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Cardiac ischemia-reperfusion injury (IRI) represents a major pathophysiological event
associated with permanent loss of heart function. Several inter-dependent processes
contribute to cardiac IRI that include accumulation of reactive oxygen species (ROS),
aberrant inflammatory response, and depletion of energy supply. Inducible nitric
oxide synthase (iNOS) is a pro-inflammatory mediator and a major catalyst of ROS
generation. In the present study we investigated the epigenetic mechanism whereby
iNOS transcription is up-regulated in macrophages in the context of cardiac IRI. We
report that germline deletion or systemic inhibition of myocardin-related transcription
factor A (MRTF-A) in mice attenuated up-regulation of iNOS following cardiac IRI in
the heart. In cultured macrophages, depletion or inhibition of MRTF-A suppressed
iNOS induction by hypoxia-reoxygenation (HR). In contrast, MRTF-A over-expression
potentiated activation of the iNOS promoter by HR. MRTF-A directly binds to the iNOS
promoter in response to HR stimulation. MRTF-A binding to the iNOS promoter was
synonymous with active histone modifications including trimethylated H3K4, acetylated
H3K9, H3K27, and H4K16. Further analysis revealed that MRTF-A interacted with
H4K16 acetyltransferase TIP60 to synergistically activate iNOS transcription. TIP60
depletion or inhibition achieved equivalent effects as MRTF-A depletion/inhibition in
terms of iNOS repression. Of interest, TIP60 appeared to form a crosstalk with the
H3K4 trimethyltransferase complex to promote iNOS trans-activation. In conclusion, we
data suggest that the MRTF-A-TIP60 axis may play a critical role in iNOS transcription
in macrophages and as such be considered as a potential target for the intervention of
cardiac IRI.
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INTRODUCTION

Cardiac ischemia, following such incidents as major surgeries
(e.g., organ transplatation) or thrombosis, poses significant threat
to the heart, and the survival of the organism. Attempts to
resuscitate the ischemic heart can be met with restoration
of the cardiac function but often, paradoxically, worsen the
structural and functional loss of the myocardium and dampen
the prognosis of the patients (Eltzschig and Eckle, 2011). This
critical pathophysiological event, termed ischemia-reperfusion
injury (IRI), is thought to be programmed by a series of
independent yet inter-connected processes. Reactive oxygen
species (ROS), for instance, become excessively produced,
and/or inefficiently removed inflicting extensive damages to
major macrobiomolecules (Granger and Kvietys, 2015). IRI
is also accompanied by increased leukocyte infiltration and
aberrant inflammatory response (Lutz et al., 2010). In addition,
mitochondrial dysfunction during IRI not only promotes ROS
generation but contributes to ATP depletion causing energy
shortage (Tompkins et al., 2006). These processes are often
paralleled by changes in gene expression patterns in the
heart, characterized by up-regulation of enzymes involved in
ROS production (e.g., NADPH oxidase), and pro-inflammatory
mediators (Amberger et al., 2002).

Inducible NO synthase (iNOS) is a prototypical pro-
inflammatory mediator that can be robustly up-regulated by
a range of stimuli including hypoxia-reoxgenation (HR) in
macrophages, which is often mediated by NF-κB (Griscavage
et al., 1996; Buxade et al., 2012). In addition to its pivotal role in
the inflammatory response, iNOS also serves as a major catalyst
for ROS production during IRI (Granger and Kvietys, 2015).
Previously it has been shown that germline deletion of iNOS in
mice protects against IRI in the heart (Marfella et al., 2004), in
the kidneys (Ling et al., 1999), and in the gut (Suzuki et al., 2000).
Following IRI, iNOS expression is elevated in the heart (Ding
et al., 2005). The epigenetic mechanism whereby IRI promotes
iNOS transcription is not clear.

Myocardin-related transcription factor A (MRTF-A) is a
multifaceted transcriptional modulator. MRTF-A is ubiquitously
expressed and is dispensable for embryonic development.
Postnatally, MRTF-A has been shown to participate in an
array of pathophysiological processes including tissue fibrosis
(Small et al., 2010; Fan et al., 2015; Tian et al., 2015; Xu
et al., 2015), sepsis (Yu et al., 2017a), colitis (Yu et al., 2014),
pulmonary hypertension (Chen et al., 2015), cardiac hypertrophy
(Weng et al., 2015a), and cancer metastasis (Cheng et al.,
2015). Although MRTF-A was initially identified as a co-
factor for serum response factor (SRF), later investigations have
indicated that MRTF-A can interact with other sequence-specific
transcription factors (TFs) such as NF-κB (Fang et al., 2011),
Sp1 (Luchsinger et al., 2011), and Smad3 (Morita et al., 2007)
and regulate the transcriptional events mediated by these TFs.
It has recently been reported by our laboratory that MRTF-A is
essential for the pathogenesis of cardiac IRI in mice relying on
a mechanism in which MRTF-A activates the transcription of
NADPH oxidases (Yu et al., 2018). Building on this discovery, we
investigated the regulation of iNOS transcription in the context
of cardiac IRI by MRTF-A. We report that MRTF-A contributes

