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Abstract: In osteoarthrosis, pathological features of articular cartilage are associated with degeneration
and nanomechanical changes. The aim of this paper is to show that indentation-atomic force
microscopy can monitor wear-related biomechanical changes in the hip joint of patients with
osteoarthritis. Fifty patients (N = 50), aged 40 to 65, were included in the study. The mechanical
properties and the submicron surface morphology of hyaline cartilage were investigated using atomic
force microscopy. Measurements of the roughness parameters of cartilage surfaces were performed,
including the arithmetic average of absolute values (Ra), the maximum peak height (Rp), and the
mean spacing between local peaks (S). The arithmetic mean of the absolute values of the height of
healthy cartilage was 86 nm, while wear began at Ra = 73 nm. The maximum changes of values of
the roughness parameters differed from the healthy ones by 71%, 80%, and 51% for Ra, Rp, and S,
respectively. Young’s modulus for healthy cartilage surfaces ranged from 1.7 to 0.5 MPa. For the
three stages of cartilage wear, Young’s modulus increased, and then it approached the maximum
value and decreased. AFM seems to be a powerful tool for surface analysis of biological samples as it
enables indentation measurements in addition to imaging.
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1. Introduction

Articular cartilage is the connective tissue of diarthrodial joints and plays specific biomechanical
functions, i.e., lubrication, load-bearing, and energy dissipation [1,2]. Healthy articular cartilage consists
of a small number of cells (chondrocytes), water (within a range from 66% to 80%), solid components
(20%–34%) including 5%–6% of hydroxyapatite, type-II collagen (48%–62%), and proteoglycan
(22%–38%) [3–6]. Pathological features of articular cartilage are associated with its degeneration, surface
morphology, and biomechanical changes in its nanoscale structure, and may result in osteoarthritis.
Moreover, increased synthesis of collagen, non-collagen proteins, proteoglycans, hyaluronate, and
desoxyribonucleic acid can be detected in its deeper layers [7]. Osteoarthrosis (OA) is a substantial
public health problem. The prevalence of OA increases with age; the highest incidence is observed
among women over 45 years old [8]. According to the general classification of the American Society
of Rheumatology, osteoarthritis ranks 4th among all the rheumatic diseases, affecting 80% of the
European population aged 75 years and older [9]; among adults 60 years of age or older, over 10% of

Materials 2020, 13, 2302; doi:10.3390/ma13102302 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-8607-7129
http://www.mdpi.com/1996-1944/13/10/2302?type=check_update&version=1
http://dx.doi.org/10.3390/ma13102302
http://www.mdpi.com/journal/materials


Materials 2020, 13, 2302 2 of 13

men and 13% of women in the United States suffer from OA [10]. The aetiology of osteoarthrosis is
unclear; however, the risk factors include age, gender and hormones, genetic factors, race/ethnicity,
congenital/development conditions, diet, obesity, injuries, occupation, physical activity, alignment,
mechanical factors, and laxity [11–14]. The disease is characterized by an imbalance between anabolic
and catabolic processes in joint tissues, loss of articular cartilage, and synovial inflammation [11,12].
At the initial stage, it may remain chronic for several years, without any symptoms. During its
development, OA may affect all joints, muscles, as well as all articulating tissues and menisci in
the knee [8] with symptoms such as pain or stiffness in the joint, followed by deformation and
reduced mobility.

The biomechanical properties of cartilage are crucial for the functionality of the hip joint.
The surface topographies of the hip joint have been studied using the most common imaging
modalities: radiography [15,16], atomic force microscopy [17–20], computed tomography (CT) [21],
ultrasound [22], MRI and nuclear medicine [23], as well as others [24]. Radiography has been considered
as the standard technique in defining rheumatic disorders; it is useful in detecting structural bone
abnormalities in late-stage OA. However, it cannot detect changes in features of the disease around
the joint [16,25]. Therefore, magnetic resonance imaging (MRI) is a more suitable tool as it shows
pathological features related to the severity of OA and allows 3D visualization of articular cartilage [26].
In addition, computed tomography (CR) shows the affected soft tissue; however, compared to MRI,
the assessment of soft tissue structures is limited. Although CT arthrography is invasive, it can be used
in the evaluation of focal cartilage defects [25]. Another technique is the ultrasound (US), which enables
detection of changes in cartilage and other soft tissues of the joint in the early and late stages of
osteoarthritis. The imaging technique is commonly regarded as one of the most useful ones due to
its low cost and repeatability [27,28]. Understanding the structural and mechanical characteristics of
healthy and osteoarthritic cartilage requires the use of technologies at a micron scale. Additionally,
it has been proved that morphological and biomechanical changes that occur at the onset of OA should
be visualized at the nanometer scale [29].

