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The recent advances in high-throughput omics technologies have enabled researchers to explore the intricacies
of the human microbiome. On the clinical front, the gut microbial community has been the focus of many
biomarker-discovery studies. While the recent deluge of high-throughput data in microbiome research has
been vastly informative and groundbreaking, we have yet to capture the full potential of omics-based ap-
proaches. Realizing the promise of multi-omics data will require integration of disparate omics data, as well as
a biologically relevant, mechanistic framework – or metabolic model – on which to overlay these data. Also, a
new paradigm for metabolic model evaluation is necessary. Herein, we outline the need for multi-omics data in-
tegration, as well as the accompanying challenges. Furthermore, we present a framework for characterizing the
ecology of the gut microbiome based on metabolic network modeling.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The promise of the Big Data revolution has yielded an ever-
increasing array of data and data types in many fields. In the medical
field, the sequencing of the human genome in 2003 opened the door
to truly individualized medicine, tailored to our genetic predispositions
and risk factors (Collins et al., 2003). The first manifestations of the Big
COMM, community-scale met-
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. This is an open access article under
Data promise inmedicinewere necessarily surveys to identify biological
markers of disease risk.While this resulted in databases upon databases
of genetic events that explained risk behind hundreds of diseases, we
quickly learned that genetics alonewas not able to provide a full under-
standing of many health conditions (Lander, 2011). Researchers began
to examine other factors, including the role of environmental influences
such as the microbiome (Bultman, 2013; Zackular et al., 2013).

In 2008, the Human Microbiome Project (HMP) was established to
characterize the role of human-associated microbial communities in
human health and disease (Methé et al., 2012; The Human
Microbiome Project, 2012). Efforts led by the HMP consortium thus far
have yielded numerous insights regarding the microbial composition
of the human body and the ecological structure and function of the
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human microbiome. However, a shift from this “profiling” paradigm to
one of mechanistic examination is now both warranted and feasible
through the integration of multi-omics data onto a framework based
on biomolecular pathways and networks.

The gut microbial community is increasingly well-characterized by
various omics technologies – metagenomics, metatranscriptomics,
metabolomics, metaproteomics – and offers much promise for data in-
tegration within a mechanistic framework (Erickson et al., 2012;
Haiser et al., 2013a, 2013b;Weir et al., 2013). Gutmicrobes act as chem-
ical transformers, converting host-acquired or host-produced nutrients
into a milieu of metabolites (Lee and Hase, 2014). At the same time, the
structure and function of the microbial community respond to changes
in host diet or physiology (David et al., 2014; Kashyap et al., 2013; Liou
et al., 2013), making microbes both modulators and reflections of the
gut environment.

The gutmicrobiome contains over 3million genes, or approximately
150-fold more than the human genome (Qin et al., 2010); thus, it be-
comes virtually impossible to obtain more independent samples than
there are measured values within one individual's microbiome. The
large data sets generated by the most recent omics technologies call
for newmethods of analysis. No longer can we afford to use a paradigm
of statistical powerwhere our insight dwindles with the amount of data
we collect. Instead, we should rely on the fact that these variables are
not independent of one another and therefore establish amore practical
model for assessing the role of the microbiome.

A systems approach that utilizesmetabolic networksmay offer a po-
tential solution. Network reconstruction is one suchmeans of creating a
scaffold for synthesizing multiple data types (Feist and Palsson, 2008;
Lee et al., 2012; Reed et al., 2006; Töpfer et al., 2015). Metabolic models
are composed of a collection of individual chemical reactions that are
governed by the fundamental laws ofmass conservation and thermody-
namics. These models represent large-scale complex cellular dynamics
and imply a network whose mechanistic chain of events can be
computed to produce an outcome. Models are capable of converting
large amounts of data – genetic, metabolic, biochemical – into pheno-
types and interactions. The value ofmetabolicmodeling for understand-
ing the complex environment of the gut microbiome is in resolving
biochemical relationships within and between microbial species and
potentially predicting the effect of ecosystem-wide perturbations,
such as antibiotics or pathogen invasion. There have been many recent
efforts to model metabolic processes within microbial communities
(Heinken and Thiele, 2015; Henry et al., 2009). However, the wealth
of data available through multiple omics technologies remains
underutilized in these models.

In this review, we discuss the promises and limitations offered by
current mathematical paradigms for integrating disparate, yet comple-
mentary omics data, while pointing out the challenges that remain to
be resolved. Finally, we offer our viewpoint on the need for an updated
network-aware mathematical framework for statistical power — one
that synthesizes multiple channels of information into a biological
picture.

