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Background: Attention-deficit/hyperactivity disorder (ADHD) is one of the
most common neurodevelopmental disorders in childhood and is caused by
both genetic and environmental factors. As genetic factors are
nonmodifiable, environmental factors have attracted increasing attention.
Objective: To investigate the relationships between urinary chlorpyrifos (CPF)
levels, blood micronutrient levels, and ADHD prevalence in children living in
rural areas of China.
Methods: This cross-sectional study collected data onCPFexposure (according to
urinary levels), bloodmicronutrient levels, andADHDprevalence inchildrenaged1–
6years in ruralChina. TheCPF levelsweredeterminedbymass spectrometry. Blood
levels of micronutrients, including zinc, iron, calcium, copper, magnesium, and
vitamin D, were measured by professional detection kits. ADHD was diagnosed
according to the Diagnostic and Statistical Manual of Mental Disorders, 4th
Edition. Descriptive statistics and univariate analysis were conducted using SPSS
21.0, and path analysis was conducted using Mplus 8.0.
Results:Of the 738 children who met the eligibility criteria, 673 children (673/738,
91.2%) were included in the final analysis. Baseline questionnaires and urine
samples were collected from all 673 subjects. A total of 672 children provided
blood samples for micronutrient testing, and 651 completed the ADHD
assessment. Approximately one-fifth of children (144/673, 21.4%) had detectable
levels of CPF in their urine, and 6.9% (45/651) were diagnosed with ADHD. Path
analysis showed that the total effect of CPF exposure on ADHD risk was 0.166 (P
<0.05), with a direct effect of 0.197 (P <0.05) and an indirect effect of −0.031 (P <
0.05) via vitamin D. The mediating effect of urinary CPF levels on ADHD risk via
vitamin D was 18.67%.
Conclusion:Higher levels of CPFexposure are associatedwith higher risk of ADHD.
Additionally, increasing vitamin D levels may have a beneficial effect on the
relationship between CPF exposure and ADHD risk. Our findings highlight the
importance of modifying environmental factors to reduce ADHD risk and provide
insight into future ADHD interventions.
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Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a

neurological disorder characterized by persistent difficulty in

regulating attention and affects 3.4 to 7.1% of school-aged

children (1). Although ADHD is one of the most common

developmental disorders, little is known about its underlying

causes. A large number of studies have shown that the

etiology of ADHD is multifaceted and encompasses both

genetic susceptibility and environmental factors (2). Empirical

research has suggested that exposure to heavy metals, dietary

factors (3), and chemical pollutants such as bisphenol A (4),

polycyclic aromatic hydrocarbons (5), and pesticides may

increase the risk of ADHD. There may also be an interaction

between environmental factors and genes that increases the

risk of ADHD (6).

Chlorpyrifos (CPF) is one of the most widely used

organophosphorus pesticides and an important environmental

pollutant. Due to its persistence and bioaccumulation in the

environment, exposure to CPF is unavoidable. Recently, the

neurotoxicity of CPF has attracted increasing attention. The

classic manifestation of CPF-induced damage to the nervous

system is cholinergic syndrome, which is caused by acute

poisoning and is characterized by the inhibition of

cholinesterase activity. Chronic exposure to low-level CPF

may have long-term adverse effects on the structure and

function of the nervous system, increasing the risk of

neurodegenerative diseases and neurodevelopmental disorders

(7). Most previous studies have focused on the relationship

between prenatal CPF exposure and offspring

neurodevelopment rather than on children’s direct exposure

to CPF (8, 9). Although two recent studies have explored the

correlation between CPF exposure and adolescent

neurodevelopment, research on CPF exposure levels and

ADHD in children is scarce (10, 11). As increasing evidence

shows that exposure to low levels of CPF may increase the

risk of ADHD, we aimed to explore this relationship in a

younger group of children aged 1–6 years.

Nutrition and diet are also important environmental factors

that influence the risk of ADHD (12). Recently, studies have

found that increased consumption of food dyes and processed

foods as well as decreased consumption of fruits and vegetables

are associated with the severity of ADHD symptoms (13, 14).

