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Mast cells are well established as divergent modulators of inflammation and immunosuppression, but their role in inflammatory
bowel disease (IBD) remains to be fully defined. While previous studies have demonstrated a proinflammatory role for mast cells
in acute models of chemical colitis, more recent investigations have shown that mast cell deficiency can exacerbate inflammation
in spontaneous colitis models, thus suggesting a potential anti-inflammatory role of mast cells in IBD. Here, we tested the
hypothesis that in chronic, spontaneous colitis, mast cells are protective. We compared colitis and intestinal barrier function in
IL10−/− mice to mast cell deficient/IL10−/− (double knockout (DKO): KitWsh/Wsh× IL10−/−) mice. Compared with IL10−/− mice,
DKO mice exhibited more severe colitis as assessed by increased colitis scores, mucosal hypertrophy, intestinal permeability,
and colonic cytokine production. PCR array analyses demonstrated enhanced expression of numerous cytokine and chemokine
genes and downregulation of anti-inflammatory genes (e.g., Tgfb2, Bmp2, Bmp4, Bmp6, and Bmp7) in the colonic mucosa of
DKO mice. Systemic reconstitution of DKO mice with bone marrow-derived mast cells resulted in significant amelioration of
IL10−/−-mediated colitis and intestinal barrier injury. Together, the results presented here demonstrate that mast cells exert
anti-inflammatory properties in an established model of chronic, spontaneous IBD. Given the previously established
proinflammatory role of mast cells in acute chemical colitis models, the present findings provide new insight into the divergent
roles of mast cells in modulating inflammation during different stages of colitis. Further investigation of the mechanism of the
anti-inflammatory role of the mast cells may elucidate novel therapies.

1. Introduction

IBD is an incurable, debilitating intestinal disease, and treat-
ment often consists of lifelong systemic immunosuppression
[1–3]. The pathogenesis of IBD is complex and is thought to
result from a combined effect of genetic predisposition, intes-
tinal epithelial barrier dysfunction, alterations in the intestinal
microbiota, and immune dysregulation [4–7]. The adaptive
immune system has been the focus of IBD research for years;
more recently, research from genome-wide association
studies and other immunological research has highlighted
the critical role of the innate immune system [8–11].Mast cells
are innate immune cells, which are well-known for their

proinflammatory roles in conditions such as allergy/anaphy-
laxis and asthma [12–14]. Several lines of evidence have impli-
cated mast cells in the pathophysiology of IBD as they are
found to be increased in number and exhibit a degranulated
appearance in patients with Crohn’s disease and ulcerative
colitis [15–24]. Additionally, IBD patients demonstrate
increased mast cell mediator release upon stimulation com-
pared to controls [25–28] and have increased levels of a hista-
mine metabolite in their urine [29]. In line with the role of
mast cells in inflammatory conditions such as allergy and
asthma, mast cells have been proposed to be major drivers
of intestinal inflammation through various mechanisms
[30–34]. However, studies investigating the role of mast cells
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in animal models of colitis have been conflicting. In chemical
colitis models such as dextran sodium sulfate- (DSS-) and tri-
nitrobenzene sulfonic acid- (TNBS-) induced colitis, genetic
mast cell deficiency or pharmacologic inhibition of mast cells
ameliorated colitis [30, 35–41], while in another, mast cell
deficiency had no effect on colitis [42]. In addition, mast
cell proteases increase in serum and tissue in response to
DSS colitis in mice [35], and it was shown that mast cell
protease-6-deficient mice exhibit dampened DSS and
TNBS colitis [30]. Pharmacological mast cell stabilization
(ketotifen) and tryptase and chymase inhibition (nafamostat
and NK3201, resp.) decrease mucosal damage in TNBS
colitis [37–40].

