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Abstract: The training of Human Activity Recognition (HAR) models requires a substantial amount
of labeled data. Unfortunately, despite being trained on enormous datasets, most current models have
poor performance rates when evaluated against anonymous data from new users. Furthermore, due
to the limits and problems of working with human users, capturing adequate data for each new user
is not feasible. This paper presents semi-supervised adversarial learning using the LSTM (Long-short
term memory) approach for human activity recognition. This proposed method trains annotated
and unannotated data (anonymous data) by adapting the semi-supervised learning paradigms on
which adversarial learning capitalizes to improve the learning capabilities in dealing with errors
that appear in the process. Moreover, it adapts to the change in human activity routine and new
activities, i.e., it does not require prior understanding and historical information. Simultaneously, this
method is designed as a temporal interactive model instantiation and shows the capacity to estimate
heteroscedastic uncertainty owing to inherent data ambiguity. Our methodology also benefits from
multiple parallel input sequential data predicting an output exploiting the synchronized LSTM. The
proposed method proved to be the best state-of-the-art method with more than 98% accuracy in
implementation utilizing the publicly available datasets collected from the smart home environment
facilitated with heterogeneous sensors. This technique is a novel approach for high-level human
activity recognition and is likely to be a broad application prospect for HAR.

Keywords: HAR; semi-supervised learning; adversarial learning; syn-LSTM; smart home

1. Introduction

Human activity recognition has been a concern in Artificial intelligence (AI) research
for decades. However, the many proposed approaches face challenges in recognizing
human activity accurately and precisely. The HAR system has gained popularity in re-
cent years because of the progress of ubiquitous sensing devices and their capacity to
solve specified problems like privacy [1]. HAR systems deployments to the real world in
applications such as ambient assisted living (AAL), personal health [2], elderly care [3],
defences [4], astronauts [5], and smart homes [6] are potentially increasing. However, there
are challenges in the existing techniques to recognize activities substantially since they are
now required to account for all unanticipated changes in the real-time scenario.

For example, in this pandemic situation, a COVID-19 patient needs isolation and can
be monitored and treated without hospitalization to reduce the burden on isolation centres
and hospitals. Sometimes users might modify their schedule of activities without prior
knowledge. However, we could anticipate that the system could swiftly understand such
new changes; in real-world situations, all these changes are inevitable [7].

Current efforts at HAR focus primarily on detecting changes—finding new activities [8,9]
and learning actively—acquiring user annotations about new activities [10]. When a new
activity class is added, they must reconstruct and retrain the model from scratch. Some
researchers have investigated how an activity model with different activities might develop
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automatically [11]. This capacity, however, offers the advantage of keeping the knowledge
in the business model that has been built through time while lowering training costs,
manual configuration and manual feature engineering. Various supervised [12] and semi-
supervised [13] methods for activity recognition have been presented. These models
provide good accuracy with sufficient data on training. However, their performance from
new, undiscovered distributions drops drastically. Therefore, detecting a new user’s activity
remains challenging for the model. Most machine learning [14] and deep learning [15] are
not conceptually aware of all activities, but they can efficiently recognize human activity
with the proper learning and models. The deep neural network is the underlying model
for many artificial intelligence models and state-of-art methods. However, deep learning
demands a significant amount of data to be a label for learning. Nonetheless, due to
practical constraints, some fields of inquiry have data collecting and labeling limitations.
As a result, providing enough labeled data in many circumstances is not viable. In the AAL
domain, particularly the sensor-based Human Activity Recognition (HAR) problem, data
acquisition and labeling tasks necessitate the involvement of human annotators and the
use of pervasive and intrusive sensors. Furthermore, the expense of manual annotation,
especially for massive datasets, is prohibitively high.

There are two needs for recognizing human activity: improving accuracy, developing
trustworthy algorithms to tackle new users, and changing regular activity schedule issues.
Therefore, our strategy ensures that the activity identification is addressed mainly through
improved performance over previous approaches. This work emphasizes recognition
activity by accompanying semi-supervised and adversarial learning on a synchronized
LSTM model. To need a system to have the relevant data and ensure that no labels based
on the previously learned data can be fully anticipated. Furthermore, this technique could
improve performance by utilizing fewer labeling classes. Our method’s highlights are
as follows:

• We present semi-supervised and adversarial learning using a synchronized LSTM
model to recognize human activity with competitive accuracy.

• The model understands new changes and learns accordingly with reduced error rates;
in real-world situations, all these changes are inevitable.

• LSTM is the unsupervised model, but we train it in a semi-supervised feature with a
synchronized parallel manner. Therefore, the proposed approach is also an adapted
version of LSTM.

• The proposed joint model can structure and learn Spatio-temporal features directly
and automatically from the raw sensor data without manual feature extraction. As a
result, the model can train unannotated data more easily and conveniently.

• This framework can likely be applied to various recognition domains, platforms,
and applications such as natural language processing (NLP), PQRS-detection, fault
detection, facial recognition, etc.

• This method could be the best-suited state-of-the-art method for human activity
recognition because of its high-level activity recognition ability with reduced errors
and increased accuracy.

The proposed method can be used as the external sensor deployment method for
a mix of several sensor deployment methods like wearable, external, camera, or all For
the user’s convenience. But we evaluated and compared using fully-added real-world
data sets collected from external sensors deployed in various corners of the house and
apartment from Kasteren and Adaptive System Advanced Studies Center (CASAS). The
remaining documents are arranged accordingly. Section 2 describes related work. Section 3
shows our recommended technique. Section 4 provides the experiment set-up, analysis
and assessment. Finally, the paper ends in Section 5.

2. Related Work

The activity was identified via heterogeneous sensors, wearable sensors, and cam-
eras for ambient assistive living and monitoring [16]. An innovative HAR method uses
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body-worn sensors that partition the activity into sequences of shared, meaningful and
distinguishing states known as Motion Units [17], i.e., a generalized sequence modeling
method. However, the external sensor is on researchers’ choice because of body and per-
sonal issues [18]. Many approaches that use techniques like deep learning, transfer learning,
and adversarial learning are proposed in the state-of-art strategies for HAR. In [19], active
learning methodologies for scaling activity recognition apply dynamic k-means clustering.
Active learning reduces the labeling effort in the data collecting and classification pipeline.
On the other hand, feature extraction is considered a classification problem. [20] evaluates
human activities based on unique combinations of interpretable categorical high-level
features with applications to classification, learning, cross comparison, combination and
analysis of dataset and sensor. Despite all of the improvements made in the suggested
model, such as the computational cost reduction, the approaches are still prone to underfit-
ting due to their poor generalization capacity [21].