Follow-up studies found that many nutritional deficiencies, such

as those of magnesium, zinc, iron, copper and vitamin D, are

associated with ADHD symptoms (15–19). While diet therapy

and nutritional supplement therapy have been explored, the

results are inconsistent (20–22). More importantly, data on the

relationship between micronutrient levels in children aged 1–6

years and the risk of ADHD are lacking.

To address the above two research gaps, this study

aimed to investigate the relationships among urinary CPF
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levels, blood micronutrient levels, and ADHD risk in

children aged 1–6 years. Based on the findings of previous

studies, we made the following hypotheses: (1) exposure to

CPF is a risk factor for ADHD; (2) micronutrients are

protective factors against ADHD; and (3) micronutrients

mediate the relationship between CPF exposure and

ADHD risk.
Methods

Study population

Using cluster sampling, we selected Xinhua County in

Hunan Province, Sansui County in Guizhou Province, and

Gong’an County in Hubei Province to represent mountain,

hill, and plains regions, respectively. In each of the three

counties, three villages were randomly selected. All children

aged 1–6 years in these villages were observed, except for

those with the following conditions: (1) abnormal birth

history, such as premature birth, multiple pregnancy, or birth

asphyxia; (2) a history of head trauma; or (3) a history of

serious diseases, such as genetic metabolic diseases, congenital

abnormalities, feeding difficulties, severe malnutrition,

recurrent respiratory diseases, or severe abnormalities of liver

or kidney function. Based on the sample size recommendation

for path analysis (23) and the Medical Statistics textbook, we

determined that the minimum sample size required in each of

the three areas was 200 children. We administered

questionnaires, assessments of urinary CPF levels, blood

micronutrient assessments, and ADHD diagnosis to all

eligible children.

Prior to the field test, we verbally explained the purpose and

process of the study to the parents of all children and

emphasized the confidentiality of the data. The parents of all

included children provided written informed consent. This

study was strictly conducted according to international

guidelines for the protection of human subjects and was

approved by the Ethics Committee of the Third Xiangya

Hospital of Central South University in Hunan, China. The

ethics review number is 2014S162.
Parameters

Assessment of CPF levels in children’s urine
Collection and pretreatment of urine samples
The urine samples were collected and analyzed as follows: 20–

30 ml of morning urine was collected using disposable sterile

urine cups; this sample was further divided into 5-ml

polypropylene bottles. Each sample was numbered and
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recorded. All urine specimens were sent to the laboratory within

24 h of collection and stored at −80 °C until analysis.
Gas chromatography–mass spectrometry analysis (GC–
MS) of CPF levels
Before the gas chromatography–mass spectrometry (GC‒MS)

analysis, acetonitrile was added to the urine samples, and they

were vortexed for approximately five minutes. NaCl was then

added, and the mixture was vortexed for approximately one

minute. The supernatant was pipetted into a rotary steaming

flask, evaporated until nearly dry, and then diluted to a

volume of 1 ml with ethyl acetate. This solution was

transferred to an Eppendorf (EP) tube with 50 mg of primary

secondary amine (PSA), vortexed for 30 s, and centrifuged at

8,000 r/min for four minutes. Finally, the supernatant was

passed through a 0.22-μm filter, and GC‒MS analysis was

performed.

Measurements of the CPF levels were performed as

described elsewhere using GC‒MS analysis (Agilent

GC7890A-5975). Laboratory quality control parameters for

CPF levels were verified with reference to NY/T 788-2004

Pesticide Residue Test guidelines, which is the agricultural

industry standard in China.
Micronutrient assessment
We collected venous whole blood samples from children in

the morning after an overnight fast; these samples were

refrigerated, transported, and stored until analysis.

Measurements of micronutrients were conducted within 48 h

after collection.