Together, there is strong evidence supporting adeleterious
(proinflammatory) role for mast cells in acute or subacute
chemical colitis. However, there are a number of studies indi-
cating that mast cells may also play beneficial roles. For exam-
ple, in a DSS colitis model in rats, an increase in mast cell
numbers and mast cell protease II was observed during the
resolution phases of intestinal inflammatory and histological
lesions, suggesting that mast cells might play a beneficial role
in the chronic or recovery phase of colitis [43]. In another
study in DSS colitis, mast cell-deficient mice had delayed
recovery compared to their wild-type counterparts [44]. In
addition, compared with IL10-deficient mice, IL10-deficient/
mast cell-deficient double-knockoutmice (DKOmice) exhibit
increased colitis and associated colonic pathophysiology indi-
cating that in spontaneous colitis models, mast cells may be
protective [45, 46].

While well-known for their proinflammatory properties,
it has become increasingly evident that mast cells can have
potent anti-inflammatory or immunosuppressive effects
either via direct or indirectmechanisms in certain disease con-
ditions [47, 48]. Mast cells have been shown to promote toler-
ance through induction of regulatory T cells and influence
dendritic cells [49–53]. Mast cell tryptase, a serine protease,
has been shown to degrade cytokines and matrix metallopro-
teinases and aids in bacterial defense [54]. Additionally, mast
cells are important for tissue healing [55].

Mast cells mediate their functional role in homeostasis
and in disease through the release of granule-associated pre-
formed mediators (e.g., histamine, proteases, and TNF) as
well as de novo-synthesized cytokines, chemokine, and
lipid-derived mediators [48, 56–58]. Mast cell mediators
can have diverse effects on numerous cell types and tissues
including permeability of epithelial and endothelial bar-
riers, immune cell recruitment and pathogen defense,
nerve activation and sensitization, secretion, motility, and
blood flow [33, 59–70].

Although deleterious in chemical colitis, mast cells may
have a different effect in other colitis models that more
closely replicate human IBD, for example, the IL10−/−mouse.
A severe form of childhood-onset IBD results from polymor-
phisms in the IL10 gene or that of the Il10 receptor [71–74],
which is a similar pathogenesis to the IL10−/−mouse. While it
has been shown that mast cell deficiency enhanced spontane-
ous colitis in the IL10−/− murine model [45, 46], the precise
role for mast cells in spontaneous colitis has yet to be fully
determined. Utilizing mast cell-deficient× IL10-deficient

(DKO) murine model of spontaneous colitis, combined with
systemic mast cell engraftment approaches, the objective of
this study was to define the role of the mast cell in
spontaneous colitis.

2. Materials and Methods

2.1. Experimental Groups. IL10−/− mice on a C57Bl/6 back-
ground (IL10−/−) and IL10−/−×KitWsh/Wsh double-knockout
(DKO) mice that lack mast cells in addition to IL10 (C57Bl/
6 background) were used in this study. Mice were housed in
a barrier facility under specific pathogen-free conditions.
Among others, murine parvovirus, norovirus, and Helico-
bacter were excluded from this facility. Groups of DKO mice
were reconstituted with bone marrow-derived mast cells at 4
weeks of age as previously described. Tissue collection was
performed at 20–24 weeks of age [75]. Roughly equal (within
n = 2) numbers of male and female mice were used in each
experiment. Mice were killed by CO2 inhalation at 20–24
weeks of age.

2.2. Differentiation and Reconstitution of Bone Marrow-
Derived Mast Cells. Bone marrow-derived mast cells
(BMMCs) were generated as previously described [75].
Briefly, cells were collected immediately postmortem by
flushing bone marrow from the femur of mice. These cells
were cultured in the presence of IL3 (5 ng/ml) and stem
cell factor (5 ng/ml) (R&D Systems) for 8 weeks with
weekly culture media changes. Mast cell purity was
assessed by toluidine blue staining and confirmed by per-
forming staining for c-kit and FcεR1 with analysis by flow
cytometry, which is typically >98% in our laboratory using
these procedures. DKO mice were reconstituted with
BMMCs at 4 weeks of age by intraperitoneal injection of
1× 107 cells as previously described [75]. Mast cell recon-
stitution was performed with BMMCs derived from both
wild-type and IL10−/− mice to demonstrate whether the
anti-inflammatory activity of the mast cell is dependent
on IL10. Successful reconstitution was confirmed histolog-
ically at the time of tissue collection (16–20 weeks follow-
ing reconstitution) by microscopic examination of
toluidine blue-stained sections of the intestine (Figure 1).
Reconstituted mice that did not have identifiable mast cells
within any section of the colon were excluded from
analysis.

