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ABSTRACT The plant pathogen that caused the Irish potato famine, Phytophthora
infestans, continues to reemerge globally. These modern epidemics are caused by
clonally reproducing lineages. In contrast, a sexual mode of reproduction is ob-
served at its center of origin in Mexico. We conducted a comparative genomic anal-
ysis of 47 high-coverage genomes to infer changes in genic copy number. We in-
cluded samples from sexual populations at the center of origin as well as several
dominant clonal lineages sampled worldwide. We conclude that sexual populations
at the center of origin are diploid, as was the lineage that caused the famine, while
modern clonal lineages showed increased copy number (3�). Copy number varia-
tion (CNV) was found genome-wide and did not to adhere to the two-speed ge-
nome hypothesis. Although previously reported, tetraploidy was not found in any of
the genomes evaluated. We propose a model of dominant clone emergence sup-
ported by the epidemiological record (e.g., EU_13_A2, US-11, US-23) whereby a
higher copy number provides fitness, leading to replacement of prior clonal lin-
eages.

IMPORTANCE The plant pathogen implicated in the Irish potato famine, Phytoph-
thora infestans, continues to reemerge globally. Understanding changes in the ge-
nome during emergence can provide insights useful for managing this pathogen.
Previous work has relied on studying individuals from the United States, South
America, Europe, and China reporting that these can occur as diploids, triploids, or
tetraploids and are clonal. We studied variation in sexual populations at the patho-
gen’s center of origin, in Mexico, where it has been reported to reproduce sexually
as well as within clonally reproducing, dominant clones from the United States and
Europe. Our results newly show that sexual populations at the center of origin are
diploid, whereas populations elsewhere are more variable and show genome-wide
variation in gene copy number. We propose a model of evolution whereby new
pathogen clones emerge predominantly by increasing the gene copy number
genome-wide.

KEYWORDS Irish famine, Phytophthora, copy number variation, oomycetes, plant
pathogen, plant pathology, ploidy, population genomics, potato late blight

The Irish famine pathogen, Phytophthora infestans (Mont.) de Bary, notorious for
destroying the potato crop in Ireland in the 19th century, continues to reemerge

globally as one of the world’s costliest plant pathogens (1). This pathogen causes late
blight on potato worldwide and is considered the most economically important
pathogen of this crop. This organism is thought to have originated in central Mexico (2,
3), where it is found alongside two closely related, endemic sister-taxa defining
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Phytophthora clade 1c, namely, P. mirabilis and P. ipomoeae (4, 5, 51). Elsewhere in the
world, it emerges as clonal lineages (6–9). These emergent clonal lineages are fre-
quently ephemeral, disappearing after a season or two (8, 10). However, novel clones
occasionally emerge and become dominant, replacing the formerly dominant lineages.
While this pathogen continues to reemerge globally, we know very little about the
mechanisms involved in pathogen emergence and the genomic features that are
associated with these newly emerging, dominant clones.

P. infestans exhibits two distinct lifestyles worldwide. In central Mexico, the patho-
gen exists as a sexual, randomly mating population (1–3, 52). Throughout much of the
remainder of the world, P. infestans is distributed as distinct clonal lineages that
reproduce mitotically. Until the early 1990s, a single lineage, US-1, dominated the
global populations (11). US-1 was thought to be the lineage that triggered the Great
Famine. However, more recent work identified FAM-1 as the famine-causing lineage
(12), a lineage that differs from but might be ancestral to US-1 (13, 14). During the
mid-1990s, late blight reemerged in the United States as novel clonal genotypes that
had not been previously observed (15, 16). The epidemiologically most notable geno-
types included US-8 and US-11, which were characterized as having resistance to the
fungicide metalaxyl. During the late 2000s, novel lineages emerged in the United
States, including US-22, US-23, and US-24 (7, 8). Similar observations were made in
Europe, where the 13_A2 clonal lineage became dominant in the late 2000s and where
it displaced 6_A1 in the United Kingdom and other previously existing clonal lineages
(9). While populations in most of Europe are clonal, sexual populations have been
described in northern Europe (9, 17–22). The global population structure of P. infestans
is therefore characterized as having a sexually reproducing population in Mexico as well
as reemerging clonal epidemics in the United States and most of the rest of the world
(except northern Europe), consisting of distinct clonal lineages that displace older
clonal lineages.

