital gene functions and regulation mechanisms of dormancy in MTB.

Figure 9. RT-PCR confirmation of expression fold changes related to up-regulated transcription factors 
under normal conditions. (A) Overexpressing Rv0081 down-regulated the expression levels of genes in the red 
module. (B) Impact of overexpressing furA (Rv1909c) on the expression levels of genes in the white module. 
(C) Up-regulating transcription factors Rv0324 (i), Rv3334 (ii), and Rv3833 (iii), changed the expression levels 
of genes in the dark violet module. RNA samples were extracted at exponential growth phase (14 days) under 
normal and hypoxia conditions. The results are shown as average fold change (upregulated plasmid/empty 
plasmid as control). * P <  0.05; * * 0.01 <  P <  0.05; * * * P <  0.001.
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In the validation experiment we predict that three modules (red, white, and dark violet) are related to latency 
and showed that the genes in these modules were induced under anaerobic conditions. Accordingly, the predic-
tions of the latent module are correct.

Under anaerobic or normal conditions, overexpression of TFs can have a great influence on the expression of 
genes in these modules, indicating that many of the genes in these modules are targets of the TFs, indicating that 
the TFs regulate genes in the module.

Our results also showed that the regulation patterns of the TFs were different in different cultivation condi-
tions. Overexpression of different TFs led to different results in the different modules; for example, in the dark 
violet module, overexpression of Rv3833 significantly down-regulated most of the genes under anaerobic and 
normal conditions while overexpression of Rv0324 and Rv3334 in the same module had the opposite effect. The 
different expression profiles between the TF regulations in the same module may indicate that different co-factors 
participate in the process of regulating downstream genes in different cultivation environment. Further exper-
iments are required to confirm this point. TFs within the same module may restrict each other’s expression; for 
example, the overexpression of Rv3833 in the dark violet module suppressed the expression of Rv0324 and Rv3334 
under the two aerobic stresses.

Our results indicate that one particular TF in a module may only partially regulate the genes in that module. 
The expression profiles of the genes within a module are affected by multiple factors, including multiple TFs and 
the other unknown factors. Thus, each module consisted of various TFs working together under different regu-
latory models.

Our main purpose of validation is to verify our prediction. If we verify our prediction successfully, the 
co-expression network is available and reliable.

In this paper, we created co-expression network in MTB and performed some applications in module level. 
Meanwhile, we predicted potential transcriptional regulatory factors and identified new hypoxic modules. But 
the issue about that how these different TFs ultimately govern other genes in detail that still need to address. We 
would do our best to clarify the mechanism in the future.

Methods
Data sources. Microarrays. The microarray datasets were selected using the following criteria. (i) The 
microarray must be for the MTB H37Rv strain and be a double-channel microarray. (ii) The microarray data-
sets must meet our quality requirements, which we assessed using the WGCNA10,11 and array Quality packages. 
(iii) There is as high as possible diversity of the experimental conditions. (iv) The number of each condition of 
the microarrays should be balanced. The microarray gene expression profiles used in this study were: GSE5977, 
GSE6750, GSE7962, GSE8664, GSE8786, GSE8689, GSE8732, GSE8830, GSE9776, GSE13978, GSE13998, 
GSE15976, GSE17640, GSE30299, GSE46212, GSE6209, and GSE1109616,20–33.

Annotation databases. We used the Kyoto Encyclopedia of Genes and Genomes (KEGG) database (www.
genome.jp/kegg/), the Gene Ontology (GO) database (www.geneontology.org/).

Testing dataset. TF target gene set from the MTB regulatory network constructed by Sanz et al.5 for the enrich-
ment analysis of gene modules. The dataset contains 3411 genes, which do not cover genome-wide genes. 
Compared with paper’s data set, there are 15 genes missing in DevR set, and also 26 genes missing in KstR set.

Processing of the microarray data. The R Bioconductor limma package was used to preprocess the raw 
microarray data as follows. (i) The probe ID was replaced by the gene number in the raw microarray data, and 
then the original data were read. (ii) The normalize Within Arrays function with loess (chip data without point 
information) or Print-tip loess (chip data with point information) was used to normalise the data. (iii) The mean 
and standard deviation (SD) of background values were calculated, and if a probe value was ≤  the background 
mean value + 1* SD, the probe was marked as NA (low signal). (iv) The data were merged to create a new dataset 
by gene names.

Construction of the co-expression network. We accumulated and preprocessed the raw data from bio-
chips that had used strain H37Rv to construct the co-expression network. The construction and analysis of the 
co-expression network were based on WGCNA, which is a typical algorithm. In the co-expression network, the 
nodes represent the gene module and the lines indicate the relevance of the co-expression modules. A module 
refers to a set of genes with similar expression trends in different samples. In the WGCNA algorithm, the elements 
in the co-expression matrix are defined as the weighted value of the correlation coefficient.