2.3. Colitis Scoring. Colonic tissue sections were fixed in
10% buffered formalin and embedded in paraffin, and
4μm-thick sections were stained with hematoxylin and
eosin using standard techniques. Spontaneous colitis scor-
ing was adapted from the criteria reported by Berg et al.,
as previously described [76]. Five sections of hematoxy-
lin/eosin-stained intestine were examined using a clinical
light microscope (Olympus BX45), equipped with a high-
resolution digital camera (Olympus DP2-BSW, version
2.2), and scored on a scale from 0–4 by a single-blinded
veterinary pathologist (LBB). Mucosal (epithelial) hyper-
trophy was assessed by measuring the colonic epithelial
thickness in micrometers. Well-oriented crypts from 5
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separate colon sections per mouse and 6 randomly
selected mucosal areas within each section were measured
from the basement membrane of the crypt base to the

mucosal section using the line tool and the 20x objective.
The histological scoring criteria are provided in
Supplementary Materials.
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Figure 1: Inflammation is exacerbated in the absence of mast cells and prevented by reconstitution with bone marrow-derived mast cells.
Representative H&E-stained paraffin sections of the colon of 14-to-16-week-old wild-type C57Bl/6 (a), IL10−/− (b), mast cell-deficient
colitis prone double knockout (DKO) (c), and DKO mice reconstituted with wild-type mast cells (DKO-rMC) (d). Colitis scores (e) and
colonic mucosal height (f) are higher in DKO mice compared to IL10−/−, and mast cell reconstitution restores the colitis to the level of
IL10−/− mice. Toluidine blue-stained sections confirming the reconstitution of tissue MCs (arrows) (g). WT: n = 5; IL10−/−: n = 25;
DKO: n = 25; DKO-rMC: n = 13. ∗∗∗, ###p < 0 001; ∗p < 0 05, ∗∗p < 0 01 versus DKO.
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2.4. Assessment of Intestinal Barrier Function

2.4.1. Ussing Chambers. Segments of the jejunum and
proximal colon were harvested and immediately placed in
oxygenated (95% O2 to 5% CO2) Ringer solution. Tissues
were then mounted in 0.3 cm2 aperture Ussing chambers
(Physiologic Instruments Inc., San Diego, CA) as described
previously [77]. Mucosal-to-serosal flux of FITC-dextran
(4 kDa; Sigma-Aldrich, St. Louis, MO) (FD4) was assessed
as an index of paracellular permeability. After a 15-minute
equilibration, FD4 (0.25mM) was added to the mucosal side
of Ussing chamber-mounted tissues. The FD4 was allowed
to equilibrate for 15 minutes, after which 100ml samples (in
triplicate) were collected from the serosal side of tissues at
15-minute intervals and transferred into a 96-well assay plate.
The presence of FD4 was assayed by measurement of fluores-
cence intensity using an fMax fluorescence microplate reader
(Molecular Devices, Sunnyvale, CA), and concentrations
were determined from standard curves generated by serial
dilution of FD4.

2.4.2. In Vivo FD4 Permeability. In vivo FD4 intestinal
permeability was assessed as previously described [78].
Briefly, food was removed from mice 4 hours prior to the
beginning of the study. Mice were gavaged with 30mg/mouse
FD4. Four hours after administration, serum was collected,
and fluorescence intensity was assessed as described above.

2.5. Colonic Explant Culture and Cytokine ELISA. Colonic
sections were collected and processed as previously described
[79]. Colonic tissue samples were weighed, then cut into
small fragments and incubated for 24 hours in cell culture
media at 37°C, 5% CO2. Supernatants were collected and
stored at −80°C until analysis. IL12p40, IL6, and TNF con-
centrations were determined in colonic supernatant samples
using commercially available sandwich ELISA kits (BD
Biosciences, Franklin Lake, NJ), and results were corrected
for the amount of tissue in each well.