The P. infestans genome has been characterized as being a two-speed genome.
These two speeds refer to two compartments, gene-dense regions containing predom-
inantly housekeeping genes, and gene-sparse regions enriched for effectors (proteins
that are secreted from the pathogen and associated with infection), including RxLR
genes (23, 24), genes containing an arginine, any amino acid, leucine, and an arginine
motif. It is thought that dramatic changes to the gene-sparse, transposon, and effector-
rich portion of the genome are responsible for most of the adaptation in clonal
lineages. For example, Cooke et al. (9) studied the recent emergence of the 13_A2
clonal lineage in the United Kingdom that largely displaced clonal lineages existing in
the United Kingdom by about 2008. This study documented that this lineage was more
aggressive, thus outcompeting and displacing older lineages. They also reported large
changes in copy number variation (CNV), gene loss, mutations, and gene expression
patterns that distinguished 13_A2 from previous lineages. These genomic changes are
thought to underlie its emergence.

In addition to the two-speed genome model, several studies have documented
variation in ploidy. Phytophthora species are considered to be diploid (25). Extensive
cytological work documented that P. infestans was primarily diploid yet indicated that
some isolates might be of higher ploidy (26, 27). Several cytological studies indicated
that individuals from sexual populations in Mexico were diploid, whereas individuals
from clonal populations elsewhere frequently exhibited higher levels of ploidy (28, 29).
More recently, Yoshida et al. (12) analyzed whole-genome sequences to show that the
allele balance (e.g., the frequency of each allele sequenced at heterozygous positions)
for some individuals was triploid or tetraploid. This observation of higher ploidy was
further supported by work combining microsatellite analyses, flow cytometry, and
high-throughput sequencing of 18 genomes (predominantly from the Netherlands)
(30). This body of prior cytological and genomic work provides support for a model that
clonal populations are often triploid or tetraploid, while some populations/strains
might be diploid. However, these observations are based on individual samples, not
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allowing broader inferences about populations at large, and have not included a
representative sample from sexual populations.

We resequenced genomes of P. infestans to explore variation in gene copy number
and in a representative global sample that included a sexual population and select
members of clonal lineages. We combined our genome data with recently published
whole-genome data to obtain a population of 47 high-coverage samples (see Text Files
S1 and S2 in reference 53) that provide power for testing the hypotheses of finding
differences in ploidy, CNV, and genic content in P. infestans. For this study, we defined
ploidy as a genome-wide change in copy number (i.e., whole-genome duplication),
whereas copy number refers to a change observed at the subchromosomal level. We
tested the hypotheses that sexual populations were diploid with little CNV, while clonal
populations were predominantly triploid or tetraploid with high CNV. We also tested
the hypothesis that CNV and the presence/absence polymorphism are enriched in
gene-sparse, effector-rich portions of the genome (as expected from the two-speed
genome hypothesis). We also expected to find that CNV and presence/absence poly-
morphisms differed in clonal versus sexual populations. Finally, we tested the hypoth-
esis that similar changes in CNV might be observed in other heterothallic Phytophthora
species for which genomic data for populations was available, such as P. parasitica and
P. capsici. Our findings provide a new perspective on how plasticity in ploidy, copy
number, and presence/absence polymorphisms contribute to the emergence of the
Irish potato famine pathogen and other Phytophthora pathogens.

RESULTS
Resequencing populations of P. infestans. To understand variation in CNV and

gene content, we resequenced and used previously published populations of the
potato late blight pathogen, P. infestans, from the center of origin in Mexico (n � 16)
and dominant clonal lineages in the United States, Europe, and South America (Fig. 1).
To allow for robust inference of gene copy number, we used only genomes with a genic
average adjusted read depth (AARD) of 12� or greater (see Text S3 in reference 53).
This resulted in a total of 47 high-quality P. infestans genomes (see Text S1 in
reference 53).