to iNOS transcription in macrophages by interacting with the
histone acetyltransferase TIP60. Therefore, the MRTF-A-TIP60
axis may represent an attractive target in the development of
novel therapeutic solutions against cardiac IRI.

MATERIALS AND METHODS

Cell Culture, Plasmids, Transient
Transfection, and Reporter Assay
RAW264 cells were maintained in DMEM supplemented with
10% FBS. Mouse bone marrow derived macrophages (BMDMs)
were isolated and differentiated as previously described (Yu
et al., 2017a). Primary cardiac macrophages were purified from
the non-myocyte suspension by magnetic beads coated with
anti-F4/80 antibody (Miltenyi Biotech). Hypoxia-reoxygenation
(HR) was performed as previously described (Ren et al., 2013;
Yu et al., 2018). Briefly, macrophages were exposed to 1%
O2 in a hypoxia chamber (Pro-Ox Model C21, BioSpherix,
Parish, NY, United States) for 3 h followed by reoxygenation
in a regular cell-culture incubator with ambient 21% O2
for 9 h. MRTF-A expression constructs (Li et al., 2018c),
iNOS promoter-luciferase construct (Crosby et al., 2005), ASH2
expression construct (Wu et al., 2008), and TIP60 expression
construct (Lin et al., 2012) have been previously described. Small
interfering RNAs were purchased from Dharmacon. Transient
transfection was performed with Lipofectamine 2000. Cells were
harvested 48 h after transfection and reporter activity was
measured using a luciferase reporter assay system (Promega) as
previously described (Fan et al., 2017; Yu et al., 2017b; Yang
Y. et al., 2018). CCG-1423 (S7719) and MG149 (S7476) were
purchased from Selleck.

Animals
All animal experiments were reviewed and approved by the
Ethics Committee on Humane Treatment of Laboratory Animals
of Nanjing Medical University (Reference#: 1709013). Germline
MRTF-A knockout mice (KO; Sun et al., 2006) and macrophage
conditional MRTF-A mice (CKO; Yu et al., 2018) have been
described previously. To induce cardiac IRI, the mice were
anesthetized with a mixture of ketamine (120 mg/kg), and
xylazine (6 mg/kg). Following left thoracotomy, the left anterior
descending coronary artery was ligated with a 6–0 silk ligature
over a 1 mm polyethylene tube (PE-10) for 45 min before
reperfusion. The control mice were sham operated wherein the
ligature around the LAD was not tied. The mice were sacrificed
24 h after the surgery.

Protein Extraction, Immunoprecipitation,
and Western Blot
Whole cell lysates were obtained by re-suspending cell pellets in
RIPA buffer (50 mM Tris pH7.4, 150 mM NaCl, and 1% Triton X-
100) with freshly added protease inhibitor (Roche) as previously
described (Zeng et al., 2018; Li et al., 2018e; Fan et al., 2019).
Nuclear proteins were extracted essentially as described before
(Li et al., 2018d). Antibodies were incubated with cell lysates
overnight before being absorbed by Protein A/G-plus Agarose
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beads. Precipitated immune complex was released by boiling with
1X SDS electrophoresis sample buffer. Western blot analyses were
performed with anti-MRTF-A (Santa Cruz, sc-32909), anti-Tip60
(Santa Cruz, sc-166323), anti-iNOS (Santa Cruz, sc-651), and
anti-β-actin (Sigma, A2228) antibodies. Image J software was
used for densitometrical quantification and densities of target
proteins were normalized to those of β-actin. Data are expressed
as relative protein levels compared to the control group which is
arbitrarily set as 1.