The last several years have seen the development of nanostructural imaging modalities.
These include atomic force microscopy (AFM), scanning electron microscopy (SEM), confocal
microscopy (LSCM), and laser scanning; they are used to examine cartilage surfaces in three dimensions
at micron or submicron resolutions [30–37]. In [1,38–41], the authors used AFM to study bovine,
porcine, and ovine cartilage surfaces. For the analysis, the arithmetic average of absolute values (Ra)
and the maximum peak height (Rp) were used. These parameters play a crucial role in the study of
pathological features at the nanometer scale and may signal biological activity resulting from OA.
Additionally, animal cartilage can be used as a model system for human cartilage due to the fact that
animal tissue enables a suitable assessment of the biomechanical properties of the hip. The main
problem, however, is the difference in shape, size, biochemical content, and matrix architecture [37],
compared to human cartilage. These particular biomechanical properties of human cartilage are crucial
in understanding the progression of OA. Human cells are usually obtained post-mortem during an
autopsy; it is challenging to obtain samples from healthy living cells, so their biomechanical features
are not well recognized. Hence, the aim of this paper is twofold. First, quantitative techniques for
the study of both healthy and osteoarthritic living cells of articular cartilage at the micron scale are
developed. Then, AFM microscopy is shown to be able to monitor wear by OA-related biomechanical
changes in the hip joint in patients at the different stages of osteoarthritis.

2. Methods

Experiments on human subjects were performed in accordance with internationally accredited
guidelines, and had been approved by the Ministry of Health of the Republic of Belarus (No. 3,
13/01/2017). The experiments were carried out in accordance with the approved guidelines. Informed
written consent to perform this experiment was obtained from all patients.
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2.1. Samples of Human Articular Cartilage

The hospitalized patients from Grodno City Emergency Hospital were male and female in equal
numbers (N = 50), aged 40 to 65 years. They had undergone surgery for total endoprosthesis of the hip
in connection with the diagnosis of osteoarthritis, or fracture of the neck or head of the femur. Over a
period of two years (2017–2018), 500 surgical procedures were performed. An exclusion criterion
in the patient selection was the diagnosis of rheumatoid arthritis or the presence of joint and bone
tumors. Human articular cartilage was harvested from the femoral heads by cutting specimens off the
underlying bone with a sharp razor blade, yielding ∼5 mm × 5 mm pieces, ∼5 mm thick. The cartilage
was covered with a fluid interfering with the mechanical properties due to surface tension. At the same
time, the cartilage was saturated with water. The drying process changes the properties of cartilage,
so the level of drying was determined experimentally in order to obtain the necessary accuracy of
measurement. All the tests were performed at a room temperature of 20 ± 0.5 ◦C and a humidity of
56 ± 1.0%. The process of specimen dehydration is described by (1):

m = m0(1 + t)b (1)

where: m is the mass (current value of mass) of a specimen, m0 is the initial mass, coefficient, b = −0.14,
and t is time [hours].

2.2. Analysis of Submicron Surface Morphology in Humans

The human specimens were fixed on a rigid substrate and stuck to microscope slides. Human
cartilage specimens (N = 500) were selected based on initial visual assessment of surface degradation
at optical magnifications of 100×, 200×, and 500×. The images were obtained in reflected light using
a ©Micro 200T-01 optical microscope (Planar JSC, Minsk, Belarus). Undamaged (healthy) human
cartilage specimens and those affected by osteoarthritis are presented in Figure 1a,b, respectively.
Tests of submicron surface morphology of human specimens were performed using AFM NT-206
(©MicroTestMachines, Gomel, Belarus) in the static scanning mode. A CSC38 MikroMasch® silicon
probe (MikroMasch, Watsonville, CA, USA) was used: the resulting tip radius was less than 35 nm,
the full tip cone angle was 40◦, the total tip height was 12 to 18 µm, the probe material was n-type
silicon, and a type A cantilever was used. The resonance frequency of the cantilever ranged from 8 to
32 kHz, the force constant was 0.01 to 0.36 N/m, length: 250 ± 5 µm, width: 32.5 ± 3 µm, and thickness:
1.0 ± 0.5 µm. The areas of specimens without surface waviness or high strain amplitudes were found
prior to scanning or indenting by means of an optical microscope built into the AFM. The results of
scanning were classified at three scales: at low magnification with a scan area of Ar = 18 × 18 µm2,
at medium magnification with a scan area of Ar = 9 × 9 µm2, and at large magnification with a scan
area of Ar = 3 × 3 µm2. The degree of surface wear was determined by measuring the roughness
parameters. The SurfaceExplorer (©MicroTestMachines, ver 1.1.5, MicroTestMachines, Gomel, Belarus)
software and nano images (ver 6.128.15, Mikhail Ihnatouski, Grodno, Belarus) were used to visualize
the experimental data and to measure the roughness parameters.