Genic copy number varies continuously in P. infestans. We observed genic CNV
among populations (Fig. 2A) and a gradient of genic copy number ranging from
predominantly 2� to predominantly 3� (Fig. 2B). We did not observe classes of
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FIG 1 Samples included sexual and clonal populations selected for high sequence coverage. The
samples were collected from throughout the world and included samples from Mexico that are sexually
reproducing (green bar) as well as samples from the rest of the world that are clonally reproducing (all
other bars) (2, 52). In order to attain high-quality samples from the literature and our own resequencing
for the inference of copy number variation, only samples with at least 12� adjusted average read depth
(AARD) were included (see Text S1 in reference 53).
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individuals that would represent tetraploid individuals. Isolates from the United States
belonging to clonal lineages have a gradient of gene copy number (Fig. 2C). Strains in
U.S. lineages that were predominantly 2� were mostly found in the well-represented
lineage US-22 (n � 3) and in US-18 (n � 1). Similarly, in Europe, isolates that were both
predominantly 2� and 3� were observed. The exception to this balance of copy
number appeared to be in South America, where almost the entire sample was
predominantly 3� (Fig. 2C). Samples from Mexico had a low percentage of gene copy
numbers assigned to 3� (�20%; Fig. 2A and C), and the majority of genes occurred in
two copies. While previous studies focused on variation in ploidy (12, 26–30), our work
supports variation in genome size in P. infestans occurring largely at a subgenomic
level; Mexican, FAM-1, and US-22 samples were predominantly 2� with narrow varia-
tion that can be interpreted as diploidy, whereas samples from South America, US-1,
other U.S. lineages, and those from Europe showed large variation (Fig. 2A).

The variation in CNV was also explored for samples where tissue was extracted from
historical herbarium samples (FAM-1: M-0182896, Pi1889; US-1: Kew122, Kew126)
(Fig. 2C). These samples were not cultured on medium and were not exposed to the
modern fungicide metalaxyl and demonstrated variability in gene copy number as well
(Fig. 2A and C), suggesting that CNV may have been a natural condition in clonal
lineages of P. infestans. Note that two of the four samples that we determined to be of
sufficient sequence depth to call copy number were from the 20th century (Kew122
and Kew126, both collected in 1955; see Text S1 in reference 53) and clustered with
US-1 (14), while the other two were from the 19th century and clustered with FAM-1
(M-0182896 collected in 1877 and Pi1889 collected in 1889). This indicates that CNV
was observed throughout the time series of the data and was not restricted to modern
samples that were cultured on medium.

Gene loss occurs in both clonal and sexual populations. We explored the
hypothesis that gene loss (relative to the reference genome T30-4) had occurred
collectively within a lineage or independently. The breadth of coverage (BOC) for a
gene is the proportion of positions that were sequenced at least once in the reference
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FIG 2 Strains of P. infestans show variation in gene copy number. (A) Shown are the percentage of triploid genes in sexual and clonal populations. Populations
from Mexico, FAM-1, and US-22 are predominantly diploid, while populations from elsewhere in the world are predominantly triploid. (B) Bar plots of the
proportion of inferred gene copy number based on allele balance over all genes for each individual. Ranking isolates from 2� to 3� show a continuous change
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origin, starting on the left from Mexico and progressing to South America, FAM-1 (the Irish famine lineage [12]), US-1, US-8, US-11, US-18, US-22, US-23 (currently
the most abundant in the United States; see Text S4 in reference 53), US-24, and finally, Europe.
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genome (24). For example, a BOC of 0.75 would indicate that 75% of the positions in
a gene were sequenced at least once. We used a BOC of 0 to define a gene loss event
and presented samples for populations that included at least six individuals (groupings
with more were randomly subset to a sample size of six) (Fig. 3; see Text S5 in reference
53). Gene loss was most pronounced in RxLR and crinkler (CRN) effectors but was found
in all gene classes (average range of 0 to 1 for core, CAZy, necrosis inducing-like protein
[NPP1], secreted small cysteine-rich protein [SCR], and elicitin) (see Text S5 in reference
53). Gene loss among the isolates from Mexico ranged from 38 to 112 gene deletions.
However, we found only one shared deletion among all samples within the clonal
lineage (Fig. 3, bottom panel). Clonally reproducing isolates from South America
demonstrated a loss of 39 to 63 genes, with only 9 gene losses shared in common
among these isolates. Among 6 individuals belonging to lineage US-1, we observed a
range of loss of 21 to 68 genes but only 5 gene losses common among all of the
sampled lineages (Fig. 3). Gene loss is a dominant feature in the gene-sparse regions
harboring �95% of genes subject to gene loss in all samples of the genome. However,
the specific gene lost within any particular sample is unique and random and appar-
ently affects clonal and sexual populations equally.

