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Organ formation initiates once cells become committed to one of the three
embryonic germ layers. In the early stages of embryogenesis, different gene
transcription networks regulate cell fate after each germ layer is established,
thereby directing the formation of complex tissues and functional organs. These
events can be modeled in vitro by creating organoids from induced pluripotent,
embryonic, or adult stem cells to study organ formation. Under these conditions, the
induced cells are guided down the developmental pathways as in embryonic
development, resulting in an organ of a smaller size that possesses the essential
functions of the organ of interest. Although organoids are widely studied, the
formation of skeletal elements in an organoid model has not yet been possible.
Therefore, we suggest that the formation of skeletal elements using the recombinant
limb (RL) assay system can serve as an in vivo organoid model. RLs are formed from
undissociated or dissociated-reaggregated undifferentiated mesodermal cells
introduced into an ectodermal cover obtained from an early limb bud. Next, this
filled ectoderm is grafted into the back of a donor chick embryo. Under these
conditions, the cells can receive the nascent embryonic signals and develop
complex skeletal elements. We propose that the formation of skeletal elements
induced through the RL system may occur from stem cells or other types of
progenitors, thus enabling the study of morphogenetic properties in vivo from
these cells for the first time.
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INTRODUCTION

During embryonic development, many developmental pathways orchestrate the formation of
organs in time and space. In the early stages of embryogenesis, the cell differentiation potential
restricts as the pluripotent embryonic cells give rise to three germ layers: ectoderm, mesoderm,
and endoderm (Chan et al., 2017; Kumar et al., 2021). Lineage-specific gene regulatory
programs within each germ layer activate and coordinate the steps needed for that group of
cells to develop into the cell fates required to form tissues and, finally, functional organs.
Concomitant with organogenesis is the appearance of stem cells involved in the homeostasis,
repair, and regeneration of adult tissues in vivo (Slack, 2008). Stem cells are undifferentiated
cells with the ability to reproduce themselves (i.e., self-renew to maintain their cell population)
and also to give rise to a range of distinct, specialized cells (i.e., differentiate into multiple cell
types as needed) (Slack, 2008; Huang et al., 2021; Shu et al., 2021). Stem and progenitor cell
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research has led to breakthrough developments in
regenerative medicine, including stem cell-based therapies
for various diseases (e.g., leukemia, aplastic anemia,
osteopetrosis) (Río et al., 2018; Almohsen and Al-Mudallal,
2020; Capo et al., 2020). Likewise, this knowledge has created
new research fields, such as the generation of organoids. These
three-dimensional (3D) structures can be derived from
induced pluripotent stem cells (iPSCs), embryonic stem
cells (ESCs), or adult stem cells (ASCs). These cells self-
organize following the developmental pathways of
embryonic development, giving rise to an organ of a
smaller size capable of performing its essential functions
(Rossi et al., 2018).

Therefore, understanding developmental pathways during
embryonic development enables extrapolating those into
protocols to induce stem or progenitor cells toward forming
an organoid. For many years, the disaggregate-reaggregates of
organs or cultures from organ rudiments were used to
understand cell differentiation and organogenesis involving
soluble factors, cell-cell, and cell-extracellular matrix (ECM)
interactions. However, these culture models originated from
embryonic or fetal cells from the proper organ in formation or
already established (Taketo and Koide, 1981; Escalante-
Alcalde and Merchant-Larios, 1992; Saxén and Thesleff,
2007). In recent years, various protocols have been
developed to direct stem or progenitor cells to develop into
intestine, brain, liver, kidney organoids, among others
(Lancaster et al., 2013; McCracken et al., 2014; Dye et al.,
2015; Huch et al., 2015; Zhou et al., 2021). However, how to
properly create complex structures formed by different cell
types from distinct embryonic germ layers (e.g., limbs) has not
been determined.

To study cell interactions between mesenchymal cells and the
ectodermal cover of developing limb buds, E. Zwilling designed
the recombinant limb (RL) assay system (Zwilling, 1964). The
RL technique assembles the dissociated-reaggregated or
undissociated mesoderm of a limb into an embryonic
ectoderm cover and then grafting it into the back of a donor
embryo. Notably, the embryonic signals provided by the
ectoderm induce gene expression in a spatiotemporal manner
driving the 3D organization of a limb-like structure by
recapitulating the developmental programs that occur during
limb development. Although this model has been mainly used to
understand chicken limb development, different approaches
have also been reported, including interspecies grafting
(Fernandez-Teran et al., 1999), the use of different
combinations of mutant and wild-type mesoderm or
ectoderm (Kuhlman and Niswander, 1997), or limb
mesodermal cells modified by electroporation (Marín-Llera
et al., 2021). From these, it is evident that the RL
experimental model is adaptable to diverse scenarios. This
experimental system has enormous potential to explore the
ability of different sources of stem or progenitor cells to
generate a limb-like structure.