Vitamin D measurements were carried out using an

enzyme-linked immunosorbent assay (ELISA). Monoclonal

antibodies were used to detect 25-OH-D in whole blood

samples with kits provided by the Oumeng Company

(Germany). Calcium, iron, zinc, copper, and magnesium levels

were all determined by atomic absorption spectrometry using

Beijing Bohui Company’s innovative photoelectric technology

BH7100S. A total of 40 μl of whole blood was added to the

instrument, and the samples were atomized by flame

combustion, producing numerous ground-state free atoms

that absorbed the characteristic spectrum of the measured

elements emitted through a hollow cathode lamp. The levels

of vitamin D (25-OH-D), calcium, iron, zinc, copper, and

magnesium were treated as continuous variables. The blood

level of lead was treated as a categorical variable (>10 µg/dl

or≤ 10 µg/dl), according to the levels of blood lead toxicity

proposed by the Chinese Centers for Disease Control and

Prevention (CDC). Laboratory quality control parameters for

micronutrient assessment were conducted between

laboratories in China every year and acquired the certificare

from the national center for clinical laboratories.
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ADHD assessment
The Diagnostic and Statistical Manual of Mental Disorders,

4th edition (DSM-IV) was used to evaluate ADHD in children

aged 1–6 years. The evaluation consists of two parts, including

nine symptoms of attention deficits and nine symptoms of

hyperactive/impulsive behavior. An individual is diagnosed

with ADHD if they exhibit six or more of the nine symptoms

in one of the two dimensions and if these symptoms persist

for at least six months. The ADHD outcome (with or without

an ADHD diagnosis) was treated as a categorical variable.
Questionnaires
We used questionnaires to collect demographic

characteristics and medical information from the children,

such as age, sex, date of birth, primary caregiver and their

educational level, annual family income per capita, maternal

age at pregnancy, weight at birth, and breastfeeding history.

The questionnaire consisted of a one-on-one survey with the

children’s primary caregivers. The investigators were

uniformly trained before administering the survey.
Statistical analysis

All data analyses were conducted using SPSS version 21.0

for Windows (IBM Corp., Armonk, NY, USA) and Mplus 8.0

(Muthén & Muthén, Los Angeles, CA, USA). The mean

(standard deviation [SD]) or the median (25th and 75th

percentiles [P25 and P75]) were used to describe the

distribution of continuous variables based on the normality of

their distribution; n (%) were used to describe categorical

variables. Nonparametric tests, t tests, nonparametric tests, or

chi-square tests were used for univariate analysis. Pearson or

Spearman correlation analyses were then conducted to

examine the correlation among all study variables. Prior to

the path analysis, we used logistic regression analysis to

examine whether there were significant interactions between

micronutrients (i.e., calcium, iron, zinc, copper, and

magnesium) and CPF levels. As shown in Supplementary

Appendix 2, no significant interactions were found; therefore,

no interaction terms were included in the path analysis.

Significant variables (i.e., P < 0.05) identified in the univariate

and correlation analyses and demographic characteristics

related to ADHD risk (i.e., age, sex, primary caregivers, and

the education of primary caregivers) were included in the next

step of the path analysis (24, 25). The path analysis was

conducted using the maximum likelihood method. Model fit

was examined with the relative χ2 goodness-of-fit statistic (χ2/

degrees of freedom [df]), comparative fit index (CFI), Tucker

and Lewis’s index of fit (TLI), and root mean square error of

approximation (RMSEA). A model was considered to exhibit
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FIGURE 1

Research population and survey flow chart.
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acceptable fit if it met the following criteria: χ2/df <5, RMSEA

<0.08, TLI >0.90, and CFI >0.90.
Results

Study population and participant
characteristics

Of the 738 children who met the eligibility criteria, 673

(91.2%) were included in the final analysis. Baseline

questionnaire data and urine samples were collected from

these 673 subjects. A total of 672 children provided blood

samples for micronutrient testing, and 651 completed the

ADHD assessment (Figure 1). The mean age of the

participants was 41.58 ± 15.4 months. The distributions and

descriptive statistics of each variable, including sex, primary

caregiver, district, education of primary caregiver, annual

family income per capita, birth weight, maternal age at

pregnancy, and age at weaning, are shown in Table 1.
Blood micronutrient levels and urinary
CPF levels

The distributions of lead levels and descriptive statistics of

each variable, including levels of zinc, iron, calcium, copper,

magnesium, and 25-(OH)-D, are shown in Table 1.