RNA Isolation and Real-Time PCR
RNA was extracted with the RNeasy RNA isolation kit
(Qiagen, Germantown, MD, United States) as described
before (Kong et al., 2019a,b; Li et al., 2019a). Reverse
transcriptase reactions were performed using a SuperScript
First-strand Synthesis System (Invitrogen, Waltham, MA,
United States). Real-time PCR reactions were performed
on an ABI Prism 7500 system with the following primers:
mouse Mrtf-a, 5′-CCCAAAGGTAGCAGACAGTTC-3′
and 5′-GAGTGGGTGATATGGAGGTGG-3′; mouse iNOS,
5′-CAGAGGACCCAGAGACAAGC-3′ and 5′-TGCTGAAACA
TTTCCTGTGC-3′; and mouse Tip60, 5′-GCCTGGACGGA
AGCGGAAATCTAAT-3′ and 5′-AAACACTTGGCCAGAAGA
CACAG-3′. Ct values of target genes were normalized to
the Ct values of a housekeekping control gene (18s,
5′-CGCGGTTCTATTTTGTTGGT-3′ and 5′-TCGTCTTCGA
AACTCCGACT-3′) using the 11Ct method and expressed as
relative mRNA expression levels compared to the control group
which is arbitrarily set as 1.

Chromatin Immunoprecipitation (ChIP)
Chromatin immunoprecipitation assays were performed
essentially as described before (Liu et al., 2018, 2019a,b; Zeng
et al., 2018; Zhang et al., 2018; Li et al., 2018a–e, 2019b–f; Yang
Y. et al., 2018; Yang et al., 2019a,b; Fan et al., 2019; Lu et al.,
2019; Shao et al., 2019; Weng et al., 2019; Zhao et al., 2019; Kong
et al., 2019a,b). Briefly, chromatin was cross-linked with 1%
formaldehyde. DNA was fragmented into 500 bp pieces using
a Branson 250 sonicator (30% output power; 6 cycles of 10s
sonication + 10s intermission). Aliquots of lysates containing
200 µg of protein were used for each immunoprecipitation
reaction with anti-MRTF-A (Santa Cruz, sc-32909), anti-Tip60
(Santa Cruz, sc-166323), anti-trimethyl H3K4 (Millipore, 07–
473), anti-acetyl H3K9 (Millipore, 07–352), anti-acetyl H3K27
(Millipore, 07–360), anti-acetyl H4K16 (Millipore, 07–328),
anti-ASH2 (Bethyl Laboratories, A300–489A), or pre-immune
IgG. Precipitated DNAs were amplified with the following
primers: Nos2 promoter, 5′-AGAGTGATGTAATCAAGCAC-3′
and 5′-AAAGTTGTGACCCTGGCAG-3′; Gapdh promoter,
5′-ATCACTGCCACCCAGAAGACTGTGGA-3′ and 5′-
CTCATACCAGGAAATGAGCTTGACAAA -3′.

In vitro HMT Assay
The HMT assay was performed as previously described (Wu
et al., 2008). Precipitated immune complex was mixed with
histone H3 (Millipore, Kankakee, IL, United States), S-adenosyl
methionine (SAM, Sigma), BSA, and MAB buffer (50 mM Tris
pH 8.5, 20 mM KCl, 10 mM MgCl2, 10 mM β-mercaptoethanol,

and 250 mM sucrose). After incubation at 37◦C overnight, SDS
loading buffer was added to stop reactions, and the methylation
of histone H3 was determined by Western blotting.

Statistical Analysis
For comparison between two groups, two-tailed, unpaired
Student’s t-test was performed. For comparison between more
than two groups, one-way ANOVA with post hoc Scheffe
analyses were performed using an SPSS package. Unless
otherwise specified, P values smaller than 0.05 were considered
statistically significant.

RESULTS

MRTF-A Deficiency Attenuates
Ischemia-Reperfusion Induced iNOS
Expression in Mice
We have previously showed that MRTF-A promotes cardiac
IRI in mice (Yu et al., 2018). Since iNOS activation has been
implicated in the pathogenesis of cardiac IRI, we asked whether
MRTF-A might contribute to iNOS transcription in this process.
To this end, 8-week male wild type (WT), and MRTF-A KO mice
were subjected to cardiac IRI. As shown in Figures 1A,B, iNOS
levels were elevated in the heart following IRI; the induction
of cardiac iNOS was much more modest in the KO mice than
in the WT mice. Next, we injected the mice with an MRTF-
A inhibitor CCG-1423 before exposing them to the cardiac
IRI. Similar to MRTF-A deletion, MRTF-A inhibition attenuated
iNOS induction in the heart (Figures 1C,D).