Specimens obtained after division were used for further studies of submicron surface morphology
and mechanical properties. Measurements of the roughness parameters of cartilage surfaces were
performed, including the arithmetic average of absolute values (Ra), the maximum peak height (Rp),
and the mean spacing between local peaks (S). The roughness parameters were measured at 5 points of
each of the 25 specimens for three different values of Ar.
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Figure 1. Optical images 200× of human cartilage surfaces: (a) healthy and (b) affected by osteoarthritis.

2.3. Analysis of the Mechanical Properties of Human Cartilage

The radius of the AFM tip and the stiffness of cantilevers were calibrated. AFM was used to
measure the mechanical properties of human cartilage specimens. The measured quantities were
the bend of the console

(
Zde f l

)
and the displacement of the console along the vertical axis

(
Zpos
)
.

The penetration of the probe into cartilage (Figure 2) is presented as (2) [42]:

h = Zpos −Zde f l (2)
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Figure 2. Scheme of AFM indentation: Z0 − the starting point of the console; Zde f l− the bend of the
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Young’s modulus (E) at a point on the surface can be calculated as follows:

E =
3
4

(
1−V2

) k
R1/2

Zde f l(
Zpos −Zde f l

)2/3
(3)

where: V = 0.5 is the Poisson’s ratio of the cartilage, k = 0.08 N/m is the stiffness of the cantilever of
CSC 38, and R = 30 nm is the radius of the needle-point of the tip of CSC 38. Thus, the results of the
measurements were the relationship between Young’s modulus and the depth of penetration into the
surface (E(h)).

The surface of each sample was indented using AFM in the course of three measurements through
the introduction of an indenter at a selected point on the surface. The obtained values of Young’s
modulus were averaged. Cross-sections of human cartilage specimens were sequenced twice with a
100 µm stem parallel to the initial surface. The surfaces of the cross-sections were indented sequentially
using AFM.

2.4. Statistical Analysis

Statistical analyses were performed using the Statistica software (StatSoft 13.1, Cracow, Poland).
One-way analysis of variance was used to identify the degree of dehydration of specimens.
A p-value < 0.05 was considered as statistically significant. The data were presented as the
mean ± standard deviation or min ÷max.

3. Results

3.1. Analysis of Submicron Surface Morphology of Human Cartilage

Preliminary series of measurements were carried out to identify the degree of dehydration of
specimens, ensuring stable repeatability of measurement results. One hundred and forty specimens
(N = 140) were taken without prior control of the degree of wear. It was found that measurement
results became statistically reliable (p < 0.05) after 12 hours, when the specimens had lost 30% of the
liquid. Morphology of the areas of human cartilage not affected by osteoarthritis were investigated.
Non-homogeneous morphological structures, including submicronic protrusions and depressions
(lacunae), were found on the cartilage surface, without macroscopic destruction. Many of the lacunae
were over 2 µm deep. Forty-eight elliptical lacunae with similar depths were found on the surfaces
of ten specimens. The complex structure of near-surface collagen fibers was clearly visible in AFM
images. The diameters of collagen fibers ranged from 50 to 350 nm (Figure 3).Materials 2020, 13, x FOR PEER REVIEW 6 of 14 
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Those human cartilage surfaces that were affected by osteoarthritis to a larger degree had a weaker
set of morphological structures visible in AFM images (Figure 4). The surfaces of the specimens had
irregularities that were less noticeable compared to surfaces of healthy cartilage (Figure 3). The lacunae
found on the surfaces of cartilage affected by osteoarthritis were less than 2 µm deep, which enabled
measurements with the use of AFM (Figure 4a,b). Twenty-three lacunae with a thickness of approx.
500 nm were found on the surfaces of ten specimens.
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Figure 4. AFM images of a worn human surface: (a) 9 × 9 µm2, Zmax = 405 nm, and (b) 3 × 3 µm2,
Zmax = 25 nm.