Approximately one-fifth of children (144/673, 21.4%) had

detectable levels of CPF in their urine. The number of
Frontiers in Pediatrics 04
positive samples and their corresponding CPF concentrations

are shown in a histogram (Figure 2).
Results of ADHD assessment and
univariate analyses

In total, 45 children were categorized as having ADHD, a

positive rate of 6.9% (45/651). As shown in Table 1, there

were significant differences in annual family income per

capita and vitamin D levels between children with ADHD

and those without ADHD. Specifically, children had a higher

risk of ADHD if they had lower vitamin D levels and came

from lower income families.
Results of the correlation and path
analyses

The correlation results showed that vitamin D levels and age

in months were positively correlated with CPF exposure, that

annual family income per capita and vitamin D levels were

positively correlated with ADHD risk, and that primary

caregiver education was positively correlated with vitamin D

levels (P < 0.05; see Supplementary Appendix 3).

The path model showed good fit, as shown by the normed

chi-square value of 2.37, RMSEA of 0.048, TLI of 0.901, and CFI

of 0.984. As shown in Table 2 and Figure 3, CPF had a direct

effect on ADHD risk (estimate = 0.197, P < 0.05) as well as an

indirect effect via vitamin D levels (estimate =−0.031, P <
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TABLE 1 Cross-sectional survey results and ADHD univariate analysis results.

Parameters Frequency (%) or mean ± SD/median (IQR) ADHD P

Yes (n = 45) No (n = 606)

Zinc (µmol/L) 64.41 ± 9.76 64.45 ± 8.37 64.29 ± 9.83 0.916

Iron (mmol/L) 7.77 ± 0.51 7.78 ± 0.51 7.77 ± 0.51 0.930

Calcium (mmol/L) 1.69 ± 0.68 1.69 ± 0.05 1.69 ± 0.07 0.704

Copper (µmol/L) 14.14 ± 1.75 14.14 ± 1.76 14.29 ± 1.54 0.364

Magnesium (mmol/L) 1.52 ± 0.13 1.52 ± 0.13 1.54 ± 0.15 0.458

25- (OH)-D (nmol/L) 53.76 ± 8.96 50.57 ± 4.93 54.08 ± 9.25 0.000

Age of month 41.58 ± 15.4 40.40 ± 11.21 42.17 ± 15.40 0.351

Chlorpyrifos (µg/kg) 0.00 (0.00, 0.00) 0.00 (0.00, 2.80) 0.00 (0.00, 0.00) 0.176

Birth weight (kg) 3.43 ± 1.01 3.40 ± 0.93 3.44 ± 0.93 0.762

Age during pregnancy 25.19 ± 5.34 25.07 ± 5.02 25.17 ± 5.20 0.899

Weaning age 10.00 (8.00, 12.00) 11.00 (6.00, 12.50) 10.00 (8.00, 12.00) 0.867

Gender 0.505

Boy 316 (48.54%) 24 (53.33%) 292 (48.18%)

Girl 335 (51.46%) 21 (46.67%) 314 (51.82%)

Lead 0.718

>10 µg/dl 619 (95.08%) 1 (2.22%) 31 (5.12%)

≤10 µg/dl 32 (4.92%) 44 (97.78%) 574 (94.88%)

Primary caregiver 0.825

Others 356 (57.42%) 24 (54.55%) 332 (57.54%)

Parents 264 (42.58%) 20 (45.45%) 245 (42.46%)

Per capita income 0.004

<3,000 RMB/ year 263 (44.35%) 28 (65.12%) 235 (42.73%)

≥3,000 RMB/ year 330 (55.65%) 15 (34.88%) 315 (57.27%)

Education of primary caregiver 0.552

Lower than high school 495 (84.91%) 36 (81.81%) 459 (85.16%)

High school or higher 88 (15.09%) 8 (18.19%) 80 (14.84%)

District 0.685

Hubei Gongan 188 (28.88%) 11 (24.44%) 177 (29.21%)

Guizhou Sansui 197 (30.26%) 13 (28.89%) 184 (30.36%)

Hunan Xinhua 266 (40.86%) 21 (46.67%) 245 (40.43%)

Note: SD, standard deviation; IQR, interquartile range.
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0.05). The mediating effect of urinary CPF levels on ADHD risk

via vitamin D was 18.67%.
Discussion

In the present study, we investigated the relationships

among urinary CPF levels, blood micronutrient levels, and

ADHD risk in rural Chinese children aged 1–6 years.