2.6. Real-Time PCR Array for Mouse Cytokines/Chemokines.
RNA was extracted from rinsed colon samples that had been
snap frozen in liquid nitrogen and stored at −80°C. Tissues
were homogenized, and RNA was extracted using a commer-
cially available kit (RNeasy, Qiagen, Valencia, CA) and was
analyzed with a spectrophotometer. RNA was subjected to
DNase treatment (RNase-free DNAse kit, Qiagen, Valencia,
CA) and then was reverse transcribed using a commercially
available kit (RT2 First Strand, Qiagen, Valencia, CA)
followed by PCR amplification. Samples were analyzed using
the RT2 Profiler Array for Mouse Cytokines/Chemokines
(Qiagen, Cat number PAMM-150Z, Valencia, CA) according
to themanufacturer’s instructions in a LightCycler 480 (Roche
Life Sciences, Indianapolis, IN) to quantify expression of genes
encoding 82 mouse inflammatory cytokines and chemokines.
Gene expression was normalized to five housekeeping genes
includedwith each experiment. PCR controls andRT controls
were included with each experiment. Data were analyzed,
and fold changes were calculated using commercially
available software (SA Biosciences, http://pcrdataanalysis
.sabiosciences.com/pcr/arrayanalysis.php website).

2.7. Statistical Analysis. Statistical analysis was accomplished
using GraphPad Prism. Groups were compared using a one-
way ANOVA, and Bonferroni correction was used to control
for multiple comparisons. PCR array data was analyzed using
the SA Biosciences PCR array analysis software.

2.8. Ethical Considerations. All animals were housed in
accordance with guidelines from the American Association
for Laboratory Animal Care and Research Protocols, and
experiments were approved by the Institutional Animal Care
and Use Committee of North Carolina State University
where all animal experiments were performed.

3. Results

3.1. Mast Cells Are Protective against Spontaneous Colitis. To
define the role of the mast cell in spontaneous colitis, we
examined colonic histopathology in 4 groups of mice on
a C57/Bl6 background: wild-type (WT) mice, IL10−/−

mice, DKO mice, and DKO mice that were reconstituted
with BMMCs. Compared with WT mice and consistent
with previous reports, including our own previous study,
of IL10−/− mice on the C57Bl/6 background, IL10−/− mice
displayed mild, patchy colitis with incomplete penetrance
(Figures 1(a), 1(b), and 1(e)) [76, 80, 81]. Compared with
IL10−/− mice, DKO mice exhibited more severe colitis by
histology (Figures 1(c) and 1(e)), greater colitis scores
(colitis scores = 8.0± 0.6 versus 12.1± 0.7 in IL10−/− and
DKO mice, respectively; p < 0 001, Figure 1(e)), and muco-
sal hypertrophy (Figure 1(f)). The colitis in DKO mice
was characterized histologically by diffuse inflammatory
cell infiltrates (Figure 1(c)), compared to smaller aggre-
gates of lymphoid cells in IL10−/− mice. The inflammation
consisted primarily of infiltration of lymphoid cells, with
few neutrophils. In some mice, the inflammatory cell infil-
trate crossed through the muscularis layer of the intestine
(Figure 1(c)). In order to demonstrate that the exacerba-
tion in colitis in DKO mice was mast cell specific, DKO
mice were engrafted with BMMCs from WT mice, and
colitis was assessed. DKO engrafted with BMMCs reduced
histopathology, colitis scores, and mucosal hypertrophy to
levels of IL10−/− mice (Figures 1(d)–1(f)).

To confirm that the protective effects of mast cell
engraftment were not a result of supplying IL10 derived
from engrafted WT BMMCs, we also assessed colitis in
DKO mice engrafted with IL10−/− BMMCs (derived from
IL10−/− mice). These experiments showed that engraftment
of DKO mice with IL10−/− BMMCs ameliorated colitis in
a similar manner to WT BMMCs (IL10−/− mean colitis
score 3.1± 0.3; DKO colitis score 5.3± 0.8; and DKO-
RIL10−/− colitis score 2.2± 0.6; p < 0 005), overall indicating
that mast cells’ protective effects are via a mechanism
independent of IL10 secretion (Figure 2).