In order to examine the effect of macrophage-specific deletion
of MRTF-A, the Mrtfa-flox mice were crossbred with the
Lyz2-Cre mice to generate constitutive macrophage conditional
MRTF-A knockout (CKO) mice (Yu et al., 2018). We then
compared the levels of iNOS in CKO mice and WT mice. Again,
qPCR, and Western blotting demonstrated that loss of MRTF-A
in macrophages was sufficient to dampen iNOS induction in the
heart following IRI (Figures 1E,F). When F4/80+ macrophages
were isolated from the heart following the IR procedure, iNOS
expression was down-regulated in cell isolated from the KO
mice compared to the WT mice (Figure 1G). Similarly, iNOS
expression was reduced in F4/80+ macrophages isolated from
the mice injected with CCG as opposed to those isolated from
the mice injected with saline (Figure 1H). Together, these data
suggest that MRTF-A might play a role activating macrophage-
derived iNOS in response to ischemia-reperfusion.

MRTF-A Deficiency Attenuates
Hypoxia-Reoxygenation Induced iNOS
Expression in Macrophages
Based on the observation that MRTF-A deficiency correlated
with down-regulation of iNOS expression in the heart,
we hypothesized that MRTF-A might contribute to iNOS
transcription in response to HR. To test this hypothesis, the
following experiments were performed. RAW264 cells were
transfected with two separate pairs of siRNAs targeting MRTF-A
followed by exposure to HR. HR-induced iNOS expression
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FIGURE 1 | MRTF-A deficiency attenuates ischemia-reperfusion induced iNOS expression in mice. (A,B) Wild type (WT) or MRTF-A knockout (KO) mice were
subjected to cardiac ischemia-reperfusion injury or the sham procedure as described in Methods. Expression levels of iNOS in the heart were examined by qPCR
and Western. N = 5–8 mice for each group. (C,D) C57/BL6 mice were injected with CCG-1423 (1 mg/kg) daily for 2 weeks before the cardiac ischemia-reperfusion
procedure as described in Methods. Expression levels of iNOS in the heart were examined by qPCR and Western. N = 5–8 mice for each group. (E,F) Wild type (WT)
or macrophage conditional MRTF-A knockout (CKO) mice were subjected to cardiac ischemia-reperfusion injury or the sham procedure as described in Methods.
Expression levels of iNOS in the heart were examined by qPCR and Western. N = 5–8 mice for each group. (G) Wild type (WT) or MRTF-A knockout (KO) mice were
subjected to cardiac ischemia-reperfusion injury as described in Methods. F4/80+ macrophages were isolated and expression levels of iNOS were examined by
qPCR. N = 4 mice for each group. (H) C57/BL6 mice were injected with CCG-1423 for 2 weeks before the cardiac ischemia-reperfusion procedure as described in
Methods. F4/80+ macrophages were isolated and expression levels of iNOS were examined by qPCR. N = 4 mice for each group.
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was significantly down-regulated by MRTF-A knockdown
(Figures 2A,B). Similarly, treatment of RAW264 cells with CCG-
1423 dose-dependently suppressed HR-induced iNOS expression
(Figures 2C,D). Finally, primary BMDMs were isolated from
WT and KO mice. HR stimulation provoked iNOS expression
more robustly in WT cells than in KO cells (Figures 2E,F).

MRTF-A Binds to the iNOS Promoter to
Activate iNOS Transcription
NOS2 (iNOS) transcription can be activated by a host of
sequence-specific TFs including NF-κB (Xie et al., 1993) and AP-
1 (Lowenstein et al., 1993), both of which have been found to
interact with MRTF-A (Fang et al., 2011; Weng et al., 2015a).
We therefore asked whether MRTF-A could directly regulate
iNOS transcription in response to HR. To this end, a reporter
construct fused to the proximal iNOS promoter (Crosby et al.,
2005) was transfected into HEK293 cells. HR stimulated the
iNOS promoter activity and MRTF-A over-expression greatly
potentiated induction of the iNOS promoter by HR (Figure 3A).
In contrast, a dominant negative (DN) MRTF-A suppressed the
induction of the iNOS promoter activity by HR stimulation
(Figure 3B). Similarly, HR-induced iNOS promoter activity
was diminished by CCG-1423 treatment (Figure 3C). Next,
ChIP assay performed in RAW cells (Figure 3D), and BMDMs
(Figure 3E) confirmed that occupancy of MRTF-A on the iNOS
promoter was greatly enhanced when the cells were exposed to
HR stimulation; by comparison, no significant binding of MRTF-
A was detected on the GAPDH promoter. Of note, a complex
between MRTF-A and NF-κB, a sequence-specific transcription
factor known to activate iNOS transcription, was detected on the
iNOS promoter, but not the GAPDH promoter, following the HR
stimulation (Figures 3F,G), suggesting that MRTF-A might be
recruited by NF-κB.