2. The Big Data paradox

Themathematical formalization of our knowledge is one of themost
important aspects of any scientific study or clinical trial. As a practical
tool, math is a means for taking pattern recognition and systematizing
it. It is also a way for us to provide some form of communication and
standard for comparing the results of different studies, and in the case
of statistical significance, is meant to provide a measure of certainty
against a null hypothesis.

Historically, clinical trials were developed around randomized treat-
ment arms that were designed to answer the question, “Which treat-
ment (A, B, or C) is better?” By selecting a straight forward metric,
such as survival outcomes, statisticians could compare the efficacy of
different treatments (Marubini and Valsecchi, 2004); however, this
precluded our ability to ask what would happen if we combined treat-
ment A and B, or B and C, or all 3 treatments, except by running yet an-
other clinical trial. At the center of these often long and laborious trials
was the notion of statistical power (Lachin, 1981). Just how many
cases and controls does oneneed to ensurewe can achieve significance?
It is a simple question, but an important one that has been the subject of
many sophisticated refinements. Here, there is a fundamental clash be-
tween Big Data science and classic clinical trial statistics. Paradoxically,
the more data we collect on each subject, the more we decrease our
likelihood of identifying statistically significant parameters as a result
of multiple hypothesis correction. This is a fundamental flaw in the
way that current statistical power calculations deal with large datasets.

Approaches to obtaining information from Big Data are different. Big
Data is characterized by high volume, variety, and velocity of data
generation (Costa, 2013). The strength of multi-omics is not merely
the observation of many data points, but the discovery of biological
mechanism through observation. Multi-omic Big Data grants us the
power to examine disease in a human biological context, rather than
extensively relying on murine models, which are limited in relevance
to the human gutmicrobiome (Nguyen et al., 2015). In order to succeed,
theBigDatamovement in individualizedmedicinewill require a holistic
merger between large-scale data and biological mechanism.

3. Metabolic models for Big Data synthesis

To identify specific biological markers of disease, many studies uti-
lize statistical correlations, which fall short of identifying underlying
mechanisms (de Vos and de Vos, 2012). In the past, using Big Data to
elucidate a biological mechanism involved generating a limited set of
hypotheses that were then tested in the lab. While this approach has
great value, it becomes less tenable as the number of measurements
grows. The massive data sets generated from high-throughput omics
technologies guarantee us more correlations arising purely from ran-
dom chance. In the gut microbiome, this is especially problematic. The
number of potential correlations increases with the hundreds of species
and thousands of genes. Furthermore, the number of identified factors
contributing to microbial composition including diet (David et al.,
2014; De Filippo et al., 2010; Turnbaugh et al., 2009), sex (Chen et al.,
2016), and even preservation method of the sample (Sinha et al.,
2015), continue to grow and make it more difficult to differentiate the
confounding from the causal.

A metabolic network provides a global picture of how metabolites
and biochemical reactions are interconnectedwithin a particular organ-
ism (Thiele and Palsson, 2010). Flux balance analysis on genome-scale
metabolic models (GEMs) can be used to simulate microbial growth
or to predict the production rate of a particular metabolite (Palsson,
2015). The power of this approach is not only that it recapitulates the
mechanistic chemical flow through an entire organism, but also that it
has the potential to integrate multiple data types. As the example
shown in Fig. 1 indicates, reactions can be linked to genes, which are
informed by DNA or RNA sequencing. RNA expression informs the
amount of flux a reaction can carry, and metabolomics is a direct mea-
surement of the metabolites. This makes metabolic models an ideal
platform for organismal and community-scale data synthesis.

Increasing evidence suggests that integrating disparate, but comple-
mentary, data types can increase the power of one's analysis. Examples
of this include the use ofwhole genome sequencing as a scaffold for RNA
data (J.Wang et al., 2013; K.Wang et al., 2013) and the use of phosphor-
ylation data to understand changes in metabolite concentration (Yugi
et al., 2014). Within the microbiome field,16S rRNA data is combined
with metagenomics to identify representative genomes and genome
characteristics (PICRUSt: Langille et al., 2013; HUMAnN: Abubucker
et al., 2012). Recent microbiome studies have also combined
metagenome and metatranscriptome data to enable comparison
between functional potential (metagenomic abundance/gene copy
number) and functional activity (transcriptome level) (Franzosa et al.,