3.2. Intestinal Permeability Is Elevated in DKO Mice and Is
Reversed by Systemic Reconstitution of Bone Marrow-
Derived Mast Cells. Given that intestinal permeability is a
central mechanism driving intestinal inflammation in colitis
models, we next assessed the impact of mast cell deficiency
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on intestinal barrier function in IL10−/− and DKO mice.
Using a FD4 oral gavage method to assess in vivo intestinal
permeability, we showed a trend (p = 0 10) for elevated intes-
tinal permeability in DKO mice (Figure 3(a)) compared with
IL10−/− mice. Further, we assessed intestinal permeability on
isolated small intestinal and distal colon segments on Ussing
chambers. Consistent with the worsened colitis, DKO mice
had significantly increased intestinal permeability (2.7
± 0.6 ng/min) compared to IL10−/− mice (1.1± 0.2 ng/min)
(Figure 3(b)). Compared with DKO mice, DKO mice
engrafted with BMMCs exhibited a significant reduction in
intestinal permeability to levels similar to IL10−/− mice.

3.3. Influence of Mast Cell Deficiency on Proinflammatory
Cytokine Production in IL10−/− Model of Colitis. The sponta-
neous production of proinflammatory cytokinewasmeasured
via ELISA in colonic explant supernatants. Compared with
IL10−/− mice, DKO had significantly elevated spontaneous
colonic production of IL12p40 (4.6± 0.6 pg/ml/mg versus
9.7± 2.2 pg/ml/mg; p < 0 05) and TNF (2.8± 0.3 pg/ml/mg
versus 5.3± 0.7 pg/ml/mg; p < 0 005) (Figures 4(a) and 4(b)).
Engraftment of DKO mice with wild-type BMMCs amelio-
rated the increased TNF but not IL12p40. IL6 levels were sim-
ilar between IL10−/−, DKO, and engrafted DKO mice
(Figure 4(c)). Engraftment of DKO mice with IL10−/−

BMMCs ameliorated increased TNF, similar to those
engrafted with wild-type BMMCs (Figure 4(d)).

3.4. Mast Cell Deficiency and Reconstitution in IL10−/−-
Associated Colitis Drive the Gene Expression of an Array of
Colonic Mucosal Cytokine and Chemokines. To assess the
effect of mast cell deficiency on global cytokine regulation,
a real-time PCR array assessing 84 cytokines and chemokines
was performed on colon mucosal samples from IL10−/− and
DKO mice. Comparisons between IL10−/− and DKO mice
demonstrated that lack of mast cells in DKO mice produced
a large number of perturbations in cytokines and chemokines
(Figure 5(a)) which were largely restored to IL10−/− levels in

DKO mice engrafted with mast cells (Figure 5(b)). Results of
the cytokine alterations are displayed in Table 1. Specifically,
gene expression of anti-inflammatory mediators including
tgfb and bone morphogenetic proteins (BMPs) 2, 4, and 7
was significantly decreased in DKO mice compared with
IL10−/− mice and was rescued by systemic reconstitution of
DKO mice with bone marrow-derived mast cells (Table 1
and Figure 6), thus demonstrating a direct role of mast cells
in modulating bmp genes. Genes that were most highly
upregulated in DKO mice were CCl5 (by 5.19-fold), Cd40lg
(by 2.54-fold), and Cxcl9 (by 5.89-fold).

4. Discussion

The results from this study highlight a novel protective
role for mast cells in a spontaneous, chronic model of
colitis, in the IL10−/− mouse. While the present study con-
firms previous reports of heightened colitis in DKO mice
[45, 46], the amelioration of the colitis with systemic mast
cell engraftment in DKO mice in the present study pro-
vided a definitive anti-inflammatory role for mast cells in
spontaneous, chronic colitis.