MRTF-A Modulates Histone
Modifications Surrounding the iNOS
Promoter
When macrophages were exposed to HR stimulation, the iNOS
promoter became abounded with trimethylated H3K4, a marker
for active chromatin regions, which was consistent with its
transcriptional activation; MRTF-A silencing attenuated H3K4
trimethylation (Figure 4A). It was also observed that MRTF-
A depletion suppressed H3K9 acetylation (Figure 4B), H3K27
acetylation (Figure 4C), and H4K16 acetylation (Figure 4D)
on the iNOS promoter. Similarly, CCG-1423 treatment partially
blocked the accumulation of trimethyl H3K4 (Figure 4E), acetyl
H3K9 (Figure 4F), acetyl H3K27 (Figure 4G), and acetyl H4K16
(Figure 4H). In addition, when both WT and KO BMDMs were
exposed to HR stimulation, accumulation of trimethyl H3K4
(Figure 4I), acetyl H3K9 (Figure 4J), acetyl H3K27 (Figure 4K),
and acetyl H4K16 (Figure 4L) on the iNOS promoter was
much more modest in KO cells than in WT cells. Of note,
there was no significant change in overall histone levels (H3 or
H4) on the iNOS promoter with or without the HR challenge
suggesting that histone eviction/deposition may not participate in

the regulation of iNOS transcription in the present experimental
settings (Supplementary Figure S1).

TIP60 Interacts With MRTF-A to Activate
iNOS Transcription
We decided to focus on the H4K16 acetylation because its role in
the regulation of pro-inflammation transcription is comparably
under-appreciated. In mammalian cells, the MYST family of
proteins, consisting of TIP60, hMOF/MYST1, MOZ, HBO1,
and MORF, are considered dedicated H4K16 acetyltransferases
(Avvakumov and Cote, 2007); TIP60 and hMOF/MYST1 are the
only two members of this family that have been confirmed to
possess H4K16 acetyltransferase activity thus far (Taipale et al.,
2005; Tang et al., 2013). We have previously published a study
in which compelling evidence argues for a role of hMOF in
the pathogenesis of cardiac IRI (Yu et al., 2018). Therefore,
we focused on TIP60 in the regulation of iNOS transcription.
Evidence presented below suggests that MRTF-A might recruit
TIP60 to activate iNOS transcription. ChIP assay showed that
TIP60 occupied the same region of the iNOS promoter as MRTF-
A (Figure 5A). Co-immunoprecipitation experiments showed
that MRTF-A and TIP60 were in the same complex in HEK293
cells (Figure 5B) and RAW cells (Figure 5C). More importantly,
Re-ChIP assay showed that HR stimulation enhanced the
interaction between MRTF-A and TIP60 on the iNOS promoter
(Figure 5D). Functionally, over-expression of TIP60 activated
the iNOS promoter synergistically with MRTF-A (Figure 5E).
A small-molecule inhibitor of TIP60 (MG149) suppressed the
induction of iNOS expression by HR (Figures 5F,G). In addition,
TIP60 knockdown blocked iNOS induction (Figures 5H,I), and
erased the accumulation of H4K16 acetylation on the iNOS
promoter (Figure 5J). Of intrigue, binding of MRTF-A to the
iNOS promoter was attenuated without TIP60 (Figure 5K).