Genic copy number variation was not associated with specific classes of genes.
We found that in the sexually reproducing population from Mexico that was predom-
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inantly diploid, all gene categories had more 2� genes than 3� genes (Fig. 4, green).
In contrast, for the populations from South America (orange) and US-1 (red), which
were clonally reproducing, we found that all gene classes had more 3� genes than 2�

genes regardless of gene family. CNV occurs throughout gene space without a pref-
erence for functional annotation (Fig. 4).

Gene copy number variation occurred in core orthologous genes. Core ortholo-
gous Phytophthora genes are reported to occur only once in P. infestans, P. ramorum,
and P. sojae (23) and are thought to be highly conserved. Based on the two-speed
genome hypothesis, one might expect higher copy number to preferentially occur in
the gene-sparse region. We plotted all core orthologous genes present at 3� by their
5= and 3= intergenic distances (Fig. 5). We observed substantial numbers of genes
inferred to have three copies (3�) among core orthologous genes in the gene-dense
portion of each genome (Fig. 5). This indicates that this portion of the genome may be
more dynamic than previously thought.

The phenomenon of genic CNV is shared with other members of the Phytoph-
thora genus. We explored if the variation in ploidy apparent in P. infestans is observed
in other heterothallic Phytophthora taxa. We looked at species for which population-
level genome data were available, including P. andina (clade 1c), P. parasitica (clade 1),
and P. capsici (clade 2) (clades as assigned by Blair et al. [31]). The taxon P. andina
appears to be diploid in our limited sample (Fig. 6). However, we observed more
heterozygous positions than in the other taxa (Fig. 6). This is consistent with the
interpretation that P. andina is a homoploid hybrid that arose from a cross between P.
infestans and another undescribed Phytophthora species (32). The more distantly
related P. parasitica appeared diploid as well. However, its relatively high sequence
depth allowed resolution of minor peaks, indicating that a fraction of genes occur at
three copies (particularly in the sample P1569). The taxon most distantly related to P.
infestans included in our analysis was P. capsici. Three of the P. capsici samples appeared
to be diploid, while one sample (Pc389) appeared to be triploid. These results suggest
that our findings of variation in ploidy and CNV within P. infestans are also shared
among other species of Phytophthora.

DISCUSSION

To characterize the emergence of new clonal lineages of the Irish famine pathogen,
Phytophthora infestans, we resequenced whole genomes of select populations. We

FIG 4 Gene copy number variation is not restricted to a particular class of gene. The x axis shows the
proportion of genes within each gene class (columns labeled at top) classified as being 2� or 3� copy
number. The y axis shows the fraction of genes classified into 2� or 3� within a gene class. Columns
show gene families, and rows show results by population. Isolates from Mexico (green), where P. infestans
is sexually reproducing, had a gene copy number predominantly of two for all classes of genes. Isolates
from South America and US-1, both considered clonally reproducing, had a gene copy number predom-
inantly of three for all gene classes. Gene copy number varies throughout gene space and is not
associated with function. Box and whisker plots summarize points that represent samples (n � 6) and the
proportion of genes that were either 2� or 3� (based on the total number of 2� and 3� genes). A
sample size of six was used (as in Fig. 3) to have equal samples sizes. Core, core orthologous genes; other
gene families are defined as in Haas et al. (23).
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focused on contrasting several dominant clonal lineages in the United States as well as
sexual populations from the center of origin in Mexico for which we were able to obtain
samples. Prior work (see below) focused primarily on individuals rather than popula-
tions and did not include sexual populations. The genomes were compared with
previously sequenced, high-quality genomes to determine ploidy, CNV, and gene
content. Recent epidemiological records indicated that new clonal lineages have
emerged repeatedly in the United States and Europe (see Text S4 in reference 53). For
example, the lineage US-1 was the first to establish itself in the U.S. but was eventually
displaced by US-8, US-11, and more recently, by US-23 (1) (see Text S4 in reference 53).
Similarly, populations in the United Kingdom were displaced by 13_A2 in the past
decade and, more recently, by 6_A1 (9). While variation in ploidy has been described in
individuals from clonal lineages of P. infestans, our work provides several new key
insights based on population-level patterns, expanding on prior work focusing on
single clonal strains.