The network was built based on the connectivity between nodes. The selection for the weighted value is that 
network could satisfies the scale-free law34. i means node links (in other words, node degree i). p(i) means that 
the probability that a node has exactly i links (in other words, degree i) follows a power law distribution, namely 
p(i) ~ i−n where i is the node connectivity and p is the probability. In practical applications, the network is made 
to approximate the scale-free law by selecting weighting coefficients. The log(i) and log(p(i)) values should have 
a negative correlation (> 0.8).

We used the WGCNA package to construct the co-expression network as follows:

(a)  Define gene co-expression similarity: Calculate the similarity between any two genes using Pearson’s correla-
tion coefficient (Sij =  |cor(i, j)|, the correlation coefficient of gene i and gene j), which then forms the correla-
tion matrix (S =  [Sij]).

(b)  Define the exponential weighted value β: For any gene pair (i and j), apply the exponential adjacency function 

http://www.genome.jp/kegg/
http://www.genome.jp/kegg/
http://www.geneontology.org/
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in the WGCNA algorithm to measure their relation index, namely, the exponential weighted β square of the 
correlation coefficient (aij =  power(Sij, β) =  |Sij|β). Exponential weighted β  is the power of the correlation coef-
ficient. We selected β =  5 after the analysis (fit value R^2 to approximately 0.9) shown in Fig. 1

(c)  Define a measure of node dissimilarity: After determining the adjacency function parameter β, the correla-
tion matrix S =  [Sij] is switched into the adjacency matrix A =  [aij] and converted into the topological overlap 
matrix Ω =  [ωij]. ki or kj indicate the sum of one node’s adjacency coefficients. The node is a gene (i or j).
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(d)  Build hierarchical clustering tree to identify gene modules: The hierarchical clustering tree built using the 
dissimilarity coefficient ωdij  ( ω= −ωd 1ij ij), and the different branches represent the gene modules.

(e) Construct the co-expression network:

We got 78 gene modules by the function cutreeDynamic in WGCNA package. The soft thresholding power 
was 5. The relatively minimum module size is 10, and we chose a medium sensitivity (deepSplit =  2) to splits 
cluster. By the Pearson correlation coefficient between modules, we constructed the network. When the absolute 
value of correlation was more than 0.45, we would link two modules. The co-expression network was constructed.

Gene module enrichment and significant analysis of co-expression gene module. Fisher’s exact 
test was used for the gene set enrichment analysis. The analysis tended to cluster genes with similarities into one 
module of the co-expression network. To determine the reliability of the network module results, we formed a 
simulation dataset by random permutations, and then calculated the probability of the GO terms, KEGG path-
ways, and TFs in another regulation network enriched in our gene modules.

Using the KEGG enrichment analysis as an example, the progress of the significant co-expression network 
analysis is shown in detail below:

(a) Calculate the enriched KEGG pathways in each gene module (P value <  10−5) as n.
(b)  Take all the genes in the dataset as an overall sample and form a simulated module set according to the num-

ber of genes in each module. Repeat the calculation in (a) with a lower threshold (P value <  10−2) and save as 
ni.

(c) Repeat step (b) 1000 times to get a set of numbers of significantly enriched KEGG pathways.
(d) Calculate the Z value (Table 2) as

σ
=

−Z n N
N( ) (2)

n: In a repeat, the sum of numbers of all KEGG enrichment pathway
N: if repeat 1000 times, N =  (n1, n2 … n1000).

Time-course analysis by the NetReSFun algorithm at the module level. We modified NetReSFun2,4 
to identify the module related to sequential response of MTB under hypoxic pressure. In general, NetReSFun 
estimates where there is a change of expression in the interval [τ −  1, τ]. The scaled covariance between gene 
expression profiles could show the change directly.

Firstly, suppose there is a function step from 0 to 1 at time τ as follows:

τ
τ

τ = <
≥{ t

ts( , t) 0,
1, (3)

Secondly, with the expression profile xi(t) of gene i and the function s(τ , t), the scaled covariance covi(t) is:

τ
τ τ

σ τ
=

− −¯cov
x t x s t s

s t
( )

[ ( ) ][ ( , ) ( )]
[ ( , )] (4)i

i i

(The average of all times is represented by the short string in above function and the average of the sum of the 
product is represented by the curly brace in above function).

Thirdly, to ensure only the change of gene expression influences the final results, define Z as:

τ
τ τ
σ τ

=
−

Z
cov cov

cov
( )

( ) ( )
( ) (5)

i
i i

i

(where Zi(τ) represents the transcriptional response of gene i during [τ −  1, τ]). Similarly, Z could represents the 
response of gene module I at time τ as:
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(The subscripts I and R represent the mean value of the genes these modules contains and the mean value of the 
same number of randomly selected gene, respectively).