A machine learning Naive Bayes classifier recognizes the most prolonged sensor
data sequences [22]. A progressive learning technique dubbed the dynamic Bayesian
network has been explored by re-establishing previously learned models to identify activity
variation [23]. To extract task-independent feature representations from early generative
models, deep learning approaches have been employed on Boltzman machines [24]. More
sophisticated models like CNN [25,26] were effectively utilized in complex HAR tasks.
Likewise, some suitable methods are employed to categorize certain sorts of activity, such
as multilayer perceptrons [27], vector support machine [28], Random forest [29], decision-
making tree [30], and an updated HMM [31]. This research aimed to record sensor changes
or changes in discrimination models to recognize human activities. Valuable data means
data, especially for lesser amounts, which may be employed to generate high performance.
These ultimately save on labelling. For this purpose, several techniques are used in the
study. Cameras were also used as external HAR sensors. Indeed, significant research
has identified activities and actions in video sequences [32,33]. The mentioned work is
particularly suited for safety applications and interactive applications. However, video
sequences have particular problems with HAR, privacy and pervasiveness.

Adversarial machine learning has gained increasing interest with the advent of Gen-
erative Adversarial Networks (GANs) [34], and it now achieves excellent performance in
a wide range of fields, including medicine [35,36], text and image processing [37,38], and
architecture [39,40]. GANs work by pitting generator and discriminator algorithms against
one another in order to distinguish between produced and real-world data. Deep learning
is used to create discriminators that continually learn the best set of features, making it
difficult for the generator to pass the discriminator test [41]. The difficulty of providing
synthetic data was addressed in the first attempts to use adversarial machine learning for
HAR. However, improving categorization algorithms remains the most pressing issue in
this sector.

It is challenging to obtain labelled data from users for practical applications. However,
unlabeled data can be collected. Since semi-supervised learning uses both the labelled and
unlabeled data for model training, the respective models can capture the characteristics of
unlabeled data left-out users and further enhance validation performance. Furthermore,
adversarial semi-supervised learning models compete with a state-of-the-art method for
many areas, such as the classification of images [42] and material recognition [43]. Therefore,
the adversarial semi-supervised [44] model is a viable solution. However, unlike other
semi-supervised learning techniques, adversarial semi-supervised learning methods are
generally applied to circumstances in which unlabeled data is available [45,46].

3. Proposed Method

Human activity recognition systems consist of data acquisition, pre-processing, feature
extraction and training/testing phases. Our approach also contains the same process, but
the driving factor is new in HAR. The workflow of our proposed method is shown in
Figure 1. Heterogeneous sensors were deployed in the apartment’s different locations. The
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data from the sensors are pre-processed by doing segmentation and filtrations. As we use
the deep learning model, the feature is extracted automatically. Then, we train and classify
the activity and recognize it. If data is unannotated, we reprocessed it and classified it.
Finally, we add some perpetuation to develop the self-immune system to the network as
an adversarial learning mechanism. We can benefit from training the unlabeled data and
labeled data. Similarly, it minimized the error by adversarial learning techniques that can
boost the accuracy of the HAR. Hence, we present the Semi-supervised adversarial learning
mechanism to detect the human activity facilitated by the synchronized LSTM model that
is novel in HAR to this date.

Figure 1. System workflow of our proposed method for HAR.

3.1. Semi-Supervised Learning

Supervised learning [47] is a strategy employed by learning data and labels in many
domains or environments. Supervised learning knows and uses labelled data and is helpful
for large-scale issues. Various machine learning and deep learning approaches have been
used as the supervised learning mechanism. However, hundreds to millions of learning
data can be provided to train, and labelling each data is vital. Therefore, supervised
learning cannot be used without sufficient learning data because of these issues. Semi-
supervised learning is a mechanism to address these deficiencies [48]. It is a technique used
to recognize unlisted data with essential criteria like thresholds and re-learn models using
available learning data to increase performance based on the projected values of the learned
sequences. The semi-supervised method reduces manual annotation and helps develop a
self-learning model, which gains robust knowledge and eventually increases the recognition
efficiency or accuracy of the recognition model. The feedback properties of LSTM are used
to send the unannotated. Then the unannotated data is trained and annotated.
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3.2. Sync LSTM

Sync LSTM is the adapted LSTM based on artificial recurrent networks (RNN). The
insight of the LSTM and unfolded sync-LSTM network is shown in Figure 2a,b, respectively.
It can handle multiple data streams at a time [49]. A conventional LSTM neuron takes a
lengthy time to process a signal with significant time steps. As a result, we simultaneously
deployed numerous LSTM units to process different data streams. The input streams of
data are vectored as x ∈ R(I × F× S×V × P) in which I and F are the initial and final end
times. Similarly, S denotes the sensor ID, V is the sensor’s data value, and P represents
the sensor location. xm

t =
(
x1

t , x2
t , x3

t . . . .xN
t
)

is Sync-LSTM sample inputs where each
data is a individual set m = 1, 2, 3, . . . N sampled at time t = 1, 2, 3, . . . N−1. The input
data vector bx1

t , x2
t . . . xN

t ∈ R [(S1 × E1 × I1 ×V1 × L1), (E2 × I2 ×V2 × L2), . . . (SN ×
EN × IN ×VN × LN)]. Y1

t , Y2
t , Y3

t . . . YN
t resembles the output through the hidden states

h1
t , h2

t , h3
t . . . . . . hN

t at the time t.

im
t = σ

(
wxi × xm

t + whi × hm
t−1 + wci × cm

t−1 + bi
)

(1)

f m
t = σ

(
wx f × xm

t + wh f × hm
t−1 + wc f × cm

t−1 + b f

)
(2)

om
t = σ

(
wxo × xm

t + who × hm
t−1 + wco × cm

t−1 + bo
)

(3)

cm
t = f m

t × cm
t−1 + im

t × tanh×
(
wxcxm

t + whchm
t−1 + bc

)
(4)

hm
t = om

t × tanh× cm
t (5)

hm
t = H

(
wxmhm × xm

t + whmhm × hm
t−1 + bm

h
)

(6)

Ym
t =

(
wymhm × hm

t−1 + bm
y

)
(7)

Figure 2. (a) Internal Architecture of sync-LSTM; (b) Unfold of sync-LSTM.
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H is the composite function, where the im
t ; input gate, f m

t ; the forget gate, om
t ; the

output gate and the cm
t ; cell memory with W(t); weight matrix. Every given gate has its

activation functions σ; sigmoid and
∫

; hyperbolic tangent.
It comprises an input layer, the LSTM parallel layers, and the outputs wholly linked.