In this perspective, we discuss the potential of the RL system to
generate limbs by recapitulating limb development initiated by
embryonic ectodermal signals. We propose that the formation of

RLs from iPSCs, ESCs, ASCs, and other progenitor cells can result
in a robust in vivo organoid model.

MODELING ORGANOIDS TO
UNDERSTAND ORGAN FORMATION

Organs originate during embryonic development from different
tissues to form a specialized unit that performs a particular
function (Montell, 2008). An organoid is a small, 3D mass
that arises by the self-organization and differentiation of stem
or progenitor cells generating the substructures and functions
characteristic of the organ of interest. Organoids are generated
in vitro by inducing the differentiation of stem or progenitor cells
as it occurs in vivo during embryonic development. Organoid
models provide a greater understanding of the cellular and
molecular basis of organ development, such as cell
differentiation, tissue patterning, developmental timing,
regulatory gene expression, and size control.

The potential use of organoid generation lies in exploring
tissue repair and disease mechanisms, drug testing, tissue
homeostasis, regenerative medicine, and developmental biology
at the organ level in a scaled model.

While Hans Clever originally coined the concept of “organoid”
(Sato et al., 2009), Yoshiki Sasai and his group were the first to
demonstrate that, after the induction of developmental programs,
mouse and human ESCs generate 3D complexes composed of
organized substructures. They first constructed 3D forebrain
models followed by other neural organoids (Eiraku et al.,
2008, 2011; Osakada et al., 2009; Kamiya et al., 2011).

Intestinal villi-like structures and crypts were the first
organoids generated by inducing individual ASCs (Lgr5+) to
organize in 3D suspension, giving rise to distinct cell types such as
enterocytes, goblet cells, Paneth cells, and endocrine cells (Sato
et al., 2009). Since then, various organoids generated from ASCs
have been reported, including the liver and kidney (Lancaster
et al., 2013; McCracken et al., 2014; Dye et al., 2015; Huch et al.,
2015).

The methodologies used to generate an organoid vary
according to which cell is best suited to initiate the process.
Sequential induction steps recapitulate development to create an
organoid that exhibits the desired and required characteristics.
Usually, the generation of an organoid in vitro consists of
isolating a homogeneous cell population capable of further
differentiation (e.g., ASCs, ESCs, iPSCs, other progenitor cells).
Next, a matrix rich in proteins, growth factors, and other culture
components promotes the proliferation, adherence, and
differentiation of cells seeded in a defined substrate (reviewed
by Corrò et al., 2020). Themost used matrix is Matrigel, a mixture
of complex ECM basement membrane components. This gel-like
substance is obtained from mouse tumors expressing laminin,
nidogen, collagen IV, and heparan sulfate proteoglycans
(Kleinman and Martin, 2005). Matrigel components allow
embedded cells to execute cellular functions relevant to tissue
formation (Rossi et al., 2018). Under these conditions,
morphogens and growth factors regulate cells to acquire a
proper cellular fate, guiding them to self-organize. During
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organoid formation, cells need determined physiological
conditions to commit to specific-tissue cell types and develop
into a 3D organized structure according to specific developmental
programs (Ehrmann and Robert, 1956; Murry and Keller, 2008;
Sasai, 2013). Other forms of generating organ constructs have
been elaborated using bioengineering, organs-on-a-chip, and in
situ approaches, including gene editing, interspecies chimeras,
and cellular reprogramming (reviewed in Xia and Izpisua
Belmonte, 2019).

