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To complete the infection cycle efficiently, the virus must hijack the host systems
in order to benefit for all the steps and has to face all the defense mechanisms
from the host. This review involves a discussion of how these positive and negative
factors regulate the viral RNA accumulation identified for the Bamboo mosaic virus
(BaMV), a single-stranded RNA virus. The genome of BaMV is approximately 6.4 kb
in length, encoding five functional polypeptides. To reveal the host factors involved
in the infection cycle of BaMV, a few different approaches were taken to screen the
candidates. One of the approaches is isolating the viral replicase-associated proteins by
co-immunoprecipitation with the transiently expressed tagged viral replicase in plants.
Another approach is using the cDNA-amplified fragment length polymorphism technique
to screen the differentially expressed genes derived from N. benthamiana plants after
infection. The candidates are examined by knocking down the expression in plants
using the Tobacco rattle virus-based virus-induced gene silencing technique following
BaMV inoculation. The positive or negative regulators could be described as reducing
or enhancing the accumulation of BaMV in plants when the expression levels of these
proteins are knocked down. The possible roles of these host factors acting on the
accumulation of BaMV will be discussed.
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INTRODUCTION

When a positive-sense RNA virus infects a host cell, it needs to produce its progeny and move
it to the neighboring cells efficiently. In general, the entire infection cycle starts at the viral
RNA entry, using the host translation system to produce the viral-specific replicase, transition
the viral template from translation status to replication status, targeting the specific organelle
for replication, rearrangement of the cellular membrane, recruitment of ancillary proteins to the
replication site, viral RNA replication to synthesize the minus- and plus-strand RNAs, subgenomic
RNA synthesis in some species, and finally, the viral-encoded movement proteins (MPs) and coat
proteins accumulated for cell-to-cell movement and encapsidation, respectively. Some of the viral-
encoded proteins that evolved not only fulfilled a specific role apart from amplification, but also
performed counter-defense functions such as silencing suppressors against the virus-induced gene
silencing system (Qu and Morris, 2005) or preventing the spread of the gene silencing signal
(Voinnet et al., 2016).

Bamboo mosaic virus (BaMV) is a positive-sense, single-stranded RNA virus, belonging to the
genus Potexvirus of the family Alphaflexiviridae. The genome of BaMV is approximately 6.4 kb in
length with a 5′m7GpppG structure and a 3′-end poly(A) tail and contains five open reading frames
(ORFs) (Lin et al., 1994). The 3′ untranslated region (UTR) was demonstrated to form a complexed
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structure (including a cloverleaf-like structure, a major stem-
loop, and a pseudoknot) and acted as a cis-acting element for
minus-strand RNA synthesis, polyadenylation, an intracellular
trafficking signal, and long distance movement (Cheng and
Tsai, 1999; Tsai et al., 1999; Chen et al., 2005; Lin et al.,
2005; Cheng et al., 2013). ORF 1 encodes replicase, including
a capping enzyme domain (Li et al., 2001a; Huang et al.,
2004), a helicase-like domain (Li et al., 2001b), and an RNA-
dependent RNA polymerase domain (Li et al., 1998). ORFs 2-4
overlapping genes termed “triple-gene-block” (TGB) encode the
MPs (TGBp1, TGBp2, and TGBp3) involved in virus movement
(Lin et al., 1994). ORF 5 encodes the capsid protein (CP) for
virus encapsidation, movement, and symptom development (Lin
et al., 1994; Lan et al., 2010; Lee et al., 2011; Hung et al.,
2014). Furthermore, a satellite RNA (satBaMV) was identified to
associate with BaMV and could be amplified by BaMV replicase
(Lin and Hsu, 1994; Lin et al., 2006).The tertiary structures of the
5′ and 3′ UTRs of satBaMV were revealed to be similar to those
of BaMV (Huang et al., 2009; Chen et al., 2010).