Clonal lineages show higher copy numbers than sexual populations at the
center of origin. The populations studied show a gradient of CNV from 2� to 3�

(Fig. 2B). Populations of P. infestans that are sexually reproducing at the species’ center
of diversity in Mexico are predominantly diploid (Fig. 2C). This contrasts with dominant
clonal populations from the rest of the world, which are predominantly triploid. This
provides support for the hypothesis that there may be a connection between copy
number, epidemic fitness, and mode of reproduction. Higher copy number might
increase expression of advantageous genes. This hypothesis is, however, difficult or
impossible to test experimentally and is not experimentally supported.

Isolates were predominantly diploid or triploid but not tetraploid. We observed
only diploid and triploid strains but no tetraploid individuals as reported previously
(12). We reanalyzed some of the same samples and data, including the European
lineage 13_A2, previously characterized as being tetraploid. In our analysis, 13_A2 had
mostly three gene copies and would thus be classified as being triploid (Fig. 2), which
is in agreement with a more recent report (30). Part of this discrepancy is due to
changes in technology. Plotting histograms of allele balance has typically included all
variants, including homozygous genotypes. Because homozygous sites are much more

FIG 5 Gene copy number does not follow the two-speed genome hypothesis. Core orthologous genes with a copy
number of three are enriched in the gene-dense (rather than gene-sparse) regions of the genome. The background
for each panel is a heatmap indicating gene abundance as in Fig. 3. Orange points (with transparency) are plotted
over this background, where each point is a core orthologous gene that was determined to have three copies and
was positioned based on their 3= (y axis) and 5= (x axis) intergenic distance as in Fig. 3. Background grid and axis
ticks are identical to those in Fig. 3.
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abundant than heterozygous sites, this tends to drive the scaling of the plot. To avoid
this, previous work limited plots to a frequency range of 0.2 to 0.8. We subset our data
to only the heterozygous genotypes, resulting in a plot of 0 to 1, and subset the data
by omitting variants with unusually high or low sequence depth. This is a significant
improvement in methodology for inferring ploidy or CNV based on allele balance (33).

Gene loss occurred within individuals in both sexual populations and clonal
lineages. We tested the hypothesis that gene loss was shared by ancestry. This would
provide the expectation that members of a clonal lineage show fixed polymorphisms
within that clonal lineage. We used breadth of coverage to identify the presence/
absence of genes relative to the reference genome. Instead, we found that individuals
within a clonal lineage (e.g., from South America or US-1; Fig. 3) showed gene loss
within individuals at a rate similar to that of the sexual population (Mexico; Fig. 3).
Furthermore, gene loss affected many gene families, including effectors, and was
located throughout the genome. This is consistent with the hypothesis that pathoge-
nicity factors are thought to be enriched in the gene-sparse portion of the genome (23,
34, 35).

CNV is found throughout the genome and affects all gene families, including
core genes and effectors, equally. Our expectation following the proposed two-
speed genome hypothesis (23, 24) was to find CNV enriched in the gene-sparse,
transposon, and effector-rich portion of the genome, where CNV could provide a means
of creating novel paralogs. To our surprise, CNV affects housekeeping genes and
effectors equally (Fig. 4) and is randomly dispersed throughout the whole genome. In
the diploid genomes from Mexico, we found that core orthologous genes, pseudo-
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FIG 6 Ploidy variation is observed in other heterothallic Phytophthora species. Histograms showing the major and minor allele frequency observed for
individuals. Samples of P. infestans are diploid or triploid. The hybrid taxon P. andina appeared predominantly diploid. Note that the y axis indicates many more
heterozygous positions in these samples relative to the other species. The clade 1 species P. parasitica is diploid. However, note the “shoulder” peaks at the
3� expectation for samples P10297and P1569. The clade 2 species P. capsici demonstrated a predominance of diploidy, with the single sample Pc389 being
triploid. The x axis ticks mark 0, 1/5, 1/4, 1/3, 1/2, 2/3, 3/4, 4/5, and 1 mark our expectations for pentaploid, tetraploid, triploid, and diploid. The y axis ticks in
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in the supplemental material (53).
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genes, and several pathogenicity factors were all predominantly 2�. Genomes of
clonally reproducing strains from South America and the lineage US-1 were found to
have core orthologous genes, pseudogenes, and pathogenicity factors that were
predominantly 3�. We also expected CNV to be higher in pathogenicity factors than in
core orthologs, yet levels of CNV were not different, regardless of gene class.