A Crosstalk Between TIP60 and
COMPASS Contributes to iNOS
Transcription
An interesting observation was that TIP60 depletion in HR-
treated macrophages led to the erasure of H3K4 trimethylation
on the iNOS promoter (Figure 6A). This observation prompted
us to investigate the possibility that TIP60 might form a crosstalk
with the H3K4 methyltransferase complex. In mammals, H3K4
methylation is catalyzed by the complex of proteins associated
with Set1 (COMPASS; Shilatifard, 2012). COMPASS is a multi-
protein complex consisting of common structural/regulatory
subunits (e.g., ASH2, WDR5, and Rbbp5) and distinct catalytic
subunits (MLL1, MML2, MLL3, MLL4, SET1A, and SET1B).
In vitro HMT assay was performed to test this hypothesis.
As shown in Figure 6B, antibodies targeting ASH2, a key
component of COMPASS, and TIP60 both precipitated an H3K4
methyltransferase activity. Furthermore, ASH2-associated H3K4
methyltransferase activity was significantly dampened when
TIP60 was depleted by siRNAs (Figure 6C). Co-expression of
TIP60 and ASH2 additively augmented the iNOS promoter
activity (Figure 6D). These data suggest that a crosstalk between
TIP60 and COMPASS may contribute to iNOS transcription.
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FIGURE 2 | MRTF-A deficiency attenuates hypoxia-reoxygenation induced iNOS expression in macrophages. (A B) RAW264 cells were transfected with siRNA
targeting MRTF-A or scrambled siRNA (SCR) followed by exposure to hypoxia-reoxygenation. Expression levels of iNOS were examined by qPCR and Western.
(C,D) RAW264 cells were treated with CCG-1423 and/or hypoxia-reoxygenation. Expression levels of iNOS were examined by qPCR and Western. (E,F) Primary
BMDMs were isolated from WT and MRTF-A KO mice and exposed to hypoxia-reoxygenation. Expression levels of iNOS were examined by qPCR and Western.
N = 3 for all the experiments. Data represent averages of three independent experiments and error bars represent SEM.
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FIGURE 3 | MRTF-A binds to the iNOS promoter to activate iNOS transcription. (A) An iNOS promoter construct was transfected into HEK293 cells with or without
MRTF-A followed by exposure hypoxia-reoxygenation. Luciferase activities were normalized by protein concentration and GFP fluorescence. (B) An iNOS promoter
construct was transfected into HEK293 cells with or without MRTF-A DN followed by exposure hypoxia-reoxygenation. Luciferase activities were normalized by
protein concentration and GFP fluorescence. (C) An iNOS promoter construct was transfected into HEK293 cells followed by treatment with CCG-1423 and/or
hypoxia-reoxygenation. Luciferase activities were normalized by protein concentration and GFP fluorescence. (D,E) RAW264 cells (D) or primary BMDMs (E) were
exposed to hypoxia-reoxygenation. ChIP assays were performed with anti-MRTF-A or IgG. (F,G) RAW264 cells (F) or primary BMDMs (G) were exposed to
hypoxia-reoxygenation. Re-ChIP assays were performed with indicated antibodies. N = 3 for all the experiments. Data represent averages of three independent
experiments and error bars represent SEM.
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FIGURE 4 | MRTF-A modulates histone modifications surrounding the iNOS promoter. (A–D) RAW264 cells were transfected with siRNA targeting MRTF-A or SCR
followed by exposure to hypoxia-reoxygenation. ChIP assays were performed with anti-acetyl H3 (A), anti-acetyl H3K9 (B), anti-acetyl H3K27 (C), and anti-acetyl
H4K16 (D). (E–H) RAW264 cells were treated with CCG-1423 and/or hypoxia-reoxygenation. ChIP assays were performed with anti-acetyl H3 (E), anti-acetyl H3K9
(F), anti-acetyl H3K27 (G), and anti-acetyl H4K16 (H). (I–L) Primary BMDMs were isolated from WT and MRTF-A KO mice and exposed to hypoxia-reoxygenation.
ChIP assays were performed with anti-acetyl H3 (I), anti-acetyl H3K9 (J), anti-acetyl H3K27 (K), and anti-acetyl H4K16 (L). N = 3 for all the experiments. Data
represent averages of three independent experiments and error bars represent SEM.
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FIGURE 5 | TIP60 interacts with MRTF-A to activate iNOS transcription. (A) RAW264 cells were exposed to hypoxia-reoxygenation. ChIP assays were performed
with anti-TIP60 or IgG. (B) HEK293 cells were transfected with FLAG-MRTF-A and/or Myc-tagged TIP60. Immunoprecipitation was performed with anti-FLAG.
(C) Whole cell lysates from RAW cells were immunoprecipitated with anti-MRTF-A or IgG. (D) RAW264 cells were exposed to hypoxia-reoxygenation. Re-ChIP
assays were performed with indicated antibodies. (E) An iNOS promoter construct was transfected into HEK293 cells with MRTF-A and/or TIP60. Luciferase
activities were normalized by protein concentration and GFP fluorescence. (F,G) RAW264 cells were treated with MG149 and/or hypoxia-reoxygenation. Expression
levels of iNOS were examined by qPCR and Western. (H–K) RAW264 cells were transfected with siRNA targeting TIP60 or scrambled siRNA (SCR) followed by
exposure to hypoxia-reoxygenation. Expression levels of iNOS were examined by qPCR and Western. ChIP assays were performed with anti-acetyl H4K16 and
anti-MRTF-A. N = 3 for all the experiments. Data represent averages of three independent experiments and error bars represent SEM.
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FIGURE 6 | A crosstalk between TIP60 and COMPASS contributes to iNOS transcription. (A) RAW264 cells were transfected with siRNA targeting TIP60 or
scrambled siRNA (SCR) followed by exposure to hypoxia-reoxygenation. ChIP assay was performed with anti-trimethyl H3K4. (B) Nuclear lysates from normoxic and
HR-stimulated RAW cells were immunoprecipitated with anti-ASH2, anti-TIP60, or IgG. In vitro HMT assay was performed as described in Methods. (C) RAW264
cells were transfected with siRNA targeting TIP60 or scrambled siRNA (SCR) followed by exposure to hypoxia-reoxygenation. Nuclear lysates were
immunoprecipitated with anti-ASH2. In vitro HMT assay was performed as described in Methods. (D) An iNOS promoter construct was transfected into HEK293
cells with TIP60 and/or ASH2. Luciferase activities were normalized by protein concentration and GFP fluorescence. N = 3 for all the experiments. Data represent
averages of three independent experiments and error bars represent SEM. (E) A schematic model.
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DISCUSSION