The roughness parameters were measured at 5 points of each of the specimens for three different
values of Ar. Three hundred and seventy-five measurements (N = 375) of the roughness parameters
of twenty-five healthy human cartilage specimens, and one thousand one hundred and twenty-five
(N = 1125) measurements of seventy-five specimens affected by osteoarthritis were performed. In Table 1,
the roughness parameters of healthy cartilage are presented as the arithmetic mean and the standard
deviation (std). The measurement results constitute the starting points on the wear scale.

Table 1. Mean (SD) roughness parameters of healthy human surfaces (N = 357).

Ar [µm2] Ra [nm] Rp [nm] S [nm]

18 × 18 96 (6) 526 (18) 953 (13)
9 × 9 86 (5) 436 (13) 816 (11)
3 × 3 28 (4) 147 (11) 239 (12)

The size of change (min ÷max) of the roughness parameters of cartilage affected by osteoarthritis
is presented in Table 2. For the purpose of further analysis, the values measured at Ar = 9 × 9 were used.

Table 2. The size of change (min ÷ max) of the roughness parameters affected by osteoarthritis
(N = 1125).

Ar [µm2] Ra [nm] Rp [nm] S [nm]

18 × 18 58 ÷ 73 177 ÷ 353 567 ÷ 661
9 × 9 25 ÷ 61 86 ÷ 145 403 ÷ 551
3 × 3 9 ÷ 12 38 ÷ 64 235 ÷ 298

Due to the fact that human cartilage samples were divided into two groups with the use of optical
microscopy, i.e., healthy ones and those affected by osteoarthritis, a significant gap on the wear scale
was obtained. As expected, cartilage wear resulting from an illness is characterized by a continuous
consistency, ranging from larger to smaller values of the arithmetic mean of absolute height values (Ra).
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The continuity and monotony of the changes in the maximum peak height (Rp) and the mean spacing
between local peaks (S) are not reflections of the same trivial fact. The arithmetic mean of the absolute
values of the height of healthy cartilage was 86 nm, while wear began at Ra = 73 nm. The values of the
maximum changes of the roughness parameters differed from the healthy ones by 71%, 80%, and 51%
(p < 0.05) for Ra, Rp, and S, respectively. The obtained data concerning the wear parameters of cartilage
surfaces make it possible to determine the impact of the mechanical properties of surface on their wear.
The seventy-five specimens of surface affected by osteoarthritis were divided into three groups: small,
medium, and heavily affected by osteoarthritis, using the method of partitioning Ra = 25.0 ÷ 61.0 nm
into three subranges.

3.2. Analysis of the Mechanical Properties of Human Cartilage

The relationship between the mechanical properties of human cartilage and the depth of
penetration (E(h)) into cartilage (Ra ≈ 85.8 nm) at different stages of wear (49.0 nm < Ra < 61.2 nm,
36.8 nm < Ra < 49.0 nm, and 24.6 nm < Ra < 36.8 nm, measured at Ar = 9 × 9 µm2) is presented in
Figure 5a–d. Lines marked 1 concern the surface layer of cartilage. Lines marked 2 and 3 concern the
cross-sections in the subsurface layer (cartilage tissue). Young’s modulus of healthy cartilage surfaces
ranges from 1.7 to 0.5 MPa (Figure 5a, line 1). For the three stages of wear, Young’s modulus first
increases for all Ra ranges (from 1.14 to 1.3 MPa, from 1.02 to 1.2 MPa, and from 0.82 to 1.2 MPa), and
then it approaches the maximum before decreasing (Figure 5b–d, line 1). The relationships between
Young’s modulus and the depth of indentation into the cross-sections of both healthy cartilage and
that affected by osteoarthritis are similar. Young’s modulus decreases monotonically with increasing
intensity at all three stages of wear (from 1.7 to 0.5 MPa, from 1.2 to 0.65 MPa, from 1.0 to 0.6 MPa, and
from 0.8 to 0.6 MPa) (Figure 5a–d, line 2,3).
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Figure 6 shows the impact of the mechanical properties on cartilage wear. The dash-dotted lines
divide the axis of wear into three subranges.
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4. Discussion