Variation in copy number can be found in other Phytophthora species. We also
evaluated if changes in ploidy could be observed in other heterothallic Phytophthora
species. We used genomes for moderate population sizes from P. andina, P. parasitica
(� P. nicotianae), and P. capsici available at the Sequence Read Archive to address this
question (Fig. 6). Within Phytophthora clade 1c, P. andina appeared predominantly
diploid. P. andina has been recognized as a hybrid with two parental species, one of
which is P. infestans, while the other hybrid parent is unknown (32, 36). The genomes
of P. andina had one haplotype from each parental species as expected and were
predominantly 2� copy number. P. parasitica, a distant relative of P. infestans basal to
clade 1, was diploid. However, two strains (P10297 and P1569) had minor peaks at our
expectation for three copies, indicating that fractions of these genomes may vary in
copy number at 3�. Our ability to resolve these peaks was likely due to the high
sequence depth of these samples relative to the other available taxa. In clade 2, the
more distant P. capsici appeared predominantly diploid for 3 strains; however, one
strain (Pc389) was triploid. These results suggest that variation in ploidy and/or copy
number may be a common feature throughout the Phytophthora genus, consistent
with other recent reports (37, 38).

We propose a model of emergence where triploid clones emerge and eventu-
ally displace prior clonal lineages. Our work provides striking support for a model of
predominantly diploid populations at the center of origin reinforced by sexuality and
predominantly triploid clonal lineages elsewhere in the world (Fig. 7). In this model,
novel clonal lineages emerging globally are predominantly triploid. These triploid

FIG 7 Model of the genomic processes observed to date that are thought to underlie the patterns of emergence observed
for clonal lineages of the Irish famine pathogen. This model proposes that sexual populations are diploid, while clonal
populations are predominantly triploid. Some clones, likely rare and by chance, are clones that become dominant,
displacing prior clonal lineages, as has been observed repeatedly in the United States. These dominant clones are
predominantly triploid, including US-8, US-11, US-23, and the aggressive European lineage Blue13_A2 (represented in our
sample by 06_3928A), while other lineages that are diploid, such as US-18 and US-22, are ephemeral or cryptic (see Text
S4 in reference 53) (9). Sexual reproduction reinforces diploidy, while a triploid status might interfere with sexual
reproduction but might confer fitness.
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lineages might be more fit and thus able to displace other extant lineages. A new
lineage emerging from a sexual cross in Mexico is expected to be initially diploid and
will gradually show an increase to three copies per gene. Older previously dominant
lineages might thus be more triploid (e.g., US-1) than dominant younger lineages (e.g.,
US-23). Some lineages are ephemeral (e.g., US-18, US-22). The recently emerged diploid
lineage US-22 was only observed between 2009 and 2011 and might be less fit (1, 10)
and, curiously, shows predominantly 2� copies per gene. To the best of our knowl-
edge, all lineages that became dominant in space and time are or were triploid, with
the exception of FAM-1. It remains to be established if higher genic copy number
confers higher epidemic fitness to a clonal lineage. Experimentally addressing this
question might prove challenging given the fact that CNV is a whole-genome phe-
nomenon. However, there are several studies supporting the idea that some clonal
lineages (which are 3� in our analysis) displacing older lineages were indeed fitter. Kato
and colleagues showed that US-8 strains have larger lesions and sporulate more than
US-1 strains (39). Similarly, Cooke and colleagues, using mark-recapture methods in the
field, showed that the 13_A2 strains were among the most aggressive clones compared
to the strains evaluated and outcompeted previously dominant clonal lineages (9).