Fig. 1. Subset of a microbial metabolic network with integrated genome, metabolomics, and RNA data. This network is one portion of a cysteine/methionine metabolic network for one
bacterial species. The model is constructed based on the bacterial genome. Each box represents a reaction. The numbers within the boxes are KEGG Enzyme Commission (EC) number
and code for specific enzymes present in each reaction. Gray boxes represent reactions that occur in this bacteria, as predicted by its genome. Red boxes denote reactions that are not
predicted by the genome. Circles represent metabolites consumed and produced within the reaction network. Arrows represent reaction pathways that do (green) or do not (red)
occur in this bacteria, as predicted by the model. Black dashed arrows indicate input or output from or to other metabolic networks. Synthesis of omics data is used to inform and
improve the model. For example, RNA transcriptomic data reveal what enzymes are being transcribed. In pathways that contain 2 possible enzymes that carry out the same reaction,
RNA transcripts help us distinguish which of the enzyme(s) are active. In pathways catalyzed by more than 1 enzyme, yellow boxes indicate reactions/enzymes supported by RNA
data. RNA data also quantifies flux which allows us to weight the reaction pathways accordingly: in this model, pathways with the greatest flux have the thickest arrows. Metabolomic
data is also used to inform the model. Blue circles represent metabolites present and quantified through metabolomics. Red circles indicate metabolites that were not present or
quantifiable. Peach circles represent metabolites that cannot currently be identified using metabolomics.
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2015). This provides insights regarding host–microbial dynamics
(Franzosa et al., 2014), highlights functional changes in the microbial
community in response to diet (McNulty et al., 2011), and suggests po-
tential disease mechanisms, as in the case with periodontitis (J. Wang
et al., 2013; K. Wang et al., 2013). Metagenome or metatranscriptome
data alone would not yield these insights. Other examples of omic
Fig. 2. Thewho, what, and how ofmicrobial community metabolism. 16S rRNA deepmicrobial
what abundances. Metagenome sequencing and genome assembly tells us the biological functi
reconstructions allow us to understand the biochemical mechanisms of each microbe, and to
networks can be used to identify relationships between microbes within the same community
data integration include the combination of microbiome and metabo-
lome data in the study of colon cancer (Weir et al., 2013), proteome
and metagenome data related to Crohn's disease (Erickson et al.,
2012), and metabolome, metagenome, and metatranscriptome data to
examine the relationship between the gut microbiome and the xenobi-
otic metabolism of digoxin (Haiser et al., 2013a, 2013b).
community profiling lets us rapidly and cheaply survey whichmicrobes are present and in
ons each microbial species can potentially perform. Metabolomics and metabolic network
make quantitative predictions regarding its metabolic activity. Finally, species interaction
.
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The use of network-based approaches offers a promising avenue to
extend beyond the omics integration strategies discussed above. In par-
ticular, overlaying high-throughput data onto a mechanistic frame-
work–notably a metabolic model–can serve as a platform for making
data integration more biologically meaningful. To fully understand the
global picture of how organisms modulate the biochemical environ-
ment within our gut, especially in health or disease conditions, it is es-
sential to obtain a clear evaluation of the complex interactions
characterizing microbial ecology.

Recently, there has been growing interest in using metagenomic in-
formation for characterizing community-wide metabolic interactions
(Levy et al., 2015; Zelezniak et al., 2015). Fig. 2 provides an overview
of such modeling approaches. In the past, assembly of microbial ge-
nomes relied exclusively on culture of individual microbes. While
high-throughput culture methods are rapidly developing, the majority
of gut microbial species remain uncultured (Lagier et al., 2015). Deep
metagenomic sequencing allows assembly of full microbial genomes
without the need for culture (Jeraldo et al., 2015). Notably, not all cul-
tured microbes have fully-assembled genomes, and not all fully-
assembled genomes are completely annotated. However, culture-free
metagenomic assembly provides themost complete picture of gastroin-
testinal microbial genomes currently available. These assemblies allow
us to infer metabolic functions of particular organisms, enabling us to
model the metabolic activity of an individual microbe. Genome scale
models (GEMs) can then be used as the building blocks for
community-scalemetabolicmodeling (COMM) to determine themicro-
bial interactions between members of a community. COMMs provide
both a map of the microbial interactions and the global community dy-
namics, allowing us to examine ecologically relevant traits such as ro-
bustness and stability (Proulx et al., 2005). Metabolic models have
already demonstrated great potential for modeling the metabolism of
the gut microbes (Bauer et al., 2015). However, current COMM recon-
struction is based on pre-existing GEMs and not on data from specific
microbial communities. Efforts are needed to incorporate new data
onto these models as they become available.

4. The challenges of Big Data

While the value of Big Data synthesis is readily evident, implementa-
tion is not simple. Issues with data synthesis generally fall into one of
three categories: identifying entities to include in themodel, integrating
the myriad databases, and statistically assessing the final networks
(Fondi and Liò, 2015; Imam et al., 2015; Samal and Martin, 2011).