Here, we demonstrated that engraftment of DKO mice
with either WT or IL10−/− BMMCs resulted in comparable
anti-inflammatory effects, confirming that mast cell-specific
IL10 was not the major anti-inflammatory mechanism.
TNF is an established mediator of inflammation in the
IL10−/− mouse model [82] and in human IBD, in which
anti-TNF monoclonal antibodies are a clinical mainstay
[82, 83]. In the present study, DKOmice had elevated colonic
production of TNF and histologic colitis scores that were
restored to IL10−/− levels with systemic reconstitution of
DKO mice with BMMCs. However, mast cell reconstitution
did not reduce the elevated IL6 or IL12p40, indicating that
mast cells may be specifically regulating specific cytokines
and (or) proinflammatory mediators to dampen colitis. The
mechanism by which mast cells dampen colitis is unknown,
but that ability of mast cells to suppress immune responses
is well established. There are several lines of evidence that
mast cells perform important immunoregulatory functions.
Mast cells control T cell polarization by affecting cytokine
production from other antigen-presenting cells. For example,
mast cell mediators including histamine and PGD2 suppress
production of IL12 from dendritic cells in vitro [84, 85]. This
effect can alter T cell polarization and redirect immune
responses. Mast cells also have direct effects on T cells, such
as induction of T regulatory cells, which suppress inflamma-
tion [51–53, 86]. In a model of graft-versus-host disease,
mast cells are essential for maintaining tolerance and pre-
venting graft rejection via induction of T regulatory cells as
well as via an unknown mechanism independent of T regula-
tory cells [51, 87]. Additionally, mast cell-induced T regula-
tory cells help to suppress inflammation in a model of
allergic airway disease [88]. Mast cell mediators contained
in their granules also have anti-inflammatory effects. For
example, mast cell proteases, such as tryptase and chymase,
degrade proinflammatory cytokines and alarmins, which
results in an immunoregulatory effect [89–92]. Heparin,
another mast cell mediator, has powerful anti-inflammatory
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effects. Heparin binds leukocyte and platelet selectins and
downregulates intercellular adhesion molecule-1 (ICAM-
1), preventing leukocyte migration to target tissues [93–
95], and also downregulates proinflammatory cytokine
expression in a process that requires its sulfate groups
[96]. Mast cells can also have immunoregulatory roles by
limiting pathogenic infections. Mast cells are critical for
induction of protective immune responses against viral,
bacterial, and parasitic pathogens. Mast cells are critical
in the recruitment of neutrophils and enhance resistance
to bacterial pathogens including Klebsiella pneumonia
and Mycoplasma pneumonia [62, 97–99], and in the
absence of mast cells, pathogen clearance in the urinary
bladder is impaired [100]. Lastly, mast cells are important
for tissue healing; mast cell-deficient mice have delayed
wound healing compared to controls [55, 101]. Mast cells
play important functions in each of the three stages of
wound healing, including recruitment of neutrophils to
the wound during the inflammatory phase [101, 102],
stimulation of fibroblasts during the proliferative phase
[103], and promoting tissue granulation, cell migration,
and angiogenesis during the remodeling phase [104, 105].
Mast cell-derived proteases have been shown to degrade
TNF and inflammation [51, 89].

We had hypothesized that the cytokine/chemokine
array would reveal skewing toward a so-called Th1 or
Th17 cytokine profile, with decreases in the Th2-type
cytokines that are classically thought of as being present
in mast cell activation, such as IL4 and IL5. Surprisingly,
these cytokines were not significantly altered in mast cell
deficiency, and a strongly Th1 or Th17 profile was not evi-
dent. Instead, we were able to identify particular mediators
that were most impacted by mast cell deficiency in the set-
ting of colitis.

Intestinal barrier dysfunction is an important mechanism
in the pathogenesis of inflammation in IBD. In the present
study, DKO mice exhibited increased intestinal permeability
compared to IL10−/−micewhich has been reported previously
[45]. Given that mast cell mediators such as proteases and
TNF are well-known to directly increase intestinal perme-
ability [33, 59, 60, 106, 107], the increased permeability in
DKO mice is likely secondary to the increased severity of
DKO colitis. Mast cell reconstitution suppressed colitis
and reduced intestinal permeability, further supporting
the indirect effect of mast cells on intestinal permeability
in this model.