In the last stage, the result is summed up as n× h, where h is the number of neurons buried
in each LSTM unit. After each step, the LSTM layers update their inner state. Finally, the
weight, bais, and hidden layers are allocated to 128. The number of classes determines the
final number of parameters.

3.3. Adversarial Training

Adversarial learning is a technique to regularize neural networks that improve the
prediction performance of the neural network or approaches to deep learning by adding
tiny disturbances or noises with training data that increases the loss of a more profound
learning model. The schematic diagram of the adversarial learning is shown in Figure 3.
However, it proposed that small perturbations to deep learning input may result in incorrect
decisions with high confidence [50]. If x and θ are the input and different parameters for a
predictive model, adversarial learning adds the following terms to its cost function in the
training phase to classify the correct class.

log p (Ym
t
∣∣Xm

t + rm
t ; θ) = where rm

t = argmin log p (Ym
t
∣∣Xm

t + rm
t ; θ̂) (8)

Figure 3. Adding of Adversarial Function.

From Equation (8), r is adversarial in the input data. θ̂, is a set of the constant parameter
of the recognition model. At each training, the proposed algorithm identifies the worst-case
perturbations rm

t Against the currently trained model to θ. Contrary to other techniques
of regularization, such as dropout, that add random noise, adversarial training creates
disturbances or random noise that may readily be misclassified in the learning model by
changing input instances.

Algorithm 1 represents the detailed steps of the recognition system, adding the adver-
sarial function. The adversarial function is a small perturbation that maximizes the loss
function. As a result, the predictive accuracy or predictive model is eventually improved
by reducing the cumulative loss function of the predictive models.



Sensors 2022, 22, 4755 7 of 16

Algorithm 1 Sync-LSTM Model with Adversarial Training

Step 1. initialize network
Step 2. reset: inputs = 0, activations = 0
Step 3. initialize the inputs
Step 4. Create forward and backward sync-LSTM

Calculate the gate values:
input gates: im

t
forget gates: f m

t
loop over the cells in the block
output gates: om

t
update the cell: cm

t
final hidden state/ hm

t = H
(
wxmhm xm

t + whmhm hm
t−1 + bm

h
)

final output: Ym
t =

(
wymhm hm

t−1 + bm
y

)
Step 5. Predict and calculate the loss function

Calculate seq2seq loss
Calculate class loss using cross-entropy

Step 6. Add random perturbations,
logp (Ym

t
∣∣Xm

t + rm
t ; θ) = where rm

t = argminlogp (Ym
t
∣∣Xm

t + rm
t ; θ̂)

Step 7. Calculate loss function by adding adversarial loss
Step 8. Optimize the model based on AdamOptimizer

Algorithm 2 presents a semi-supervised learning framework that guides how unanno-
tated from multiple inputs can be incorporated into a sync-LSTM recognition model.

Algorithm 2 Semi-Supervised Sync-LSTM Model

Step 1. Recognize unlabeled data based on Algorithm 1
Step 2. Add recognized dataset to original training dataset
Step 3. Retrain the model using Algorithm 2

4. Experimental Configurations and Parameters

The detailed results in both the training and recognition are presented in this section.
First, several design hypotheses are assigned and processed. Then, the proposed model
is trained with the labelled and unlabeled data, and the results are compared with the
existing model outputs. Finally, Milan, Aruba, and the House-C datasets are considered
for the experimental analysis of the proposed approach from the CASAS dataset and
Kasteren house.

4.1. Datasets

The Kasteren dataset [51] and CASAS dataset [52] from WSU have been used to
evaluate our proposed method. Table 1 shows an overview of the datasets. The data was
collected in an apartment with more than five rooms. In Milan, 33 sensors are installed,
whereas in house-C, 21 sensors are installed, and in Aruba, 34 sensors are installed. For the
Milan dataset, motion, door, and temperature sensors are the primary sources of sensor
events. A woman and a dog were the primary annotated resident in the Milan dataset. The
woman’s children occasionally visited the house as an unlabeled resident. The seventy-two
days were spent collecting the data from the Milan house. A total of fifteen activities are
recorded as the annotated data. One resident in the House-C dataset performed sixteen
different activities for twenty days. The sensors show the change of state according to the
occupant’s action. The data for the Kasteren House-C is recorded using radiofrequency
identification, a wireless sensor network, mercury contacts, a passive infrared-PIR, float
sensors, a pressure sensor, a reed switch, and temperature sensors. CASAS Aruba dataset
is another trademark dataset that collected eleven annotated activities for two hundred
and twenty-two days. The schematic layout of the sensor deployment is shown in Figure 4.
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Table 1. Outlines of Datasets.

Description Milan House-C Aruba

Setting Apartment House Apartment
Rooms 6 6 5
Senors 33 21 34

Activities 15 16 11
Residents 1 1 1

period 72 days 20 days 220 days

Activities Performed

Bed-to-Toilet, Chores,
Dining_Rm_Activity,

Eve_meds, Guest_Bathroom,
Kitchen_Activity, Leave_Home,

Master_Bathroom, Meditate,
Watch_TV, Sleep, Read,

Morning_Meds,
Master_Bedroom_Activity

Brushing teeth, Drinking,
Dressing, Eating, Leaving

House, Medication, Others,
Preparing Breakfast, Preparing

Lunch, Preparing Dinner,
Relax, Sleeping, Showering,

Snack, Shaving, Toileting

Meal_Preparation, Relax,
Eating, Work, Sleeping,

Wash_Dishes, Bed_to_Toilet,
Enter Home, Leave Home,
Housekeeping, Resperate

Figure 4. Floor Plan and Sensor Deployment.