The current trend in science is to develop methods of measurement of surface roughness of
human articular cartilage in various joint diseases, osteoarthritis being the most common rheumatic
disease and cause of disability. The authors investigated changes in the mechanical properties and the
surface roughness of articular cartilage in patients with osteoarthrosis of the hip joint and compared
the results to living cells of healthy cartilage at the µm scale, which is comparable to the sizes of
matrix molecules and cells [43]. Specimens of healthy cartilage surfaces are usually taken post-mortem
during an autopsy. However, they may display symptoms of osteoarthritis. Moreover, fatal diseases
may also be a cause of hidden cartilage pathologies. A challenge is the assessment of both healthy
and osteoarthritic living cells of articular cartilage at a micron scale. Some studies of pathological
changes of degenerated cartilage have been carried out, but mostly on animals, e.g., mice, pigs, or
sheep [1,17,44–46]. OA progression in animals was similar to the biomechanical properties of the
human hip, based on the histological analysis presented in [47]. In [48], the authors compared the
material properties of healthy human hip cartilage to the acetabulum of baboons, dogs, and bovines.
The results showed significant topographical variations of articular cartilage as well as of the mechanical
properties of hip cartilage among the four species. Human hip cartilage was the stiffest in all the test
sites, whereas bovine tissue was the softest. The authors stated that human tissue had the smallest
Poisson’s ratio and permeability. From the anatomical point of view, canine and baboon hips had
similar characteristics to the human hip joint. However, the baboon represented the most appropriate
animal model of healthy human hip articular cartilage [48].

In this study, cartilage samples were received during endoprosthesis removal in an equal number
of women and men aged 40 to 65 years (median: 58 years). With the aim of finding areas affected by
osteoarthritis, it was assumed that the main symptom of osteoarthritis was a degenerative-dystrophic
change in the surface. The orientation of collagen fibers is determined by the direction of the force lines
that arise during cartilage deformation; a loss of matrix glycosaminoglycans, mainly in the surface
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and the intermediate zones, is a characteristic sign of cartilage destruction [42]. The AFM contact
method was used to expose the internal sections of the tissue. A microspherical or a pyramidal tip is
usually programmed to indent the sample tissue cells to a preset force or depth. The Hertz model was
used for the evaluation of Young’s modulus of cells and tissues using the force spectroscopy mode
by fitting the loading portion of each indentation force to the depth curve [20,49]. The force curve
is obtained by recording the cantilever deflection as the tip is brought into contact with the surface
and then retracted. The indented sample is assumed to be extremely thick in comparison with the
indentation depth [50]. Although the indentation depth in the case of AFM probing of tissue falls
within the range of hundreds of nanometers, which is higher than the appropriate depth for the Hertz
model, it has been shown in many studies that the Hertz model describes the experimental data [42,51]
sufficiently. Although the AFM method can deform and distort the cartilage tissue [17,52], several
studies have shown that this method is a credible way to evaluate the mechanical properties of the
internal section of cartilage tissue [53,54]. The AFM technique consisted of two main steps. First, the
cartilage surface was adequately prepared. The authors proposed Equation (1) for obtaining cartilage
mass loss during dehydration. Then, the duration of dehydration necessary for obtaining stable
results of measurements of the mechanical properties was determined. It was found that measurement
results became statistically reliable (p < 0.05) after 12 hours, when the specimens had lost 30% of
liquid. All tests were performed in the desiccator at a room temperature of 20 ± 0.5 ◦C and a humidity
of 56 ± 1.0%. The stability of the mechanical properties after dehydration was achieved when the
liquid had evaporated from the surface, but the critical drying of the cartilage had not yet begun.
Secondly, topographical measurement of the prepared region was performed to optimize the surface
preparation parameters.