A prominent histopathological finding associated with
exacerbated colitis in DKOmice was the pronounced increase
in colonic mucosal height. The etiology of mucosal hypertro-
phy in conjunction with colitis is unknown but is a common
finding that increases with colitis severity. Mucosal heights
in DKO mice were restored to IL10−/− levels upon mast cell
reconstitution, demonstrating that mast cells were important
in the resolution of mucosal hypertrophy.

While numerous cytokines and chemokines were dysreg-
ulated in DKO mice and restored by mast cell reconstitution
as assessed by the cytokine array, some of the most signifi-
cantly altered genes were the BMP proteins. BMP-2, -4, and
-6 were all significantly decreased in DKO mice compared
to IL10−/−. BMP proteins have an established role as modula-
tors of inflammation in many organs. BMP-2, -4, and -7 have
been demonstrated to have anti-inflammatory activity in the
stomach of mice, and BMP-6 and -7 are protective in renal
fibrosis. In line with the present study, BMP7 was shown to
exert an anti-inflammatory effect in chemical colitis models
[108, 109]. The anti-inflammatory mechanism of the BMPs
is not completely understood but has been demonstrated to
decrease proliferation in the Jurkat T cell line and to polarize
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Figure 5: Mast cell deficiency in colitis results in dysregulation of many cytokines and chemokines. (a) Scatter plot representation of average
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IL10−/− mice. (b) Reconstitution of DKO mice with BMMCs ameliorates the alteration of cytokines. Represents averaged fold change
values in n = 5 mice per group.
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monocytes towards M2 macrophages [110–112]. Given that
the mast cell-deficient DKO mice exhibited suppressed
BMP genes, which were restored with mast cell reconstitu-
tion, it is demonstrated that mast cells have a major influ-
ence on BMP gene transcription which could be a
potential mechanism by which mast cells exert anti-

Table 1: Mast cell deficiency results in dysregulation of many
different cytokines and chemokines. Fold change and p value of
DKO and DKO-rMC mice compared to IL10−/−. Significantly
upregulated genes and downregulated genes indicated by bold and
italic font, respectively (p = ≤0 1).

Fold change and p value compared to IL10
DKO DKO-rMC

Fold change p value Fold change p value

Adipoq 0.93 0.605923 0.44 0.12537

Bmp2 0.36 0.00275 0.43 0.00352

Bmp4 0.47 0.003545 0.78 0.08664

Bmp6 0.38 0.027679 0.71 0.12534

Bmp7 0.55 0.0662 0.77 0.13341

Ccl1 2.3 0.06215 1.71 0.20753

Ccl11 0.54 0.157722 0.79 0.31294

Ccl12 0.46 0.020304 1.11 0.57195

Ccl17 1.12 0.862792 1.05 0.85839

Ccl19 1.4 0.281436 1.24 0.4384

Ccl2 1.46 0.268872 1.33 0.25702

Ccl20 0.84 0.90886 1.09 0.73897

Ccl22 1.23 0.36045 0.79 0.52381

Ccl24 0.86 0.287519 0.55 0.02211

Ccl3 2.5 0.304203 1.62 0.10923

Ccl4 3.6 0.132224 2.05 0.00244

Ccl5 5.19 0.059787 2.87 0.02972

Ccl7 1.27 0.259336 1.22 0.24594

Cd40lg 2.54 0.035975 2.89 0.01671

Cd70 0.94 0.73583 0.74 0.21501

Cntf 1.05 0.869816 0.79 0.11255

Csf1 0.54 0.011483 0.66 0.10244

Csf2 1.77 0.337615 1.28 0.73852

Csf3 1.93 0.18316 0.95 0.98266

Ctf1 0.49 0.131314 1.13 0.73413

Cx3cl1 0.57 0.024194 0.69 0.14404

Cxcl1 2.65 0.164314 1.48 0.2263

Cxcl10 1.69 0.232777 1.05 0.94321

Cxcl11 1.39 0.368579 0.96 0.96597

Cxcl12 0.44 0.009886 0.71 0.07872

Cxcl13 1.31 0.421716 1.09 0.73564

Cxcl16 1.02 0.830846 0.89 0.42328

Cxcl3 7.7 0.169696 0.95 0.91528

Cxcl5 3.37 0.212199 0.94 0.88692

Cxcl9 5.89 0.078554 3.3 0.06285

Fasl 3.09 0.119071 2.03 0.04219

Gpi1 1.07 0.640631 1.02 0.97433

Hc 0.75 0.681503 1.62 0.1135

Ifna2 0.93 0.605923 0.44 0.12537

Ifng 5.15 0.143744 2.21 0.13276

Il10 0.93 0.605923 0.44 0.12537

Il11 2.39 0.165436 1 0.82803

Il12a 0.54 0.098954 0.61 0.09123

Il12b 1.47 0.256595 1.62 0.12956

Table 1: Continued.