4.2. Parameter Setting and Training

The proposed method is trained and tested using the TensorFlow_GPU1.13.1 library
and scikit-learn. The obtained data is pre-processed and sampled in overlapping sliding
windows with a fixed width of 200 ms with a window length ranging from 0.25 s to 7 s.
Our algorithm is examined using an i7 CPU topped with 16 GB RAM and GTX Titan GPU
processed on CUDA 9.0 using the cuDDN 7.0 library. The CPU and GPU are employed
to minimize the amount of memory used. The dataset is divided into three sections: a
training set, validation, and testing. 70% of data is used for training, 10% for validation,
and the rest for testing. The data is validated using the k-fold CV (cross-validation). We
used 10-fold cross-validation (K = 10) to confirm our findings. The outcome of the accuracy
test is averaged, and the error is determined as follows.

CV =
1
p

10

∑
p=1

E (error) (9)

The dropout rate is adjusted to 0.5 during training to eliminate unnecessary neurons
from each hidden layer to alleviate overfitting. Random initialization and training parame-
ter optimization can also help to reduce training loss. To avoid overfitting and make the
model stable, cross-entropy and L2 normalization are incorporated.

L = −1
k

n

∑
k=1

ym
t .logym′

t + Γ.||W||, (10)
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In Equation (10), k is the number of samples per batch and w denotes the weighting
parameter. ym

t is the recognized output, and ym′
t ; the label. L2 normalization reduces the

size of weighting parameters, preventing overfitting. Adversarial learning is a technique
for regularizing neural networks. It also improves the neural network’s prediction perfor-
mance. It perhaps approaches deep learning by adding tiny disturbances or noises to the
network with training data that increases the loss of a more profound learning model for
regularization, improving recognition ability as adversarial training. If rm

t is the adversarial
input, then is θ the perturbations, which is written as

= argmin log p (Ym
t
∣∣Xm

t + rm
t ; θ̂)

We strive to tune the optimum hyperparameters, as indicated in Table 2, so that the
learning rate and L2 weight decrease and the difference decreases, resulting in the most
significant possible performance. For the Milan, House-C, and Aruba datasets, we employ
a learning rate of 0.005, 0.004, and 0.006 and a batch value of 100 for each epoch to train the
model. For all sets, learning begins at 0.001. The training lasts roughly 12,000 epochs and
ends when the outputs are steady. The Adam optimizer is an adaptive moment estimator
that generates parameter-independent adaptive learning rates. The input dimension is set
to 128, and the output dimension is set to 256. The gradient crossover threshold is reduced
by adjusting gradient clipping to 5, 4, and 5.

Table 2. Hyperparameter Configurations.

Hyperparameters Values

Milan House-C Aruba

Time Steps of input 128 128 128
Initial Learning Rate 0.001 0.001 0.001

Learning Rates 0.005 0.004 0.006
Momentum 0.5 0.5 0.5

Optimizer (Bi-LSTM) Adam Adam Adam
Batch Size 100 100 100

Dropout Rate 0.5 0.5 0.5
Batch Size 100 100 100

Epochs 12,000 12,000 12,000

4.3. Evaluation Parameters

Accuracy, F1-score, and training time evaluate the model’s performance. These can
be calculated using the confusion matrix, where the row represents the predicted class,
and the column represents the actual class. Human activity recognition is evaluated
according to their computational recognition accuracy, resulting from the Precision and
Recall parameters. Precision is the proportion of correctly recognized instances from
perceived activity occurrences. A recall is the proportion of correctly identified instances
out of the total events. The f-score is the weighted average of Precision and Recall between
0 and 1. The better performance indicated if closer to 1

Precision =
tp

tp + f p
× 100 (11)

Recall =
tp

tp + f n
× 100 (12)

Accuracy =
tp + tn

tp + tn + f p + f n
× 100 (13)

f − score =
2× Precision× Recall

Precision + Recall
(14)
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where tp; true-positive, tn; true-negative, f p; false-positive, and f n; false-negative. The
tp is the number of true activities detected in positive instances, while an f p indicates
the false activities detected in negative instances. The f n score indicates the exact number
of false activities detected in positive instances, whereas the tn score reflects the correct
non-detection of activities in negative instances.

5. Results and Evaluations
5.1. Recognition Analysis

The activity is recognized according to the proposed smart home development method.
The method shows a tremendous recognition result. Table 3 shows the confusion matrix of
Milan, showing the correctly recognized instances out of the perceived activity occurrences
and correctly recognized instances out of the total occurrences. Thus, all the activities
have more than 95% of recognition accuracy to the given instances. According to the
confusion matrix, the Bed-to-Toilet activity was correctly detected with 95% accuracy but
still has an activity error of 5%. The Bed-to-Toilet may create confusion with Sleep activ-
ity and Morning_Meds these activities are very closely related. Fortunately, Eve_Meds
has a 100% confusion accuracy. The activities Chores, Desk_Activity, Dining_RM_Activity,
Guest_Bathroom, Kitchen_Activity, Leave_Home, Master_Bathroom, Mediate, Watch_TV, Sleep,
Read, and Master_Bedroom_Activity recognition accuracies of 98%, 98%, 99%, 97%, 97%,
96%, 99%, 98%, 99%, 97%, 96%, 95% and 95%, respectively. Although the obtained result
is good enough, we still struggle to get the 100%, letting some errors. The errors arise
because of confusion between similar activities, activities performed in the same room, and
the different activities performed simultaneously with the same instances. Sometimes we
performed the same activities with different people, which was unannotated.

Table 3. Confusion matrix for Milan dataset.