Although organoids are an invaluable strategy for modeling
early tissue organization characteristics in vivo, they have some
limitations. Organoids do not fully mimic the physiological organ
as they lack some tissue components, vascularization, and
immune cells, limiting organ maturation and resulting in
incomplete function (de Souza, 2018). Organoids are built
lacking vascularization, an essential feature of all tissues to
supply nutrients and allow for adequate perfusion. It may
result in atypical physiology of the organoid compared to the
organ to be modeled. Advances in different strategies to
vascularize organoids are reviewed by Strobel et al., 2022.
Furthermore, using different sources to establish organoid
cultures, the heterogeneity of progenitors and differentiated
cells may affect organoid formation that not necessarily
corresponds to the in vivo counterparts.

The in vivo environment is complex, with multiple cell-cell
and cell-matrix interactions giving rise to diverse signaling
networks that dynamically change according to organ
homeostasis. It is expected that attempting to model this
complexity in vitro will be challenging.

ADVANCES IN LIMB ORGANOID
GENERATION

One challenge in generating an organoid is the complexity of the
organ of interest. The more complex the organ, the more
difficult is the generation of the organoid. Organoid
formation involves driving cell populations to spatially
organize into a functional structure through exposure to
morphogens and specific differentiation signals. Thus, a
challenge for the generation of a limb organoid is to mimic
tissue organization and function. Limb formation is a powerful
model for investigating cell differentiation during development
because it involves the establishment of a 3D pattern that directs
the morphogenesis, shaping, and positioning of each tissue
(McQueen and Towers, 2020; Royle et al., 2021). Limb buds
emerge at specific positions along the flank of the embryo
(Hamburger and Hamilton, 1992; Feneck and Logan, 2020).
The limb bud is formed by undifferentiated mesenchymal cells
derived from the lateral plate mesoderm (LPM) with an
ectodermal epithelium covering these mesenchymal cells.
Tissues differentiate into the limb bud in response to signals
from different signaling centers that control the proximodistal
[(PD), shoulder to fingers], anteroposterior [(AP), thumb to
finger], and dorsoventral [(DV), from the back of the hand to
palm] axes. The apical ectodermal ridge (AER) is the thickened
epithelium located at the most distal limb ectoderm and

controls the PD axis. Cells from the AER express Fgf8, which
along with Wnt3a, maintains the mesodermal cells underneath
the AER in an undifferentiated, proliferative state (Ohuchi et al.,
1997; ten Berge et al., 2008). As the limb bud grows, the
undifferentiated cells underneath the AER begin to
differentiate toward the chondrogenic and tenogenic lineages
when they stop receiving signals from the AER (Dollé et al.,
1989; Roselló-Díez et al., 2014; Marín-Llera et al., 2019; Marin-
Llera et al., 2021). The zone of polarizing activity (ZPA) controls
limb bud AP polarity and is located at the posterior margin of
the limb bud. When the ZPA is grafted to the anterior zone of a
limb bud, it induces mirror-image digit duplications. This
signaling center is characterized by Sonic hedgehog (Shh)
expression (Riddle et al., 1993; Fujii et al., 2021; Gamart
et al., 2021). Finally, the ventral and dorsal limb bud
ectoderms specify DV polarity. Engrailed 1 (En-1), a
transcription factor that specifies the ventral ectoderm, and
Wnt7a, which specifies the dorsal ectoderm by inducing Lmx1
gene activation, give rise to the DV phenotype of a limb (Loomis
et al., 1996; Soshnikova et al., 2003; Haro et al., 2014). These
three signaling centers are essential for patterning limbs,
committing mesodermal cells to different lineages, and
coordinating them within the limb to give rise to the
appendicular skeletal system.

One methodology for evaluating the differentiation of limb
bud progenitor cells is high-density primary limb mesenchymal
culture, also known as a micromass (MM) culture (Ahrens et al.,
1977). In MM cultures, the limb mesenchymal cells recapitulate
the developmental process observed in limb development to give
rise to cartilage cells during the formation of skeletal elements.
Limb bud mesenchymal cells condense and aggregate to form 3D
cartilage nodules. In long-term MM cultures, the cartilage
nodules provide matrix calcification accompanied by increased
alkaline phosphatase activity (Arzate et al., 1996; Mello and Tuan,
1999). Although MM cultures help study the basic mechanisms
underlying the differentiation of limb bud cells and their
regulation, this method has a limited ability to recapitulate the
assembly of progenitors into organized tissues that span the
entire limb.