As mentioned previously, the positive-sense RNA virus has
to establish an efficient replication after entry into a host cell;
the host factors are usually required to join and form a multi-
functional replication complex (Ahlquist et al., 2003; Nagy and
Pogany, 2008; Huang et al., 2012a). The replicase complex
isolated from Qβ-infected cells is composed of bacterial proteins,
elongation factors EF-Tu and -Ts and ribosomal protein S1,
and Qβ RdRp for plus-strand RNA synthesis (Blumenthal and
Carmichael, 1979; Blumenthal, 1980). Additional bacteria protein
HF1, a ribosome-associated protein, is required for the complex
to synthesize the minus-strand RNA (Barrera et al., 1993).
The eukaryotic translational elongation factor 1a (eEF1a) was
revealed to be part of the replicase complex in tobamoviruses,
tymoviruses, potyviruses, and tobusviruses (Joshi et al., 1986;
Mans et al., 1991; Dreher et al., 1999; Nishikiori et al., 2006;
Yamaji et al., 2006; Thivierge et al., 2008; Li et al., 2010; Luan et al.,
2016).

A few strategies were used to identify the host factors involved
in virus infection cycles. By screening the host cDNA library
constructed in yeast with the two-hybrid technique, one can
discover the specific host factor that interacted with the viral-
encoded target protein, such as the replicase, MPs, or CP (Ren
et al., 2000; Nagy, 2008; Schoelz et al., 2011). The virus-encoded
proteins can also be used as a ligand to co-immunoprecipitation
the possible candidates for interaction with the host (DeBlasio
et al., 2015, 2016). In the UV cross-linking competition
technique, host proteins could be identified as interacting with
the viral RNA, such as the 5′ or 3′ UTRs (Lin et al., 2007; Huang
et al., 2012b; Hyodo et al., 2014). The identities of the interacted
candidates derived from co-immunoprecipitation or UV cross-
linking techniques could be revealed by LC/MS/MS. The cDNA-
amplified length polymorphism (AFLP), a highly sensitive and
efficient technique used for studying gene expression (Money
et al., 1996) and demonstrated to deliver reproducible results
(Bachem et al., 1996; Ditt et al., 2001), was used to screen
the host’s differentially expressed genes in a post-virus infection
(Cheng et al., 2010). The up- and downregulated cDNA
fragments could be easily visualized and compared when run

in parallel on the gel. These differentially expressed cDNA
fragments could be straightforwardly isolated, amplified, cloned,
and sequenced.

To reveal the relationship of the interacting host proteins
with viral proteins or RNAs and the differentially expressed
proteins in a post-virus infection, the Tobacco rattle virus (TRV)-
based virus-induced gene silencing (VIGS) technique (Ruiz et al.,
1998; Ratcliff et al., 2001) could be used to knock down the
expressions and examine their effect on virus accumulation
(Cheng et al., 2010). The results derived from the specific gene
knockdown experiment (i.e., a loss of function) can be further
confirmed by the complementary results derived from a transient
expression of the same gene (i.e., a gain of function). These results
would reveal whether the specific gene is playing an assistant or
defense role in the virus’ life cycle. Furthermore, the results of
viral accumulation in the specific gene knockdown plants and
protoplasts could specify that the host factor is acting in the
replication or movement step of the infection cycle.

The following sections provide discussions of how the host
factors identified by the techniques described above participate
in BaMV replication and movement. The study of virus infection
mechanisms and hosts’ responses to them will provide a better
understanding of the relationship between pathogens and hosts.
This learning would lead to designing the better strategies for
pathogen control on plants.

THE FACTORS INVOLVED IN ASSISTING
BAMV RNA REPLICATION

The entire replication processes of a positive-sense RNA
virus could be divided into a few different steps. First, once
BaMV enters a host cell, with bamboo as a natural host and
N. benthamiana as an experimental host, the RNA genome is used
as a template for translation to synthesize the replication enzyme,
replicase (Figure 1). At this stage, the 3′ UTR is playing a critical
role in trapping a few different factors that would lead to the next
step of the replication process, targeting the replication site. At
least four host proteins, glutathione transferase U4 (NbGSTU4),
the eEF1a, chloroplasts PGK (chlPGK), and heat shock protein 90
(Hsp90), were discovered to interact with the 3′ UTR of BaMV.
In particular, the eEF1a was shown to play a negative role in
BaMV RNA replication (Lin et al., 2007). Since the binding site
of the eEF1a in the 3′ UTR of BaMV is overlapped with that of
the RdRp, the eEF1a might play a role in the template switch
that blocks viral replication during translation. The eEF1a has
commonly been demonstrated to bind the tRNA-like structure
of Brome mosaic virus (BMV) (Bastin and Hall, 1976) and Turnip
yellow mosaic virus (TYMV) (Joshi et al., 1986). This interaction
was claimed to function in the negative-regulation of TYMV
minus-strand RNA synthesis (Matsuda et al., 2004); however, a
similar interaction in West Nile virus was revealed to facilitate
minus-strand RNA synthesis (Davis et al., 2007).