Consistent with our hypotheses, we found that (1) CPF

exposure was a risk factor for ADHD; (2) higher levels of

vitamin D may reduce the risk of ADHD; and (3) vitamin D

levels mediated the relationship between CPF exposure and

ADHD risk.
Frontiers in Pediatrics 05
This cross-sectional study investigated CPF levels in children’s

urine and found that 21.4% of children had detectable CPF levels.

In 2016, a cross-sectional study of 140 children living near a

banana plantation in Talamanca, Costa Rica reported that

40.7% (57/140) of children had urine samples positive for the

CPF metabolite 3,5,6-trichloro-2-pyridinol (TCPy) (11). In

addition, a cross-sectional survey of 60 children (aged 1–6

years) of North Carolina farm workers found that 83.3% of the

children had detectable levels of CPF or CPF-methyl in their

urine (26). Furthermore, 230 residents of Yunmou County,

China underwent testing for urinary CPF; the positive rate was

10%. These results indicate that CPF exposure is related to the

environment in which the participants live as well as the

methods used to assess their exposure. Furthermore, knowledge
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FIGURE 2

Histogram of chlorpyrifos concentrations detected in urine samples and the corresponding number of positive samples.

TABLE 2 Standardized effect size of associated factors of ADHD
analyzed using path analysis.

Variable Estimate Standard error P

Total effect CPF→ADHD 0.166 0.070 0.018

Direct effect CPF→ADHD 0.197 0.071 0.006

Total indirect effect CPF→ADHD −0.031 0.015 0.048

CPF→Vitamin D 0.139 0.040 0.000

Vitamin D→ADHD −0.224 0.101 0.018

Note: Toltal effect size = Direct effect size + Indirect effect size.

Zhou et al. 10.3389/fped.2022.952559
of pesticide use influences children’s pesticide exposure, indicating

the importance of caregiver awareness (27).

The ADHD assessment revealed that 6.9% of children in

rural China had ADHD in our study, a rate similar to that in

previous studies of children in mainland China (6.3%) (28).

Our study indicated that exposure to low-level CPF in the

environment may increase the risk of ADHD in children aged

1–6 years. Previous studies showed that maternal exposure to

CPF are related with ADHD in children (8, 9). Yu et al.

reported that a dose-response relationship was found between

urinary concentrations of organophosphate pesticide in

Taiwanese children aged 4–15 and ADHD (29). Moreover,

mouse experiments have also shown that prenatal CPF

exposure impacts the motor activity and memory of offspring

(30). But data on the relationship between CPF residual levels
Frontiers in Pediatrics 06
in children aged 1–6 and the risk of ADHD are lacking. As a

multi-center cross-sectional study, our study is more

conducive to early detection, diagnosis, and interventions of

ADHD by screening ADHD among preschool children. The

mechanism underlying neurotoxicity induced by exposure to

low-level CPF remains unclear. Some studies have suggested

that exposure to low levels of CPF affects motor coordination

and function by influencing extracellular GABA

concentrations in the cerebellum as well as NMDA receptor

subunits in the hippocampus (30). Perinatal exposure to

pesticides, such as CPF, is also correlated with alterations of

synaptic plasticity that impair brain development and synaptic

signaling (31). In addition, CPF exposure can interfere with

transglutaminase activity in tissue as well as transient

potential channels (32, 33). CPF-induced oxidative stress and

its concomitant damage, including oxidative injury, metabolic

imbalance, and lysosomal damage, are also likely correlated

with its neurotoxic effects (34). However, counter to the

mounting evidence of the neurotoxicity of CPF, researchers

reported that early exposure to CPF in rats does not inhibit

AChE activity in the blood or brain (35). Thus, further

research is needed to elucidate the mechanism underlying

neurotoxicity induced by exposure to low-level CPF.