Activity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Recall

1 Bed-to-Toilet 95 0 0 0 0 0.3 0 0 0 0 0 0 0 1 0.3 98.344
2 Chores 0 98 0 0 0 0 1 0.2 0.05 0 0 0 0 0 0 98.741
3 Desk_Activity 0 0 98 0 0 0 0 0 0 0 2 0.3 0 0 0 97.707
4 Dining_Rm_Activity 0 0.8 0 99 0 2 0 0.1 0 0 0 0 0 0 0 97.154
5 Eve_Meds 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 100.000
6 Guest_Bathroom 0 0 0 0.3 0.2 97 0 1.2 1 0 0 0 0 0 0 97.292
7 Kitchen_Activity 0 1.2 0 1.2 0 0 97 0 0.3 0 0 0 0.6 0 0 96.710
8 Leave_Home 0 0 0 2 0 0 1.2 96 0.9 0 0 0 1 0 0 94.955
9 Master_Bathroom 0 1.1 0 0 0 0 1 0.4 99 0 0 0 0.2 0 0 97.345
10 Meditate 0 0 0 0 0.3 0 0 0 0 98 0.6 0 0 0 0 99.090
11 Watch_TV 0 0 0 0 0 0 0 0 0 0 99 0 0 0 0 100.000
12 Sleep 2 0 0 0 0 0 0 0 0 0 0 97 0 1 0.5 96.517
13 Read 0 0 0 1 0 1 0 0 0 0 0 0 96 0 0.9 97.068
14 Morning_Meds 1 0 0.5 0 0 0 0.8 0 0 0 0 0 0 95 0.033 97.603
15 Master_Bedroom_Activity 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 95 99.790

Precision 96.939 96.934 99.492 95.652 99.502 96.710 96.040 98.059 97.778 100.000 97.441 99.692 98.160 97.737 98.208

In this dataset, the house owner’s daughter often visited her house, performed the
same task, and was recognized more accurately. The confusion matrix for House-C is
shown in Table 4. The number of activity instances is relatively few, so errors are relatively
low, and recognizing the activity with true positive value results in 98.01% accuracy.

House-C has achieved 98.11% precision, 98.109% recall, and 0.98 f1-score. Activities
such as brushing teeth (95% accurate), Showering (97%), Shaving (95%) toileting (93%) create
confusion and errors because all the activities happen in one location. However, the errors
that occur are comparatively low, so that they can be neglected. Furthermore, Preparing
Breakfast (97%), Preparing Lunch (96%), Preparing Dinner (98%), Snacks (97%) and Eating
(99%) have good recognition accuracy but still have some errors because of confusion
among these activities as they share some sensor values. House-C’s dataset is insufficient
to establish the experimental concept fully and has 100% recognition accuracy. Although
the accuracy is good, more data and training could be needed to find actual recognition.
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Table 4. Confusion matrix for House-C.

Activity 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Recall

1 Brushing
Teeth 95 0 0 0 0 0.3 0 0 0 0 0 0 0 0.3 0.3 0.5 98.548

2 Drinking 0 98 0 0 0 0 1 0.2 0.05 0 0 0 0 0 0 0.2 98.542
3 Dressing 0 0 98 0 0 0 0 0 0 0 0.5 0.3 0 0 0 0.1 99.090
4 Eating 0 0.3 0 99 0 2 0 0.1 0 0 0 0 0 0 0 0.05 97.585
5 Leaving

House 0 0 0 0 100 0 0 0 0 0 0 0 0 0 0 0.1 99.900
6 Medication 0 0 0 0.3 0.2 97 0 0.2 1 0 0 0 0 0 0 0.4 97.881
7 Preparing

Breakfast 0 0.2 0 0.2 0 0 97 0 0.3 0 0 0 0.3 0 0 0.5 98.477

8 Preparing
Lunch 0 0 0 2 0 0 1.2 96 0.9 0 0 0 0.5 0 0 0.1 95.333

9 Preparing
Dinner 0 0.1 0 0 0 0 1 0.4 99 0 0 0 0.2 0 0 0.3 98.020

10 Relax 0 0 0 0 0.3 0 0 0 0 98 0.6 0 0 0 0 0.5 98.592
11 Sleeping 0 0 0 0 0 0 0 0 0 0 99 0 0 0 0 0.43 99.568
12 Showering 1 0 0 0 0 0 0 0 0 0 0 97 0 1 0.5 0.2 97.292
13 Snacks 0 0 0 1 0 1 0 0 0 0 0 0 96 0 0.4 0.1 97.462
14 Shaving 1 0 0.5 0 0 0 0.8 0 0 0 0 0 95 0.033 0.4 97.204
15 Toileting 0 0 0 0 0 0 0 0 0 0 0 0 0 0.2 93 0.11 99.668
16 Others 0.2 0 0.1 0.2 0.3 0.2 0.3 0.11 0.2 0.1 0 0.58 0.3 0.5 0.2 93 96.583

Presicion 97.737 99.391 99.391 96.397 99.206 96.517 95.755 98.959 97.585 99.898 98.901 99.101 98.664 97.938 98.483 95.886

Nevertheless, we confirm that our proposed approach for human activity recognition
is feasible. In Aruba, the number of instances per activity type varies considerably as shown
in the Table 5. The proposed system allows most activities to be recognized with an overall
accuracy of 98.34% and an F1-score of 0.98. However, some activities have 100% accuracy
and some have less recognition accuracy, such as Enter Home of 95%. The Enter_House and
Leave_House activities involve the same main door and sensors, taking their occurrences
into account. Likewise, Wash_Dishes gets mistaken with Meal_Preparation since both are
done in the kitchen, sharing the same occurrences. The Wash_Dishes action may also be
performed during Meal_Preparation and can therefore be regarded as concurrent.

Table 5. Confusion matrix for Aruba.

Activities 1 2 3 4 5 6 7 8 9 10 11 Recall

1 Meal_Preparation 98 1.3 0.7 0 0 1.1 0 0 0 0 0 96.934
2 Relax 0 98 0 1 1 0 0.3 0 0 0 0.1 97.610
3 Eating 0 0 97 0 0 1 0 0 0.5 0.1 0 98.377
4 Work 0.6 1.2 0.2 95 0.1 0.6 0.4 1 0.3 0 0 95.573
5 Sleeping 0 0 0 0 97 0 0 1 0 0 0 98.980
6 Wash_Dishes 0 0 0 0.3 0.2 99 0 0 0 0 0 99.497
7 Bed_to_Toilet 0 0 0 0 0 0 98 1 0 0 0 98.990
8 Enter_Home 0 0.4 0 0 2 0 1.54 98 0 0 0 96.135
9 Leave_Home 0 0 0 0 0 0 0 0 100 0 0 100.000
10 Housekeeping 0.2 0 0 0 0 0 0 0 0 98 0 99.796
11 Resperate 0 0 0 0 0 0 0 0 0 0 97 100.000

Precision 99.190 97.126 99.081 98.650 96.710 97.345 97.765 97.030 99.206 99.898 99.897

5.2. Recognition Comparison

The accuracy and loss curves of Milan, House-C, and Aruba are shown in Figures 5–7.
The gap between the training and testing accuracy in the graphs is comparatively tiny,
indicating the model’s effectiveness. Furthermore, the gap between training and test loss is
very narrow, explaining that dropout techniques, adversarial training, and semi-supervised
learning are beneficial.
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Figure 5. Training/Test Accuracy/Loss for Milan.