Another model used to understand limb formation is the ex
vivo limb bud culture system (Fell and Robison, 1929). At a
particular stage in limb bud development, the bud contains all the
elements required to develop autonomously. In this system, the
embryonic limb is sectioned and placed in culture media to
continue forming skeletal structures with the proper 3D
organization of a mature limb, preserving all the cell-cell and
cell-ECM interactions that control cell differentiation and
morphogenesis (Hall, 1981; Smith et al., 2013). This
methodology facilitates the study of the molecular mechanisms
regulating chondrocyte differentiation (Schnabel et al., 2006;
Lorda-Diez et al., 2010), toxicology testing, and aberrant
embryonic limb development (Yan and Hales, 2019, 2021).
Although ex vivo limb bud cultures provide a tool to
understand skeletal and limb development, the initial
commitment processes required to enter particular
differentiation states remain hard to study. On the other hand,
mesenchymal stromal cells (MSCs), a multipotent population
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obtained from various fetal and adult tissues, differentiate into
osteogenic, chondrogenic, and tenogenic lineages mainly for
regenerative medicine applications (Toh et al., 2017; Xia et al.,
2018; Jiang et al., 2020). MSCs’ potential to differentiate into limb
lineages has been investigated mainly using 2D cultures systems.

Obtaining limb-bud-like mesenchymal (LBM) cells from
iPSCs or ESCs to create limb organoids is essential to
recapitulate early commitment events during embryonic
development. Cell differentiation of stem or progenitor cells
into LBM cells can be driven by specification signals from the
middle primitive streak (midPS) and the LPM. Providing induced
LBM cells with the inductive signals necessary to trigger step-by-
step their commitment and differentiation into a specific cell
lineage ought to result in the formation of a limb organoid. One
approach to inducing an LPM state relies on the transient
transfection of miRNAs. In mouse ESCs, transient co-
transfection of mmu-miR-126a-3p, mmu-miR-335-5p, and
mmu-miR-672-5p promotes differentiation toward LPM
lineages, thereby increasing the number of LPM-like cells
(Tuysuz et al., 2021). Furthermore, miR-199a-3p, miR-214-3p,
and miR-483-3p are enriched in mesodermal cells differentiated
from human ESCs. However, their roles in specifying the
mesoderm into different tissue subtypes have not yet been
fully characterized (Ishikawa et al., 2017). Loh et al. (2016)
established a developmental roadmap to direct the
commitment of cell lineages to particular fates. The
reprogramming of human adult somatic cells into human-
induced pluripotent stem cells (hiPSCs) by promoting the
expression of four transcription factors, including Oct4/Sox2/
c-Myc/KLF4 or Oct4/Sox2/NANOG/LIN28, has also been
reported (Takahashi and Yamanaka, 2006; Takahashi et al.,
2007; Yu et al., 2007). Loh et al. (2016) demonstrated how to
generate limb precursor cells after treating stem cells with factors
that progressively regulate the formation of mesodermal lineages.
They treated hiPSCs with activin, BMP4, CHIR99021, and FGF2
to induce a mid-primitive streak-like (midPS-like) state (Loh
KM., 2016). Then, the administration of an ALK5 inhibitor,
BMP4, and a Wnt antagonist directs the midPS-like cells
down an LPM-like path (Loh et al., 2016). Thereafter,
progenitor cells can differentiate into specific cell lineages.
Differentiating hiPSCs into LBM cells requires a different
combination of chemicals that modulate WNT, BMP, TGF-β,
and hedgehog (HH) signaling added to the cells in the
appropriate times resulting in PRRX1+ (cell-specific marker)
LBM cells (Yamada et al., 2021). In addition to the Yamaka
factors, another study used Prdm16, Zbtb16, and Lin28, generally
expressed in the embryonic limb bud, to reprogram mouse non-
limb fibroblast into LBM progenitors (Atsuta et al., 2021). In
other experimental approaches, hiPSCs seeded into high-density
MM cultures treated for 21 days with BMP-2 recapitulate the
osteochondrogenic transcriptional network and differentiate to
the chondrogenic lineage, including articular cartilage, transient
cartilage, and fibrocartilage (Guzzo et al., 2013).

One of the most recent attempts to create a limb organoid
was reported by Mori et al. (2019). A polarized limb-like
structure was generated from aggregates of mouse
embryonic stem cells (mESCs) cultured in a scaffold of

Matrigel and treated with BMP4 and retinoic acid. While
the expression of Tbx4, Tbx5, Hand2, Irx3, Meis1, and
Meis2, genes involved with the induction, organization, and
establishment of limb buds were found, these 3D cultures
failed to generate a structure similar to the AER and,
therefore, neither recapitulated the differentiation process
nor the morphogenetic patterning observed during limb
development.