The nucleus-encoded chlPGK interacting with the 3′ UTR
(Lin et al., 2007) was demonstrated to play a role in ushering
the viral RNA and its associated proteins, including replicase,
into chloroplasts for replication (Figure 1) (Cheng et al., 2013).
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FIGURE 1 | A schematic representation of the model for BaMV RNA-replicase-host factors interaction in the replication steps. (1) Once BaMV RNA
entering the cell, the viral replicase is translated using the host translation system. (2) The 3′ untranslated region of BaMV genomic RNA shown as (+)vRNA is
interacted with several host factors which regulate BaMV replication positively including chloroplast phosphoglycerate kinase (chlPGK), heat shock protein 90
(Hsp90), thioredoxin transferase GSTU4, and negatively indicated with red arrows including elongation factor 1a (eEF1a) and glyceraldehyde 3-phosphate
dehydrogenase (GAPDH). Another host factor a putative methyltransferase (PMTS1) is also shown as a negative regulator for BaMV replication through the
interaction with viral replicase. (3) The (+)vRNA is transported to the chloroplasts through the interaction with chlPGK for replication. (4) Some of host factors required
for BaMV replication can be transported into chloroplasts by the endomembrane trafficking system using one of the Rabs, NbRabG3f. (5) The minus-strand RNA
shown as (–)vRNA is synthesized inside the chloroplasts. (6) The plus-strand (+)vRNA is then synthesized following with (–)vRNA synthesis.

The genomic RNA was visualized in the chloroplast by confocal
microscopy after being labeled with a green fluorescent protein
fusion MS2 coat protein construct (NLS-MS2-GFP) that could
recognize the BaMV RNA containing the MS2 hairpins (Cheng
et al., 2013). The advantage of BaMV targeting a chloroplast
for replication is that it might be a way to hide from the host
scavenging system, including the RNA silencing pathway. To
get into the chloroplast for replication, the entire replication
complex—including the viral RNA [approximately 6.4 kb plus the
poly(A) tail], replicase, and other associated host factors—must
be transporting into the chloroplasts through the chloroplast
transporting complex. This gigantic viral RNA-protein complex
can enter into the chloroplasts because Hsp90 interacting with
the 3′ UTR of BaMV was demonstrated to play a positive role
in the very early event of BaMV replication (Huang et al.,
2012b). Heat shock proteins acting as chaperones on protein
complex folding, protein degradation, and protein translocation
across membranes (Mayer and Bukau, 2005; Taipale et al.,
2010) could help transport the viral RNP complex into the
chloroplasts (Figure 1). HSPs were shown to be assisting the
viral RNA recruitment and viral replication complexes (VRCs)
assembly (Pogany et al., 2008; Wang et al., 2009a,b; Huang
et al., 2012b). Accordingly, Hsp90 involved in the early event
of BaMV replication could be implied to assist the viral RNP

complex entry into the chloroplasts and stimulate the replication
complex assembly on the right location in order to initiate the
minus-strand RNA synthesis.

Another 3′ UTR-associated protein, NbGSTU4, was
demonstrated to be upregulated post BaMV infection and
involved in assisting the replication of BaMV in vitro and
in vivo (Chen et al., 2013). In general, GSTs are involved in the
antioxidation process; the oxidative stress triggered by a pathogen
infection could be attenuated via the enzymatic reaction of GSTs.
A chloroplast is one of the major reactive oxygen species (ROS)
producer in which the relative concentration of ROS should be
higher than that of other organelles. Once BaMV enters into the
chloroplasts for replication, the viral RNAs face the obstacle of
the higher levels of ROS produced either from the photosynthesis
process or the virus infection. NbGSTU4 moving with BaMV
RNA in the presence of Glutathione (GSH) could play a role
in eliminating the effects of ROS. We have demonstrated that
NbGSTU4 could interact with the 3′ UTR in the physiological
concentration of GSH, which is approximately 10 mM (Chen
et al., 2013). These results imply that NbGSTU4 could also be
one of the host proteins associated with viral RNA and was
transported together into the chloroplasts.