Figure 6. Training/Test Accuracy/Loss for House-C.
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Figure 7. Training/Test Accuracy/Loss for Aruba.

The average accuracy was 98.154%, and the average error was 0.1571. The performance
result of the proposed approach with the existing framework, such as HMM, LSTM, and
sync-LSTM methods (algorithms), is based on average precision, recall, and accuracy, as
shown in Figure 8a and f-score in Figure 8b. The accuracy of our work is more than 98%,
and the f1-score is more than 0.98. The sync-LSTM also has competitive accuracy with
our method but cannot deal with new or unannotated data. The analysis reveals that the
presentation method can be more accurate than the current approaches.

Figure 8. (a) the average precision, recall, and accuracy and (b) the f1-score comparison with
different models.

6. Conclusions

The presented work in this paper shows that semi-supervised adversarial sync-LSTM
can produce a feasible solution for detecting human activities in the intelligent home
scenario—a comprehensive comparison with recently introduced activity recognition tech-
niques, such as HMM, LSTM, and sync-LSTM. LSTM can work with single data sequences,
and sync-LSTM can accept multiple inputs and generate synchronized and parallel outputs.
Still, these techniques fail to address the new and unknown data in the sequence. Many
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approaches have been researched on annotated and regular activity detection. However,
few of them have tried to detect complex and unannotated activity. The proposed method
used the improvised LSTM and its semi-supervised learning ability to recognize complex
and unannotated human activity from the data collected from the sensors in the smart home.
The adversarial learning technique increases learning ability by adding tiny disturbances or
noises to the network. Accuracy, processing complexity, complex activity and unannotated
activity recognition are still challenging issues in human activity recognition. However,
the precision and recall are also excellent, resulting in an f1 score of more than 0.98 and
98% accuracy.

Nevertheless, the accuracy is not equal or tends to be one hundred percent due to
shared location, sensor timing, noise interference, and limited data. The existing best-
performing model faces several real-time challenges while dealing with different datasets.
The number of activities performed, sensor types, sensor deployment, number of inhab-
itants, and periods are vital parameters affecting model performance. In addition, the
window size also plays a crucial role in model performance because small windows may
not contain all the information, and large windows may lead to overfitting and overload.
Recognizing the unannotated data and processing it in parallel is beneficial for highly
imbalanced datasets.

The computational complexity is O(W), where W is the weight and relies on the
number of weights. The weight is determined by the number of output units, cell storage
units, memory capacity, and hidden unit count. The amount of units connected with
forwarding neurons, memory cells, gate units, and hidden units also impacts. The length
of the input sequence has no bearing on the computational complexity. Using an LSTM
framework for the labelled and unlabeled data adds time complexity, yet our method has a
reasonable calculation time of 9 s.

Besides detecting unannotated activity, the proposed method can automatically extract
Spatio-temporal information by consuming less pre-processing time and manual feature
extraction. In addition, external sensors were used instead of body-worn and video sensors
to protect the user’s privacy and avoid body hurdles. Furthermore, more complex, multi-
user, and multi- variants activities can be recognized by enhancing and upgrading the
proposed method in the future. Moreover, we can take advantage of cloud computing,
edge computing and IoT services to process a large amount of data for better performance.
Finally, our approach can be used in other domains and environments like sign language
detection, cognitive abilities, etc. Hence, our suggested approach is a better state-of-art
method for HAR.

Author Contributions: Conceptualization, K.T. and S.-H.Y.; methodology, K.T.; software, D.-G.B.;
validation, K.T., S.-H.Y. and D.-G.B.; formal analysis, K.T.; investigation, S.-H.Y.; resources, D.-G.B.;
data curation, D.-G.B.; writing—original draft preparation, K.T.; writing—review and editing, S.-H.Y.
and K.T.; visualization, K.T.; supervision, S.-H.Y.; project administration, D.-G.B.; funding acquisition,
S.-H.Y. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Ministry of Trade, Industry & Energy of the Republic
of Korea as an AI Home Platform Development Project (20009496).

Acknowledgments: This is work is conducted under a research grant from Kwangwoon University
in 2022. The work reported in this paper was conducted during the sabbatical year of Kwangwoon
University in 2020.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wan, S.; Qi, L.; Xu, X.; Tong, C.; Gu, Z. Deep Learning Models for Real-Time Human Activity Recognition with Smartphones.

Mob. Netw. Appl. 2019, 25, 743–755. [CrossRef]
2. Ordóñez, F.J.; Roggen, D. Deep convolutional and LSTM recurrent neural networks for multimodal wearable activity recognition.

Sensors 2016, 16, 115. [CrossRef] [PubMed]

http://doi.org/10.1007/s11036-019-01445-x
http://doi.org/10.3390/s16010115
http://www.ncbi.nlm.nih.gov/pubmed/26797612


Sensors 2022, 22, 4755 15 of 16

3. Van Kasteren, T.L.M.; Englebienne, G.; Kröse, B.J.A. An activity monitoring system for elderly care using generative and
discriminative models. Pers. Ubiquitous Comput. 2010, 14, 489–498. [CrossRef]

4. Shi, X.; Li, Y.; Zhou, F.; Liu, L. Human activity recognition based on deep learning method. In Proceedings of the 2018 International
Conference on Radar (RADAR), Brisbane, Australia, 27–31 August 2018.

5. Das, A.; Jens, K.; Kjærgaard, M.B. Space utilization and activity recognition using 3D stereo vision camera inside an educational
building. In Adjunct Proceedings of the 2020 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings
of the 2020 ACM International Symposium on Wearable Computers, 12–17 September 2020; ACM: New York, NY, USA, 2020.