Conclusions. The late blight pathogen P. infestans continues to reemerge, causing
financial loss for farmers and threatening food security, particularly in developing
countries (1). We report the observation that P. infestans isolates are diploid in central
Mexico, where they reproduce sexually, and emerging dominant clonal lineages are
predominantly triploid. These findings provide novel support for the hypotheses that a
change in copy number might drive emergence of clonal lineages of the Irish famine
pathogen.

MATERIALS AND METHODS
Sequence alignment and variant calling. The sample came from previously published sources (9,

12–14, 23, 24) as well as 11 new Phytophthora infestans genomes we sequenced (see Text S1 in reference
53). Isolates US040009, FP-GCC, US100006, FL2009P4, and ND822Pi were sequenced at the UC Davis
Genome Center. Isolates PIC97136, PIC97146, PIC97335, PIC97442, PIC97750, and PIC97785 were se-
quenced at Oregon State University’s Center for Genome Research and Biocomputing on an Illumina
HiSeq 2000 platform. Additionally, five samples each of P. mirabilis and P. ipomoeae (see Text S2 in
reference 53) were also sequenced at Oregon State University’s Center for Genome Research and
Biocomputing on an Illumina HiSeq 2000 platform. All other samples were obtained from publicly
available repositories (see Text S1 and S2 in reference 53). Newly sequenced genomes are publicly
available at the Sequence Read Archive (BioProject number PRJNA542680; Text S3 in reference 53).

The FASTQ format files were aligned to the P. infestans T30-4 reference (23) using the Burrows-
Wheeler Aligner MEM algorithm (BWA-MEM) 0.7.10 (40, 41). The resulting SAM format file was converted
to BAM format, the mate information was fixed, and the MD and NM tags were added using SAMTools
(41). PCR and optical duplicates were marked using Picard’s MarkDuplicates (42). The per gene sequence
depth and coverage over all T30-4 genes was calculated using SAMtools mpileup (41). From the mpileup
data, the number of positions that were sequenced at least once and a median of coverage were
calculated. In order to correct our measure of coverage for GC bias, we calculated an adjusted average
read depth (AARD) (24). A median was chosen as a robust alternative to an average; however, we refer
to our measure here as AARD to be consistent with the existing literature. The genes were sorted into
bins based on percentiles of GC content. The adjusted median read depth was then taken by multiplying
the median read depth for each gene by the ratio of the median read depth of all genes divided by the
median average read depth for all genes in the GC bin of the gene. The AARD for each genome was
summarized using violin plots (43), and a threshold of mean AARD of at least 12 was used as a threshold
for inclusion of a genome for further analysis.

Variants were called from the BAM files for diploid genotypes to create genomic variant call format
(gVCF) files using the Genome Analysis Toolkit (GATK) HaplotypeCaller (44, 45). Diploid genotypes were
called using the GATK’s GenotypeGVCFs. The samples P10127, P10650, P11633, P12204, P1362, P6096,
and P7722 were flagged by the GATK’s HaplotyeCaller as having legacy quality encoding. These samples
were run with the option fix_misencoded_quality_scores to accommodate this.

Gene copy number inference based on allele balance. The inference of gene copy number was
made based on the ratio of alleles observed at heterozygous positions (12, 30). The VCF specification (46)
provides the option for variant callers to report the number of times each allele was sequenced at a
variable position. In a diploid heterozygote, the expectation is that each allele will be observed at an
equal frequency or a ratio of one half. A triploid heterozygote will be expected to have alleles observed
at a ratio of one third. A tetraploid heterozygote will be expected to have alleles observed at a ratio of
one quarter. Note that some combinations are indistinguishable and therefore uninformative. For
example, a tetraploid heterozygote with only two alleles (e.g., A/A/C/C) will have each allele observed at
a ratio of one half. This will be indistinguishable from our expectation from a diploid heterozygote. The
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ratio of alleles observed at each variable position has been used by other authors to make inferences
about ploidy (12, 30). Shortcomings of the present use of the ratio of alleles are that it has been
presented graphically as a histogram and that the data appear “noisy” in that they do not form a strong
consensus at an expected CNV value. A problem with the graphical representation of data arises when
a large number of samples are to be explored or when the genome is subset into a large number of
fractions, such as in windowing analyses. A numerical summary table provides the ratio of alleles
observed in any genome or in any fraction of a genome. The problem of noisy data may in part be due
to variants of low quality (i.e., technical error) or potential variation in ploidy throughout a genome or
subgenomic region (i.e., biological variation).