So, when ZI(τ) ≥  1.65 (log10 can be transformed to 0.22), it could be considered that the gene module has a 
significant change in expression level during τ −  1, τ.

Fourthly, to determine the direction of the change, the bias R of positive and negative covariance of genes 
within the module is calculated as:

τ = ∑
> − ∑ <

R
cov cov

N
( )

0 0
(7)I

i i

R

(where N represents the number of genes a module contains).
At last, the Z value is calculated to measure the significance of R as:
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(where subscript A represents all the other modules, and the curly brace in above function represents the average 
R of all the other gene modules).

In Original NetReSFuns, they only could identify whether expression of genes are abnormal, but we could not 
ensure that gene was up-regulated or down-regulated. We remove absolute value of ZRI(τ). So, ZRI(τ) >  0 indicates 
the module was up-regulated during [τ −  1, τ], otherwise it was down-regulated.

Screening potential TFs of gene modules. TFs may control the different gene modules under different 
conditions. To analyse a particular gene module, we selected all the TFs with a correlation value >  0.35 with this 
module. We then calculated the correlation between each TF and the first principal component of the module; high 
correlation suggested a high possibility that the module is controlled by the particular TF. Finally, we identified 
the possible TFs associated with a particular gene module and then considered the expression levels of these TFs.

Construction of an overexpression plasmid. To create pMV261-Rv0081, pMV261-Rv1909c, 
pMV261-Rv0324, pMV261-Rv3334, and pMV261-Rv3833 constructs, the sequences of the Rv0081, furA 
(Rv1909c), Rv0324, Rv3334, and Rv3833 genes were amplified by polymerase chain reaction (PCR) from MTB 
H37Rv genomic DNA using primers presented in follow Table 5. The genes were then cloned into the pMV261 
plasmid (which is a gift from Prof Jun Liu, University of Toronto, Canada) between the BamHI and EcoRI restric-
tion sites using standard methods. Primers used to amplify the MTB genes was shown in Table 5.

Escherichia coli and MTB strains, media, and growth conditions. MTB H37Rv were growth in 
liquid Middlebrook 7H9 medium and cultured in test tubes at 37 °C without extra oxygen until the exponen-
tial phase of growth reached standard conditions. The cultures were then subjected to an anaerobiosis stages as 
described by Wayne and Hayes35. In the hypoxia model, 2/3 volume of test tubes were added with liquid medium 
before sealed. As a control, the cultures were grown under standard conditions on 1/3 volume of test tubes with 
liquid medium without sealing them. The strained solutions (turbidity at 10 mg mL−1) from each test tube were 
then added to test tubes at 1/100 volume. The H37Rv bacteria grown under standard and hypoxic conditions were 
used for RNA isolation. In the Wayne model experiments, the cultures kept 15 days in an anoxic environment. On 
15th day, RNA were extracted.

E. coli strain DH5α  was grown on Luria broth at 37 °C. Then, 50 μ g mL−1 kanamycin was added for selection.

RNA extraction and reverse-transcription (RT)-PCR validation. The selected strains were centri-
fuged at 4,500 ×  g for 5 min at room temperature, and frozen on dry ice. The frozen cell pellets were suspended 
in 1 mL TRIzol reagent (CW Bio). RNA extraction was performed as previously described36. Genomic DNA was 
removed using a PrimerScript™  RT reagent kit (Takara).

Reverse transcription was performed with random primers, and quantitative PCR was performed with SYBR 
green mix (CW Bio).

Forward primer Sequence (5′ –> 3′) Reverse primer Sequence (5′ –> 3′)

pMV261-Rv0081-F CGCGGATCCGTGGAGTCCGAACCGC pMV261-Rv0081-R CCGGAATTCGTGGCCGAGCCGCCGG

pMV261-Rv1909c-F CGCGGATC GTGTCCTCTATACCGG pMV261-Rv1909c-R CCGGAATTCGGATGTGATCGCGAAGTG

pMV261-Rv0324-F CGCGGATCCATGGCTGGACAGTCCG pMV261-Rv0324-R CCGGAATTATCCCCATGCCCGACCG

pMV261-Rv3334-F CGCGGATCAAGATCAGCGAGGTAGC pMV261-Rv3334-R CCGGAATTCGGCGTGAATGTCGCTGA

pMV261-Rv3833-F CGCGGATCTCGGAAAACAGCCACC pMV261-Rv3833-R CCGGAATTCGGCGATCGCGAGCGCG

Table 5.  Primers used to amplify the MTB genes.
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We chose 40 candidate genes for RT-PCR validation. Because DosR has been deeply studied, our main purpose 
of red module is to validate our method is effective. We only selected 6 reported genes in red module. But in white 
and dark violet module, we randomly selected 22 genes and 12 genes separately for validation.

The primer sequences of candidate genes used for the RT-PCR are available upon request.
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