The process of entity identification is a seemingly straightforward
process whereby one compares data to what is already known. The
problem is that all sequence alignment and pattern-matching
algorithms will always produce a result, even if the match is poor.
How does one know a metabolite/reaction/organism truly belongs in a
GEM or COMM? False inclusions result in errors that will potentially
propagate and lead to false results while false exclusions may leave a
network reconstruction incomplete and therefore unusable froma com-
putational modeling perspective. These sorts of errors are unavoidable,
especially in the gut microbiome, where there are millions of signals
from hundreds of potential sources.

Database integration requires that the entities from one database
can be related to the entities in another through a set of meaningful re-
lationships, gene to protein, protein to metabolite, regulon to gene. The
centrality of this to any Big Data synthesis can be seen in the growing
number of calls for data standardization in the omics sciences
(Alivisatos et al., 2015; Dräger and Palsson, 2014; Dubilier et al.,
2015). The lack of centralized storage and management of multi-
omics data has lead to increasingly large hurdles and analytical bottle-
necks as studies, now capable of measuring DNA, RNA, proteomics,
and metabolomics, must struggle within individual labs for their own
individual solutions. The recent scientific call for a more worldwide
view of data gathering has been gaining traction in the microbiome
field; this is also a call for more global data management and data
unity for future integration (Dubilier et al., 2015).

Lastly, one of the biggest shifts will be in howwe identify statistically
significant results when reconstructing or simulating a GEM or COMM.
In other words, how dowe determine if a network is statistically differ-
ent from expected?Most methods utilize graph randomizations to gen-
erate networks for statistical comparison. This process randomly
exchanges edges within a network, without regard to biochemical
structure; thus, network significance is often grossly overestimated
(Samal and Martin, 2011). Network significance must be assessed
from a set of plausible or at least possible structures if we are to be
able to assess the true significance of the results from a network model.

While these three hurdles may be unavoidable, they can be favor-
ably embraced. For example, uncertainty can be incorporated through
measures of statistical significance or likelihood (Benedict et al., 2014;
Chia and Bundschuh, 2006). Instead of asking which reactions are to
be included, the better question may be what is the likelihood of a
reaction being present in a GEM? By ranking inclusion based on certain-
ty we allow for alternate inclusionswhen supporting data, from the rest
of the potential pathways, is weak. Similarly, errors in translating be-
tween the numerous data sources can be tolerated as long as data
types can be correctly merged into the model. Finally, a statistical test
of network accuracy or the resulting predictions needs to be measured
against a set of realistic “random” networks or predictions. One poten-
tial way to do this is to limit “random” networks to real biochemical
reactions that functionally produce biomass components necessary for
cell growth (Samal and Martin, 2011). This eliminates “random”
networks that violate mass, charge, or atomic element balance (Samal
and Martin, 2011). Assessing the likelihood of the metabolic network
predictions versus “random” network predictions, could allow us to
assess the reliability of our results.
5. Future direction

By synthesizing multiple data types onto metabolic networks, we
can better capture and elucidate the emergent, macro-level complexity
within a microbial world. In Fig. 1, we described absolute values for the
sake of simplicity. The complex reality is that each type of omics tech-
nology not only measures different entities, but also propagates some
amount of error or ambiguity. To circumvent this, a likelihood-based ap-
proach would allow us to incorporate a measure of certainty as
weighting in a network reconstruction (Benedict et al., 2014). These
could, in principle, come from a variety of data types and be combined
so as to produce the maximum-likelihood metabolic model. Such a
framework would allow us to prioritize consistency between different
data types and the overall network structure. This type of platform is
already capable of improved gene annotation (Benedict et al., 2014)
and gap-filling of metabolic networks (Benedict et al., 2014). In the fu-
ture, one could use such a platform for improved metabolic modeling.
Data synthesis allows us to maximize information to gain mechanistic
insight into microbial community and host–microbe dynamics.

A multi-omics modeling approach has the potential for elucidating
the intricate relationships between host and microbe. Mechanistic
models at this front are critical to understanding how therapeutics like
diet modulation or probiotics could impact diseases such as inflamma-
tory bowel disease (Nell et al., 2010) or autism (Kang et al., 2013), or
diseases linked with long-term environmental/microbial exposures
such as colon or pancreatic cancer (Louis et al., 2014; Zambirinis et al.,
2014). Moreover, a holistic and multi-omics microbial metabolic
model provides the ideal scaffold for the addition of other host systems,
such as the immune system or the nervous system.Metabolic modeling
of microbial communities is a rapidly emerging research field with a
wide range of approaches (Abubucker et al., 2012; Borenstein, 2012;
Heinken et al., 2013; Klitgord and Segrè, 2010) that would all benefit
from multi-omics synthesis.
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