Macrophage-derived pro-inflammatory mediators are critical in
the pathogenesis of cardiac IRI. Here we detail a novel epigenetic
mechanism whereby a crosstalk between MRTF-A, H4K16
acetyltransferase TIP60, and H3K4 methyltransferase activates
iNOS transcription in macrophages (Figure 6E). Mounting
evidence suggests that TIP60 plays a key role in the regulation
of inflammatory response. For example, it has been shown that
an exchange of TIP60 for the co-repressor complex NCoR is
responsible for the activation of IL-1β induced NF-κB target
genes and the ensuing brain inflammation in neurodegenerative
diseases (Baek et al., 2002). TIP60 can also interact with STAT6
and NF-κB to activate the transcription of Iε (encoding IgE)
in B cells to drive intestinal allergy (Yang G. et al., 2018).
On the other hand, several independent investigations suggest
that TIP60 acts a co-factor for Foxp3, the master regulator
of regulatory T cells (Tregs), to prevent the pathogenesis of
autoimmune diseases by promoting histone H4K16 acetylation
on the Foxp3 target promoters and by directly acetylating and
stabilizing Foxp3 (Chatila and Williams, 2012). In colorectal
cancer cells, TIP60 also exerts an anti-inflammatory response by
activating the expression of SUV39H1 and SETDB1, two histone
H3K9 methyltransferases, which in turn repress the transcription
of retrotransposon elements to contain STING/IRF7-mediated
inflammation (Rajagopalan et al., 2018). These apparently
conflicting reports suggest that TIP60 might contribute to the
regulation of cellular inflammation in a cell type- and context-
specific manner. Although our data demonstrate that TIP60
activates iNOS transcription in macrophages, it remains to
be determined whether genomewide inflammation-associated
transcriptional events are influenced by TIP60. In addition, the
benefit of harnessing the TIP60 inhibitor MG149 as a solution
to treat reperfusion injury has been weighed against its potential
detrimental effects on cardiomyocytes. Fisher et al. (2016) have
shown that conditional TIP60 deletion in cardiomyocytes causes
cardiac dysfunction and lethality. TIP60 also plays an essential
role in the maintenance of stem cell self-renewal and pluripotency
(Fazzio et al., 2008). Further studies are clearly warranted to
define the precise role of TIP60, beyond being an activator of
iNOS transcription, in the pathogenesis of cardiac IRI.

Histone modifying enzymes usually operate within a large
protein complex. Our data indicate that TIP60 forms a crosstalk
with the H3K4 methyltransferase complex. Consistent with
our observation, Stallcup and colleagues have argued that
estrogen-induced transcription of estrogen receptor alpha (ERα)
target genes is mediated by ERα-dependent recruitment of
TIP60, which sequentially recruits the H3K4 methyltransferase
MLL1 to catalyze H3K4 monomethylation on the enhancers
(Jeong et al., 2011). A provocative observation made by
Ayrapetov et al. indicates that SUV39H-mediated H3K9
trimethylation, typically a marker of repressive chromatin,
serves to activate TIP60 allowing the DNA repair machinery
to fix double-strand break (DSB; Ayrapetov et al., 2014).
Similar crosstalk during DSB repair between TIP60 and other
histone modifying enzymes including H4K20 methyltransferase
(Wang and Goldstein, 2016) and H3K36 methyltransferase

(Li and Wang, 2017) has been proposed. Our data also suggest
that TIP60 deficiency compromises the activity of the H3K4
methyltransferase complex although the underlying mechanism
remains unclear. It is possible that TIP60 functions as a
structural/regulatory component of the H3K4 methyltransferase.
For instance, depletion of WDR82, a structural component
of the H3K4 methyltransferase complex, completely abolishes
ASH2-associated H3K4 trimethylation without altering H3K4
dimethylation (Wu et al., 2008). Additional epigenomic
studies should be conducted to address the question as to how
the transcription landscape in macrophages is influenced
by the communications between TIP60 and the H3K4
methyltransferase complex.