A 5′ to 3′ exonuclease (XRN4), a protein component
enriched in BaMV RdRp preparation, was demonstrated to
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enhance the accumulation of BaMV (Lee et al., 2015). The
members of the XRN_N family are divided into two groups,
the cytoplasmic (XRN1/PACMAN or XRN4) and the nuclear
enzymes (XRN2/RAT1 and XRN3), and display the RNase
activities for mRNA degradation (Kastenmayer and Green, 2000;
Souret et al., 2004). Although XRN4 was revealed to conduct
antiviral activity against Tomato bushy stunt virus (TBSV) and
Tobacco mosaic virus (TMV) (Cheng et al., 2007; Jaag and Nagy,
2009; Peng et al., 2011), the presence of XRN4 could elevate the
accumulation of BaMV. Because XRN4 was demonstrated to have
a role in reducing the activities of siRNA- and miRNA-mediated
RNA decay in Arabidopsis (Souret et al., 2004), downregulated the
silencing pathway might result in a positive regulation of BaMV
RNA accumulation.

Some host factors identified by cDNA-AFLP could influence
the replication of BaMV in an indirect manner so that these
proteins could not be revealed by using the strategy of detecting
the direct interaction with viral products. NbRabG3f was
demonstrated to be a positive regulator in BaMV replication
by loss- and gain-of-function assays (Huang et al., 2016). Rabs
are a group of small GTPases involved in vesicles transport,
uncoating, tethering, and fusion (Seabra et al., 2002). A deletion
mutant of NbRabG3f failure in membrane-anchoring lost the
ability to assist the accumulation of BaMV. A mutant with
the fixed GDP-bound RabG3f (T22N) was trapped at the
Golgi and could not assist the accumulation of BaMV. Overall,
these results suggest that NbRabG3f is involved in a vesicle
budding from the Golgi and transports the cargos containing
the unidentified host factors to the destination site for BaMV
replication (Figure 1).

Based on the host factors identified so far for BaMV
replication, BaMV RNA entry into the host cell would require
chlPGK to usher the viral RNA into the chloroplasts. The
transport of the viral RNP complex needs the chaperon Hsp90
to cross the membrane and assemble the functional replication
complex. During this process of trafficking from the cytoplasm
to the chloroplasts, NbXRN4 might be involved in reducing the
activities of siRNA-mediated silencing. Once the viral RNP is
transported into the chloroplasts, the VRC needs the anti-oxidant
enzyme NbGSTU4 to neutralize the oxidative stress inside
the chloroplasts for an efficient minus-strand RNA synthesis
(Figure 1).

THE FACTORS INVOLVED IN VIRAL RNA
MOVEMENT

Through a biochemical analysis of the BaMV movement
complex isolated by co-immunoprecipitation using an anti-
TGBp3 antibody, the movement trafficking complex was revealed
to harbor not only the MPs TGBp1, TGBp2, and TGBp3, but
also the coat protein and replicase (Chou et al., 2013). The
TGBps-mediated cell-to-cell trafficking was proposed to be in
two possible paths: TGBps-associated virion complex traffics
alongside the endoplasmic reticulum (ER) network, or the virions
and the MPs would associate with the TGBp2-induced vesicles
(Chou et al., 2013; Liou et al., 2015).