Fold change and p value compared to IL10
DKO DKO-rMC

Fold change p value Fold change p value

Il13 1.09 0.651106 1 0.99484

Il15 0.53 0.016916 0.73 0.07861

Il16 1.01 0.896996 0.56 0.04287

Il17a 1.12 0.484613 0.35 0.08594

Il17f 0.68 0.282624 0.55 0.00207

Il18 0.46 0.070874 0.87 0.26885

Il1a 3.9 0.220118 0.9 0.65997

Il1b 3.96 0.172113 1.26 0.38028

Il1rn 0.7 0.006867 0.73 0.03971

Il2 0.94 0.639082 0.48 0.13164

Il21 1.6 0.306708 0.44 0.12537

Il22 1.87 0.268256 0.54 0.12908

Il23a 0.8 0.611696 0.89 0.47794

Il24 1.45 0.684595 0.47 0.13168

Il27 1.45 0.322021 1.28 0.68824

Il3 1.06 0.871143 0.44 0.12537

Il4 1.67 0.323998 2.15 0.02924

Il5 0.73 0.547827 0.66 0.31967

Il6 3.97 0.227976 1.21 0.40714

Il7 0.48 0.180451 0.68 0.13566

Il9 0.93 0.605923 0.55 0.16928

Lif 1.11 0.576603 0.51 0.01984

Lta 0.65 0.44487 0.55 0.6218

Ltb 1.55 0.23314 0.83 0.91681

Mif 1.17 0.107953 1.18 0.29987

Mstn 1.13 0.736482 0.59 0.21285

Nodal 0.93 0.605923 0.52 0.15365

Osm 5.53 0.119627 1.56 0.12463

Pf4 0.47 0.030614 0.63 0.05057

Ppbp 1.14 0.986882 1.54 0.55059

Spp1 4.12 0.261256 1.77 0.93377

Tgfb2 0.51 0.048987 0.77 0.12043

Thpo 1.11 0.432272 1 0.80533

Tnf 2.54 0.151012 1.3 0.2214

Tnfrsf11b 0.91 0.948453 0.92 0.89644

Tnfsf10 1.16 0.779851 1.05 0.97127

Tnfsf11 2.2 0.211322 0.96 0.64542

Tnfsf13b 0.92 0.651414 0.93 0.44799

Vegfa 1.12 0.747986 0.92 0.55534

Xcl1 1.1 0.9224 1.28 0.48461
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inflammatory mechanisms. More definitive studies are
required to establish this link.

5. Conclusions

In summary, we have demonstrated that mast cells have a key
protective role in chronic spontaneous colitis. This finding is
in contrast to models of chemical colitis, demonstrating that
mast cells can impart protective properties during colitis in
the IL10−/− model. One explanation for the divergent effects
of mast cells between chemical colitis and the IL10−/− model
is that chemical colitis models are acute (days) or subacute
(weeks) disease models, while the IL10−/−model more closely
recapitulates the chronic, progressive, spontaneous onset of
naturally occurring IBD with chronic changes to the intesti-
nal microbiota. Therefore, consistent with reports in other
body systems, it seems that while mast cells have deleterious
effects in the acute or subacute setting, they have beneficial
roles in chronic inflammatory diseases, potentially due to
their effects that promote healing [113]. Therefore, given that
naturally occurring IBD is a spontaneous, chronic disease
with a slow onset, the current work represents a paradigm
shift that may more accurately recapitulate the role of the
mast cell in naturally occurring disease and thus direct ther-
apeutic interventions towards mast cell activation versus
mast cell blockade.
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