MRTF-A has the reputation of bridging the epigenetic
machinery to the basal transcription machinery. ChIP-seq
experiments have demonstrated that MRTF-A is responsible
for the trimethyl H3K4 landscape in several processes critical
to the inflammatory response in macrophages (Yu et al.,
2017a). We show here that iNOS trans-activation parallels
MRTF-A-dependent accumulation of, in addition to acetyl
H4K16, acetyl H3K9, acetyl H3K27, and trimethyl H3K4 on
the iNOS promoter. It remains to be tested whether MRTF-
A recruits the different modifying enzymes simultaneously or
sequentially. It has previously been shown that MRTF-A brokers
the interaction between histone methyltransferases (e.g., ASH2)
and histone acetyltransferases (e.g., p300) on the endothelin (ET-
1) promoter (Weng et al., 2015b) and on the collagen type I
(COL1A1/COL1A2) promoter (Xu et al., 2015). It would be of
interest to examine whether MRTF-A serves as a moderator for
the crosstalk between TIP60 and ASH2. Another intriguing yet
untested possibility is that MRTF-A might be directly targeted
(modified) and thus modulated by TIP60. We have previously
shown that a string of four lysine residues within the N-terminus
of MRTF-A are subjected to dynamic acetylation in macrophages
exposed to pro-inflammatory stimuli (Yu et al., 2017b). Although
that study assigned the acetyltransferase PCAF as the major
enzyme catalyzing MRTF-A acetylation, TIP60 remains to be
determined as a genuine MRTR-A acetyltransferase because
it is not uncommon for a single substrate to be targeted by
different enzymes.

One of the major limitations of the present study is that it is
not clear whether the proposed model applies to macrophages
in general or only to lineage-specific macrophages. Here we
used an anti-F4/80 antibody to isolate cardiac macrophages
from the IR-challenged murine hearts and discovered that
MRTF-A deficiency (Figure 1G) or inhibition (Figure 1H)
attenuated iNOS expression. It is well known that resident
macrophages and circulating monocyte-derived macrophages
fulfill distinct functions despite the fact that both populations can
be characterized as F4/80+ cells (Gosselin et al., 2014; Honold
and Nahrendorf, 2018; Link et al., 2018). The development
of single cell based sequencing (scRNA-seq) techniques has
empowered researchers to more precisely define the molecular
signature and functions of specific cell lineages (Hu et al., 2018;
Nguyen et al., 2018; Xiao and Guo, 2018; Morrish et al., 2019).
Recently, Mold et al. have presented scRNA-seq data to identify
unique airspace macrophage subsets in a lung inflammation
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model (Mould et al., 2019). The same technique could
be harnessed to verify and validate our model in future
studies. Another caveat regarding the present study is its
focus on the regulation of macrophage derived iNOS. iNOS
can be induced in cardiomyocytes by hypoxia-reoxyenation
(Agnetti et al., 2005). Further, cardiomyocyte-specific iNOS
expression results in loss of cardiac function and causes
sudden death in mice (Mungrue et al., 2002). Whether
the same mechanism that contributes to iNOS induction in
macrophages as proposed by our model can account for HR-
induced iNOS expression in cardiomyocytes remains to be
determined. Finally, MG149 has been shown to inhibit TIP60
and another H4K16 acetyltransferase hMOF with comparable
potency (Ghizzoni et al., 2012). Therefore, whether the effects
of MG149 on iNOS expression were achieved through TIP60
or hMOF or a combination of the two enzymes cannot be
ascertained at this point.

In summary, our data unveil a novel epigenetic pathway
that may contribute to the pathogenesis of cardiac ischemia-
reperfusion. Since the small-molecule inhibitor of MRTF-
A is already available and appears to be effective in
animal models (Yu et al., 2018; Li and Xu, 2019), our
data provide renewed incentive for targeting MRTF-A
in the intervention of cardiac ischemia-reperfusion in
the clinics.
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