6. Thapa, K.; Al, Z.M.A.; Lamichhane, B.; Yang, S.H. A deep machine learning method for concurrent and interleaved human
activity recognition. Sensors 2020, 20, 5770. [CrossRef]

7. Abdallah, Z.S.; Gaber, M.M.; Srinivasan, B.; Krishnaswamy, S. AnyNovel: Detection of novel concepts in evolving data streams:
An application for activity recognition. Evol. Syst. 2016, 7, 73–93. [CrossRef]

8. Fang, L.; Ye, J.; Dobson, S. Discovery and recognition of emerging human activities using a hierarchical mixture of directional
statistical models. IEEE Trans. Knowl. Data Eng. 2020, 32, 1304–1316. [CrossRef]

9. French, R.M. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 1999, 3, 128–135. [CrossRef]
10. Hossain, H.M.S.; Roy, N.; Al Hafiz Khan, M.A. Active learning enabled activity recognition. In Proceedings of the 2016 IEEE

International Conference on Pervasive Computing and Communications (PerCom), Sydney, Australia, 14–19 March 2016.
11. Ye, J.; Dobson, S.; Zambonelli, F. Lifelong learning in sensor-based human activity recognition. IEEE Pervasive Comput. 2019, 18,

49–58. [CrossRef]
12. Kabir, M.H.; Hoque, M.R.; Thapa, K.; Yang, S.H. Two-layer hidden Markov model for human activity recognition in home

environments. Int. J. Distrib. Sens. Netw. 2016, 12, 4560365. [CrossRef]
13. Oh, S.; Ashiquzzaman, A.; Lee, D.; Kim, Y.; Kim, J. Study on human activity recognition using semi-supervised active transfer

learning. Sensors 2021, 21, 2760. [CrossRef]
14. Zhang, L.; Wu, X.; Luo, D. Human activity recognition with HMM-DNN model. In Proceedings of the 2015 IEEE 14th International

Conference on Cognitive Informatics & Cognitive Computing (ICCI*CC), Beijing, China, 6–8 July 2015.
15. Nair, R.; Ragab, M.; Mujallid, O.A.; Mohammad, K.A.; Mansour, R.F.; Viju, G.K. Impact of wireless sensor data mining with

hybrid deep learning for human activity recognition. Wirel. Commun. Mob. Comput. 2022, 2022, 1–8. [CrossRef]
16. Vrigkas, M.; Nikou, C.; Kakadiaris, I.A. A review of human activity recognition methods. Front. Robot. AI 2015, 2. [CrossRef]
17. Hartmann, Y.; Liu, H.; Lahrberg, S.; Schultz, T. Interpretable High-level Features for Human Activity Recognition. In Proceedings

of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies, Online, 8–10 February 2022; pp.
40–49. [CrossRef]

18. Lara, O.D.; Labrador, M.A. A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 2013, 15,
1192–1209. [CrossRef]

19. Wang, X.; Lv, T.; Gan, Z.; He, M.; Jin, L. Fusion of skeleton and inertial data for human action recognition based on skeleton
motion maps and dilated convolution. IEEE Sens. J. 2021, 21, 24653–24664. [CrossRef]

20. Liu, H.; Hartmann, Y.; Schultz, T. Motion units: Generalized sequence modeling of human activities for sensor-based activity
recognition. In Proceedings of the 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 23–27 August
2021. [CrossRef]

21. Wang, J.; Zheng, V.W.; Chen, Y.; Huang, M. Deep transfer learning for cross-domain Activity Recognition. arXiv 2018,
arXiv:1807.07963. [CrossRef]

22. Gao, L.; Bourke, A.K.; Nelson, J. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems.
Med. Eng. Phys. 2014, 36, 779–785. [CrossRef]

23. Hammerla, N.Y.; Halloran, S.; Ploetz, T. Deep, convolutional, and recurrent models for human activity recognition using
wearables. arXiv 2016, arXiv:1604.08880. [CrossRef]

24. Ignatov, A. Real-time human activity recognition from accelerometer data using Convolutional Neural Networks. Appl. Soft
Comput. 2018, 62, 915–922. [CrossRef]

25. Raziani, S.; Azimbagirad, M. Deep CNN hyperparameter optimization algorithms for sensor-based human activity recognition.
Neurosci. Inform. 2022, 100078. [CrossRef]

26. Prasad, A.; Tyagi, A.K.; Althobaiti, M.M.; Almulihi, A.; Mansour, R.F.; Mahmoud, A.M. Human Activity Recognition using cell
phone-based accelerometer and Convolutional Neural Network. Appl. Sci 2021, 11, 12099. [CrossRef]

27. Talukdar, J.; Mehta, B. Human action recognition system using good features and multilayer perceptron network. In Proceedings
of the 2017 International Conference on Communication and Signal Processing (ICCSP), Chennai, India, 6–8 April 2017.

28. Schuldt, C.; Laptev, I.; Caputo, B. Recognizing human actions: A local SVM approach. In Proceedings of the 17th International
Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, 26 August 2004.

29. Fan, L.; Wang, Z.; Wang, H. Human activity recognition model based on decision tree. In Proceedings of the 2013 International
Conference on Advanced Cloud and Big Data, Nanjing, China, 13–15 December 2013.

30. Kabir, M.; Thapa, K.; Yang, J.Y.; Yang, S.H. State-space based linear modeling for human activity recognition in smart space. Intell.
Autom. Soft Comput. 2018, 25, 1–9. [CrossRef]

31. Candamo, J.; Shreve, M.; Goldgof, D.B.; Sapper, D.B.; Kasturi, R. Understanding transit scenes: A survey on human behavior-
recognition algorithms. IEEE Trans. Intell. Transp. Syst. 2010, 11, 206–224. [CrossRef]

http://doi.org/10.1007/s00779-009-0277-9
http://doi.org/10.3390/s20205770
http://doi.org/10.1007/s12530-016-9147-7
http://doi.org/10.1109/TKDE.2019.2905207
http://doi.org/10.1016/S1364-6613(99)01294-2
http://doi.org/10.1109/MPRV.2019.2913933
http://doi.org/10.1155/2016/4560365
http://doi.org/10.3390/s21082760
http://doi.org/10.1155/2022/9457536
http://doi.org/10.3389/frobt.2015.00028
http://doi.org/10.5220/0010840500003123
http://doi.org/10.1109/SURV.2012.110112.00192
http://doi.org/10.1109/JSEN.2021.3102666
http://doi.org/10.23919/EUSIPCO54536.2021.9616298
http://doi.org/10.48550/ARXIV.1807.07963
http://doi.org/10.1016/j.medengphy.2014.02.012
http://doi.org/10.48550/ARXIV.1604.08880
http://doi.org/10.1016/j.asoc.2017.09.027
http://doi.org/10.1016/j.neuri.2022.100078
http://doi.org/10.3390/app112412099
http://doi.org/10.31209/2018.100000035
http://doi.org/10.1109/TITS.2009.2030963


Sensors 2022, 22, 4755 16 of 16

32. Ahad, M.A.R.; Tan, J.K.; Kim, H.S.; Ishikawa, S. Human activity recognition: Various paradigms. In Proceedings of the 2008
International Conference on Control, Automation and Systems, Seoul, Korea, 14–17 October 2008.

33. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M. Generative Adversarial Networks. arXiv 2014, arXiv:1406.2661. [CrossRef]
34. Kumar, A.; Sattigeri, P.; Fletcher, P.T. Semi-supervised learning with GANs: Manifold invariance with improved inference. arXiv

2017, arXiv:1705.08850. [CrossRef]
35. Erickson, Z.; Chernova, S.; Kemp, C.C. Semi-supervised haptic material recognition for robots using generative adversarial

networks. arXiv 2017, arXiv:1707.02796. [CrossRef]
36. Kingma, D.P.; Rezende, D.J.; Mohamed, S.; Welling, M. Semi-supervised learning with deep generative models. arXiv 2014,

arXiv:1406.5298.
37. Qi, G.J.; Zhang, L.; Hu, H.; Edraki, M.; Wang, J.; Hua, X.S. Global versus localized generative adversarial nets. arXiv 2017,

arXiv:1711.06020. [CrossRef]
38. Nouretdinov, I.; Costafreda, S.G.; Gammerman, A. Machine learning classification with confidence: Application of transductive

conformal predictors to MRI-based diagnostic and prognostic markers in depression. Neuroimage 2011, 56, 809–813. [CrossRef]
39. Scudder, H. Probability of error of some adaptive pattern-recognition machines. IEEE Trans. Inf. Theory 1965, 11, 363–371.

[CrossRef]
40. Alzantot, M.; Chakraborty, S.; Srivastava, M.B. SenseGen: A deep learning architecture for synthetic sensor data generation. arXiv

2017, arXiv:1701.08886. [CrossRef]
41. Sung-Hyun, Y.; Thapa, K.; Kabir, M.H.; Hee-Chan, L. Log-Viterbi algorithm applied on second-order hidden Markov model for

human activity recognition. Int. J. Distrib. Sens. Netw. 2018, 14, 155014771877254. [CrossRef]
42. Bidgoli, A.; Veloso, P. DeepCloud. The application of a data-driven, generative model in design. arXiv 2019, arXiv:1904.01083.

[CrossRef]
43. Soleimani, E.; Khodabandelou, G.; Chibani, A.; Amirat, Y. Generic semi-supervised adversarial subject translation for sensor-based

Human Activity Recognition. arXiv 2020, arXiv:2012.03682. [CrossRef]
44. Sudhanshu, M. Semi-Supervised Learning for Real-World Object Recognition Using Adversarial Autoencoders. Master’s Thesis,

Royal Institute of Technology (KTH), Stockholm, Sweden, 23 May 2018.
45. Balabka, D. Semi-supervised learning for human activity recognition using adversarial autoencoders. In Proceedings of the 2019

ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International
Symposium on Wearable Computers, UbiComp/ISWC’19, London, UK, 9–13 September 2019.

46. van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [CrossRef]
47. Nafea, O.; Abdul, W.; Muhammad, G.; Alsulaiman, M. Sensor-based human activity recognition with spatio-temporal deep

learning. Sensors 2021, 21, 2141. [CrossRef]
48. Zhu, X.; Goldberg, A.B. Overview of semi-supervised learning. In Introduction to Semi-Supervised Learning; Springer: Cham,

Switzerland, 2009; pp. 9–19.
49. Thapa, K.; AI, Z.M.A.; Sung-Hyun, Y. Adapted long short-term memory (LSTM) for concurrent\\human activity recognition.

Comput. Mater. Contin. 2021, 69, 1653–1670. [CrossRef]
50. Pauling, C.; Gimson, M.; Qaid, M.; Kida, A.; Halak, B. A tutorial on adversarial learning attacks and countermeasures. arXiv 2022,

arXiv:2202.10377. [CrossRef]
51. van Kasteren, T.L.M.; Englebienne, G.; Kröse, B.J.A. Human activity recognition from wireless sensor network data: Benchmark

and software. In Activity Recognition in Pervasive Intelligent Environments; Atlantis Press: Paris, France, 2011; pp. 165–186.
52. Cook, D.J.; Schmitter-Edgecombe, M. Assessing the quality of activities in a smart environment. Methods Inf. Med. 2009, 48,

480–485. [CrossRef]

http://doi.org/10.1145/3422622
http://doi.org/10.48550/ARXIV.1705.08850
http://doi.org/10.48550/ARXIV.1707.02796
http://doi.org/10.48550/ARXIV.1711.06020
http://doi.org/10.1016/j.neuroimage.2010.05.023
http://doi.org/10.1109/TIT.1965.1053799
http://doi.org/10.48550/ARXIV.1701.08886
http://doi.org/10.1177/1550147718772541
http://doi.org/10.48550/ARXIV.1904.01083
http://doi.org/10.48550/ARXIV.2012.03682
http://doi.org/10.1007/s10994-019-05855-6
http://doi.org/10.3390/s21062141
http://doi.org/10.32604/cmc.2021.015660
http://doi.org/10.48550/ARXIV.2202.10377
http://doi.org/10.3414/ME0592

	Introduction 
	Related Work 
	Proposed Method 
	Semi-Supervised Learning 
	Sync LSTM 
	Adversarial Training 

	Experimental Configurations and Parameters 
	Datasets 
	Parameter Setting and Training 
	Evaluation Parameters 

	Results and Evaluations 
	Recognition Analysis 
	Recognition Comparison 

	Conclusions 
	References