These approaches highlight the importance of understanding
the embryonic signals involved in limb development to guide the
differentiation of undifferentiated cells into limb-like structures,
demonstrating that the sequential activation of developmental
programs is necessary for inducing differentiation into specific
lineages. Undoubtedly, these works have increased our
knowledge of limb organogenesis by generating limb
organoids. However, these protocols still fail to recapitulate the
morphogenetic processes required to form complex skeletal
structures.

RECOMBINANT LIMB ASSAY AS A TOOL
FOR LIMB-ORGANOID GENERATION

Edgar Zwilling (Zwilling E., 1964) developed the recombinant
limb (RL) assay system to understand the interactions between
limb bud ectoderm and mesenchymal cells. This technique,
usually used in avian species, consists of assembling whole or
dissociated-reaggregated mesodermal cells into an ectodermal
cover obtained from an early limb bud to then graft into the
dorsal part of a donor chick embryo (for a detailed protocol, see
Marín-Llera et al., 2022, Ros et al., 2000). Patterning signals from
the embryonic ectoderm induce cell differentiation of
mesodermal cells in a spatial-temporal manner to form a
limb-like structure following the developmental programs as
occurs during limb development. This phenomenon proves
that mesodermal limb cells lose their positional identity within
the limb bud once they are dissociated. However, they remain
competent to ectodermal signals in the RL system, re-specifying
its positional values, differentiating, and generating recognizable
limb structures (Zwilling E., 1964). Morphogenetic processes of
the RL are enhanced by adding an intact ZPAmesoderm at one of
the ectodermal edges (MacCabe et al., 1973; Crosby and Fallon,
1975; Frederick and Fallon, 1982). In this way, the RL system
provides the spatial-temporal signals mimicking the embryonic
limb bud allowing mesodermal cells to differentiate and pattern.
RL system provides the PD signals (Fgf8 and Fgf4) and DV signals
(En-1 andWnt7a) of the ectoderm, promoting Fgf10, Lmx-1, and
Shh expression in mesodermal cells (Kuhlman & Niswander,
1997; Elisa Piedra et al., 2000). The expression of patterning genes
promotes positional information within RL mesodermal cells
such as Msx1, Msx2, Hoxd11, Hoxd12, and Hoxd13 (Ros et al.,
1994; Cooper et al., 2011; Rosello-Diez et al., 2011). Twenty-
4 hours after grafting RL, cells start the differentiation programs
by committing to chondrogenic lineages by expressing Sox9, and
muscle progenitors migrate inward RL from the somites
expressing MyoD and Pax3 (Cooper et al., 2011). Interestingly,
in the RL assay, the patterning of these progenitors resembles
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normal development when grafted in the somite area with high
levels of retinoic acid (Fernandez-Teran et al., 1999; Cooper et al.,
2011). Thus, the RL system recapitulates the differentiation,
morphogenesis, and patterning programs observed in normal
limb development.

One of the advantages of the RL system is the variety of
combinations between its elements. It is well known that the
molecular signals among vertebrate limb development are
conserved throughout tetrapod evolution. Research groups
have adapted Zwilling’s technique to prove that cells from
different species, including the turtle (Fallon & Simandl, 1984)
and mouse (Kuhlman & Niswander, 1997), can interpret the
signals emitted from an ectodermal jacket that is not their own.
Moreover, mesenchymal cells from the anterior or posterior
limbs can be placed inside the anterior or posterior ectoderm
(Crosby and Fallon, 1975; Frederick and Fallon, 1982). Some
points to consider about this technique are the graft efficiency
that may vary between mesodermal sources and the high number
of chicken embryos needed to generate the RL (mesoderm
donors, ectoderm donors, and host embryos). Also, fine
manipulations are needed in each step to guarantee the
technique’s success. Furthermore, understanding the formation
of tendons and vasculature in RLs is not yet fully elucidated.

Based on these characteristics the RL model is a well-suited to
evaluate the biology of stem and progenitor cells isolated directly
from an organism (e.g., LBM cells). The RL system’s versatility
permits the creation of multiple combinations of cells from
different sources, developmental stages, or positions along the
limb, whole (undissociated), or reaggregated cells, even until
modified LBM cells overexpress distinct molecules, as shown
by Marín-Llera et al., 2021.