The challenge of identifying high-quality variants and numerically summarizing them was addressed
by our method of allele balance analysis (33). The data were quality filtered using the sequence depth
of the most abundant allele for all variants in a genome. An 80% confidence interval was created to
eliminate variants with the lowest 10% and highest 10% sequence coverage. This confidence interval was
then applied to the second-most-abundant allele as well. The VCF file was further subset to only
heterozygous positions. The allele balance ratio for each heterozygous variant was calculated by dividing
the number of times the most abundant allele was sequenced by the number of times the most
abundant allele and the second-most-abundant allele were sequenced, resulting in a proportion. Finally,
200,000-bp windows were made using the allele ratio data. This window size was chosen for P. infestans
because it was sufficiently large to include a population of heterozygous positions (we observed a
heterozygous position every 1 to 2 kbp) but small enough to obtain fine-scale resolution. The data were
then assigned to bins ranging from 0 to 1 that are 0.02 frequencies wide, and the bin with the greatest
density was used as a summary for the window. This is analogous to the modal frequency. This summary
was then categorized to a ploidy level by assigning it to the closest expected ratio (i.e., 1/2, 2/3, 3/4, 4/5).
Each genome was now summarized into windows of ploidy. In order to assign copy numbers to genes,
the coordinates of each gene were referenced in the windowed genome, and the copy number of the
window where the gene was located was used to assign a copy number to the gene. This is critical
because we do not expect most genes to contain enough heterozygous positions to infer an accurate
estimate of copy number. Once a copy number was determined, a confidence in this estimate was made
by subtracting the observed proportion from the determined proportion and dividing by the bin width
so that the value ranges from 0 to 1. Calculations were performed in R (47) and using vcfR (33, 48).

Gene loss based on breadth of coverage. In order to determine gene loss, we measured breadth
of coverage (BOC) for each gene in each genome. We used SAMtools mpileup (41) to count the per
position sequence coverage over all 18,179 genes in the P. infestans T30-4 genome (23). From these data,
the number of positions that were sequenced at least once and a median of coverage were collected.
Breadth of coverage was calculated by dividing the number of positions that were sequenced at least
once by the gene length (i.e., the proportion of positions sequenced in a gene). We used a BOC of 0 to
indicate the loss of a gene.

Gene class and density. Published gene annotations (23) were used to assign genes to gene classes
(core, pseudogene, RxLR, etc.). The flanking intergenic region (FIR) lengths (i.e., intergenic distances) were
calculated using a previously available script (https://figshare.com/articles/Calculate_FIR_length_perl_
script/707328). This information was used to create FIR plots for individuals and populations from
Mexico, South America, and the lineage US-1 using R (47) and ggplot2 (43). In order to explore whether
genes of a particular class from populations from Mexico, South America, and the lineage US-1 were
enriched for a particular copy number, the genes were assigned a copy number (based on allele balance)
and plotted as box and whisker plots using ggplot2 (43). In order to visualize whether genes determined
to have three copies were more abundant in the gene-dense or gene-sparse portion of the genome, FIR
plots were created as described above but using core orthologous genes that were determined to have
three copies.

Copy number variation in other species of Phytophthora. In order to address whether copy
number variation occurred in other species of Phytophthora, we queried NCBI for samples that had
Illumina sequence data as well as an assembled genome reference for the species. These data were
processed as the P. infestans data were processed. In order to visualize these data in a phylogenetic
context, a tree from Martin et al. (49) was obtained from TreeBase (50). The data were then plotted in R
(47).

Data and code. All R code and data necessary to reproduce the figures are available on GitHub
(https://github.com/grunwaldlab/P_infestans_CNV).
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