This study also investigated micronutrient levels and their

relationships with CPF exposure and ADHD risk. This design

introduces biological samples (urine and blood samples), which
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https://doi.org/10.3389/fped.2022.952559
https://www.frontiersin.org/journals/pediatrics
https://www.frontiersin.org/


FIGURE 3

Model linking chlorpyrifos exposure to ADHD.
Note: * indicates P < 0.05, statistically significant effects are indicated by solid lines.
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are more direct and consequential for verifying the impact of

environmental factors. Univariate and multivariate analyses

revealed that vitamin D levels have a protective effect against

the risk of ADHD, a finding consistent with the results of

previous studies. Accumulated data suggest that decreased

levels of vitamin D may also be a significant risk factor for

ADHD (36–38) and that increased prenatal levels of vitamin D

may have a protective effect against ADHD (39). However, a

Danish cohort study and a Swedish case‒control study found

no association between vitamin D levels and ADHD in older

children (40, 41) Further research is necessary to determine

whether an adequate supply of vitamin D can protect against

ADHD. Regarding the underlying mechanism, vitamin D is a

steroid hormone and can freely cross the blood‒brain barrier,

thereby influencing neurons and glial cells. Research has

indicated that microglia produce calcitriol in situ, upregulating

the synthesis of nitric oxide synthase by glutathione; nitric

oxide synthase has neuroprotective and neuromodulatory

functions (42–44). Additionally, studies have suggested that

vitamin D protects against many pathophysiological processes

of neurons, such as oxidative stress as well as impaired

neuronal calcium homeostasis, nerve conduction, detoxification,

and immune regulation (45). Furthermore, vitamin D interacts

with the promoters of various receptors, exerting epigenetic

effects and thus altering their function (46–48). Therefore,

vitamin D deficiency has the potential to promote

neurodevelopmental disorders such as ADHD.

Furthermore, path analysis showed that CPF exposure was

significantly correlated with vitamin D levels. The interaction

between CPF and Vitamin D was studied in lab experimental

setting. Krzysztof et al. reported that CPF can interfere with

vitamin D3 metabolism in skin cells by altering the expression

of the vitamin D3 receptor and enzymes such as CYP27A1,

CYP27B1, and CYP24A1 (49, 50). As to the relationship of
Frontiers in Pediatrics 07
CPF exposure in children with vitamin D, little studies can be

found on. This is the first cross sectional study that found the

possible correlation between them. The skin is regularly

exposed to environmental pollutants, including CPF; it is also

the organ responsible for vitamin D3 synthesis. Thus, the

interaction between CPF and vitamin D also warrants attention

from the perspective of epidermal cells. However, studies on

the interplay between CPF and vitamin D are scarce, and

further research is needed.

This study has several limitations. First, our study was based

on cross-sectional data. Further research using a longitudinal

design is needed to confirm the causal relationship between

CPF exposure and ADHD risk. Second, there may be self-

report bias regarding ADHD. Future research should consider

using different forms of data collection to verify whether such

measurement bias exists. The third limitation of our study is

the possibility of residual confounding, which can not be fully

eliminated in an observational study. For example, in this

study we did not include children’s allergy history and eating

behaviors, which may result in biases in our analyses. These

variables should be taken into consideration in future studies

(51, 52). Finally, using a one-time measurement of urinary

CPF levels may not be the best method for estimating long-

term CPF exposure; thus, a follow-up study is necessary.

In conclusion, we investigated the relationships between

CPF exposure, ADHD risk, and micronutrient levels in rural

Chinese children aged 1–6 years. We found that exposure to

CPF was a risk factor for ADHD in children and that higher

levels of vitamin D protected against ADHD. Supplemental

vitamin D for children may thus help protect against ADHD

risk in children exposed to CPF. Our findings provide insights

for future ADHD interventions that involve modifying

environmental risk factors, such as reducing CPF exposure

and increasing vitamin D intake, to reduce ADHD risk.
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