Data from our laboratory has demonstrated that mouse limb
mesodermal cells are competent to receive chicken ectodermal
signals and form skeletal elements after 6 days. Skeletal elements
are organized similarly as it occurs during limb development
(Figures 1A–C). On the other hand, in the 5-day mouse-chicken

RL, mouse mesodermal cells are condensed in the center, and no
skeletal elements are observed (Figures 1D–F). This suggests that
the specification of mouse mesodermal cells in this system is
delayed relative to the chicken-chicken RL. The successful
generation of a chimeric RL using mouse mesoderm
demonstrates the possibility of combining cells from different
mammalian species, thereby creating opportunities to study
morphogenesis, patterning cell-cell interactions, cell migration,
and cell differentiation at the cellular and molecular levels on
these cells. Notably, the source of the mesodermal component of

FIGURE 1 | Chimeric mouse-chicken recombinant limbs. (A–C) Six-day recombinant limbs. Limb bud mesodermal cells from 10.5 dpc mouse embryos were
assembled in chicken ectoderms. (D–F) Five-day recombinant limbs. Limb bud mesodermal cells from 10.5 dpc mouse embryos were ensembled in chicken
ectoderms. Chicken ectoderms and host embryos were obtained from the 22 HH stage. Data represent two independent experiments. Scale bar 100 µm.

FIGURE 2 | Human MSC-derived RL from different sources. Alcian blue
staining of 24 h recombinant limbs performed with human MSCs assembled
in chicken ectoderms. MSCs were obtained from (A) bone marrow, (B)
Wharton’s jelly, (C) umbilical cord blood, and (D) placenta. Chicken
ectoderms and host embryos were obtained from the 22 HH stage. Scale bar
100 µm.
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the RL is not limited to limb cell sources. Our unpublished work
demonstrated that RL could be obtained from previously
expanded cells with mesodermal differentiation capacity as
adult MSCs. MSCs from bone marrow (BM), Wharton’s jelly
(WJ), umbilical cord blood (UCB), and placenta (P) placed under
the embryonic ectodermal signals successfully formed RL after
24 h after grafting (Figure 2). Interestingly, MSCs are committed
and spatially organized differently under these conditions
depending on their origin (data not shown). These data
suggest that it might be possible to generate RL from other
ASCs and PSCs or stem or progenitor cells (e.g., ESCs, iPSCs)
induced through in vitro differentiation protocols. The RL system
permits us to evaluate cells’ behavior in response to embryonic
patterning signals and, even more relevant, to study their capacity
to interpret morphogenetic signals that could lead them to form
the pattern of limb bud skeletal elements in vivo.

The RL system exposes cells simultaneously to signaling
centers, thereby physiologically mimicking the limb
microenvironment and allowing undifferentiated cells to
develop into distinct limb cell types simultaneously by
synthesizing both the ECM and tissue-specific proteins. In
addition to individual cell differentiation, groups of cells
organize into a complex structure with a 3D pattern. These
are essential characteristics required for a system to be
considered an organoid. In this sense, the RL assay represents
a powerful in vivo system for generating limb organoids.

CONCLUSION

Cell differentiation and morphogenesis are fine-tuned processes
that lead to the formation of specialized cell types, organized
tissues, and functioning organs directing cell fate from
embryonic development to an independent living organism.
Understanding the early cell differentiation steps is essential to
model these complex processes in an experimental setting. The
RL system is a powerful experimental model for studying
patterning, morphogenesis, cell-cell interactions, cell
migration, commitment, and cell differentiation at the
cellular and molecular levels. Currently, the use of the RL
model is restricted to limb developmental biology. However,
this infrequently used technique represents an in vivo organoid
system. It conserves the expression of the ectodermal limb bud
signaling centers that mediate the morphogenesis and
commitment of undifferentiated cells along distinct

developmental paths. This model also faithfully maintains the
appropriate gene expression patterns with spatial-temporal
accuracy. The RL model establishes the proper 3D
polarization of limb-like structures and recapitulates the
differentiation programs observed during development,
resulting in correctly positioned skeletal elements.
Furthermore, we consider that the RL assay system permits
countless applications across numerous biological questions
without being restricted to limb developmental biology and
the use of LBM cells.
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