A few host factors were identified to participate in the process
of BaMV movement. A RabGTPase-activating protein (GAP)
designated as NbRabGAP1 was demonstrated to participate in
BaMV cell-to-cell and systemic movements (Huang et al., 2013).
Rabs, a family of small GTPases, are known to be involved in
all aspects of intracellular vesicle budding, targeting, docking,
and fusion (Johansen et al., 2009; Mizuno-Yamasaki et al., 2012;
Cherfils and Zeghouf, 2013). Two Rabs regulators, guanine
nucleotide exchange factors (GFFs), and GAPs play roles in
recycling Rabs for vesicles trafficking, in which GEFs exchange
GDP for GTP and GAPs accelerate GTP hydrolysis (Bos et al.,
2007).The results of the mutational analysis of NbRabGAP1in
BaMV accumulation suggest that the fully GAP function of
NbRabGAP1 is essential to support the efficient movement of
BaMV. The proposed role of NbRabGAP1 in BaMV movement
is that NbRabGAP1is to trigger one of the RabGTPases (not yet
identified) to release the vesicles containing the viral movement
complex trafficking to the plasmodesmata (PD) (Figure 2),
similar to those revealed in Chinese wheat mosaic virus (Andika
et al., 2013), or to shuttle TGB proteins from the PD via the
endocytotic pathway back to the ER, like those found in Potato
mop top virus (Haupt et al., 2005).

A serine/threonine kinase-like protein from N. benthamiana
(NbSTKL), an upregulated gene that is post BaMV inoculation,
was demonstrated to be critical in the movement step of the
BaMV infection cycle (Cheng et al., 2013). The results from the
sequence analysis and the intracellular localization indicated that
NbSTKL is plasma membrane-associated through myristoylation
at glycine, the second amino acid from the N-terminus. The
mutant that lost the kinase activity (NbSTKL/D224A) or failed
to associate with the plasma membrane (NbSTKL/G2A) also
failed to enhance the movement of BaMV. These results suggest
that NbSTKL might target a specific factor on the membrane,
regulating the gating of the PD for the passage of BaMV
(Figure 2). Furthermore, another kinase, casein kinase 2α

(CK2α), which interacts with BaMV CP in PD, might assist the
release of viral RNA from the RNP movement complex during
the virial RNP complex passage through the PD (Figure 2) (Hung
et al., 2014).

Taken together, the identification of NbRabGAP1 involved in
the movement of BaMV supports the idea that the movement
could be made through the vesicle trafficking path (Chou et al.,
2013; Liou et al., 2015). To reach an efficient movement of BaMV
requires at least two kinases, NbSTKL and CK2α, gating the PD
and releasing the viral RNA from the RNP complex (Figure 2).
Obviously, some other factors are also required for this process
such as the target of NbSTKL.

THE FACTORS INVOLVED IN DEFENSE
AGAINST VIRAL RNA REPLICATION

As mentioned previously, once a virus enters a host cell, it needs
not only to seek the host factors for assistance, but also to face the
challenges from the host itself. In plants, there already exist a few
defense mechanisms such as the RNA silencing pathway and the
elector-induced hypersensitive reaction. In addition, some novel
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FIGURE 2 | A schematic view of the hypothetical model for BaMV movement. The intracellular trafficking of BaMV movement complex is proposed to form
the vesicle and trafficking through the cytoskeleton toward the plasmodesmata (PD). The steps of the BaMV movement are illustrated as (1) the movement proteins
of BaMV, TGBp2 and TGBp3, are synthesized on the endoplasmic reticulum (ER) and transported via vesicles possibly regulated by one of the Rab-GTPases; (2) the
newly synthesized viral RNA is assembled with the capsid protein (CP), movement protein TGBp1, and the viral replicase to form a competent viral replication
complex (VRC); (3) the VRC and possibly some other host factors are recruited to TGBp2/TGBp3-containing vesicle to form a movement complex and trafficking
toward the PD; (4) the host factor STKL localized on the plasma membrane might control the gate of the PD; (5) the host factor CK2α targeting the CP of VRC and
release the vRNA from the VRC to the neighbor cell for further translation or replication; (6) TGBp2 and TGBp3 are released from the movement complex after
disassembly on the PD and might shuttle back from the plasma membrane to late endosome/multivesicle bodies/prevacuolar compartments (LE/MVB/PVC) with the
help of RabGAP1 to activate the Rab (unidentified yet); (7) RabG3f is possibly involved in shuttling the viral movement proteins back to Golgi and ER. One of the host
factors, TRXh2, is shown to play a negative role indicated as (−) in hindering the movement through the interaction with viral movement protein TGBp2.

proteins in host cells could display anti-viral activities beyond
their already known functions. A putative methyltransferase
(PMTS1) once interacted with BaMV RdRp, screened by a yeast
two-hybrid technique, and displayed an inhibitory effect on
the RdRp activity with a dosage-dependent fashion (Figure 1)
(Cheng et al., 2009). PMTS1 comprises an N-terminal signal
peptide predicted to target mitochondria or chloroplasts and two
putative AdoMet-binding motifs in the middle region. Removing
the signal peptide or abolishing the AdoMet-binding activity of
PMTS1 would cause the loss of its inhibitory effect. Because
BaMV has been demonstrated to replicate in chloroplasts, the
signal peptide of PMTS1 targeting the chloroplasts is highly
recommended.

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
found in the purified RdRp complexes could bind the
stem-loop C/poly(A) in the 3′ UTRs of satBaMV and the
pseudoknot/poly(A) in the 3′ UTR of BaMV (Prasanth et al.,
2011). Further analysis indicates that the cytosolic, GAPDH,
could inhibit the replication of BaMV/satBaMV (Figure 1). The
purified recombinant, GAPDH, could specifically inhibit the
synthesis of minus-strand RNA of BaMV/satBaMV in an in vitro

replication assay. GAPDH is a multifunctional enzyme involved
in quite diverse activities in cells, including glycolysis, cellular
dysfunction, cell death, apoptosis, association with cytoskeleton
and vesicles transport, exportation of nuclear RNA, and DNA
repair (Tristan et al., 2011). In Arabidopsis, cytosolic GAPDH was
found to be a prominent target of H2O2-dependent oxidation
(Hancock et al., 2005), but could be reversible back in the
presence of reductant GSH (Bedhomme et al., 2012). Although
the functions of GAPDH involved in BaMV replication are not
clear, the simple interaction of GAPDH with the 3′ UTRs of
BaMV and satBaMV could block the accessibility of RdRp for
initiating the minus-strand RNA synthesis.

THE FACTORS INVOLVED IN DEFENSE
AGAINST VIRAL RNA MOVEMENT

Regarding the movement of potexviruses, both MP and CP
are vital for efficient cell-to-cell movement and vascular
transport (Verchot-Lubicz, 2005; Verchot-Lubicz et al., 2010).
Post-translational modification, including ubiquitination,
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sumoylation, glycosylation, and phosphorylation of viral
proteins, were issued as parts of an important process in
modulating the structures and functions of viral proteins (Barajas
and Nagy, 2010; Alcaide-Loridan and Jupin, 2012; Mathur
et al., 2012; Perez Jde et al., 2013; Samuilova et al., 2013; Xiong
and Wang, 2013). Maintaining the protein structural integrity,
including those modifications of MP and CP, is critical for virus
movement.

One of the thioredoxin proteins, NbTRXh2, an upregulated
gene post BaMV inoculation, was demonstrated to restrict the
movement of BaMV (Chen et al., 2017). NbTRXh2 was localized
at the plasma membrane through myristoylation at the Glycine
of the second amino acid from the N-terminus. NbTRXh2 was
revealed to target the MP TGBp2 to reduce its disulfide bond
(Figure 2). Also, the two conserved cysteins forming the disulfide
bond were demonstrated to play a key role in BaMV movement
(Tseng et al., 2009). Therefore, NbTRXh2 targets TGBp2, which
could result in the loss of the structural integrity of TGBp2 and
their failure to interact with other movement-associated proteins,
including TGBps1 and 3.

SUMMARY AND FUTURE PROSPECTIVE

Taking all the available results into account, it can be concluded
that some of the host factors are unique to BaMV, while some

of them could be applied to other viruses. Some host factors
could assist virus replication and movement, but some of them
are involved in resisting virus infection. This review summarized
a few host factors identified with different strategies and their
possible roles in BaMV infection. However, to complete an
accurate understanding of BaMV infection, more host factors
need to be identified. Based on our current understandings, a
few processes in BaMV infection cycle are still unclear. One
of the most challenges is to uncover the process of how the
newly synthesized RNAs are transported out of the chloroplasts
where BaMV replicates. Hopefully, a much clearer picture of the
infection cycle of BaMV can be obtained in the near future by
knowing how of these factors involved.
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