Knowledge about the nanomechanical properties of the hip joint yields information about its
function. A loss of the biomechanical function may be a symptom of biochemical changes that
occur during the onset and progression of OA. Mechanical properties of human cartilage were
measured at Ar = 9 × 9, due to the fact that at lower magnifications, deeper troughs were not
visible. Highly degenerated cartilage surfaces had a weaker set of morphological structures in AFM
images. The results show differences in the nanomechanical properties of OA samples compared
to healthy ones. It was found that specific surface features allowed us to identify the evolution of
osteoarthritis at the micrometer scale; these features were the arithmetic average of absolute values
(Ra), the maximum peak height (Rp), and the mean spacing between local peaks (S). Ra and Sa are two-
and three-dimensional amplitude parameters for determining the value of roughness, respectively.
Although some studies have reported that two-dimensional parameters fail to describe significant
changes in the surface morphology [55,56], the results of this study show that those parameters can be
applied in the assessment of the progression of OA development. The results in question demonstrated
incremental heterogeneity in the nanomechanical properties in the course of OA development. This is
in agreement with [13,57], where the authors stated that OA manifests as a heterogeneous disease with
varying clinical features and biochemical characteristics. A significant decrease in both chondroitin
sulfate and keratan sulfate was combined with dystrophic and necrotic changes in chondrocytes as
well as an increase in the number of deformed lacunae. At the submicron level, the authors of this
study proved that the spatial surface features differed between the three osteoarthritis grades.

Cartilage experiences dynamic loads, which is why the mechanical properties of healthy cartilage
should provide it with an ability to change its geometric shape and absorb the load. Moreover, it
should quickly restore its geometric shape after unloading. In cartilage affected by osteoarthritis,
Young’s modulus decreases, which means that the abilities for depreciation and restoration of the
initial geometric shape deteriorate. A unique nanomechanical profile was found for both healthy and
osteoarthritic human hip joint tissue. Young’s modulus of healthy cartilage surfaces ranged from 1.7 to
0.5 MPa, whereas for the three stages of wear by OA, the values were as follows: (1.14 to 1.3 MPa),
(1.02 to 1.2 MPa), and (0.82 to 1.2 MPa). These data were not significantly dependent on age and
gender (p > 0.05). In addition, our studies have shown uneven changes in Young’s modulus at depth
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as well as the various surface and subsurface layers of cartilage worn by osteoarthritis. Young’s
modulus decreased monotonically with increasing intensity in all three stages of wear. AFM revealed
a decrease in the values of Young’s modulus (up to 100 nm) of the upper layer of hyaline cartilage
and an impact of its reduction on the degree of wear. However, the relationships between Young’s
modulus and the depth of indentation into the cross-sections of both healthy cartilage and cartilage
affected by osteoarthritis are similar. In the future, the mechanical properties of cartilage layers deeper
than 100 nm (cross-sections) should be studied. This study is in agreement with [58], where atomic
force microscopy (AFM) was used to determine the effective indentation modulus and to measure the
surface morphology of moist cartilage surfaces. The study found that the mean values of the practical
indentation modulus of worn cartilage were lower than those of healthy cartilage, used as the control
sample. A medium-to-strong correlation between the useful values of the indentation modulus and
the OA grades was found. The relationship between surface topography and the useful values of the
indentation modulus of the cartilage surfaces with OA progression was weakly correlated [58].

In this study, the cartilage was obtained from people who had a clinically established diagnosis of
osteoarthrosis. The cartilage surface areas were divided into healthy ones and those with different
degrees of wear by OA. It was found that AFM for the articular cartilage was correlated to the findings of
morphologic imaging in patients with clinical symptoms of osteoarthritis. The results of this study might
indicate the potential of AFM to quantify those pathological changes in conditions for cartilage that
alter the biomechanical properties of the hip joint. There can be numerous applications of the proposed
method. First, the AFM technique makes it possible to examine donor cartilage for transplantation
in many of its areas, as it requires the removal of a minimum amount of cartilage. Moreover, the
presented method can be implemented to investigate the practical values of the indentation modulus
of clinical osteoarthritic cartilage and to assist in the understanding and assessment of OA. Finally,
the AFM methodology may be used for the study of the mechanical properties of cartilage samples
extracted from the joint by laparoscopy during non-total surgical operations. What is more, prediction
of the future course of osteoarthritis and the patient can be made on the basis of AFM studies.

The limitation of this study is the small scanning area (~100 µm2) for measuring the cartilage
roughness. However, to the best of the authors’ knowledge, this is the first study assessing the
mechanical properties and the submicron surface morphology of human hyaline cartilage based on
samples of healthy living cells. Joint replacement is becoming a routine surgical operation. Nowadays,
the development of supportive therapy allows to improve the quality of the patient’s life. In the
future, the authors will analyze the impact of supportive care on postponing the necessity for a hip
endoprosthesis in patients with osteoarthritis. Both AFM and confocal microscopy will be used in the
new study; both methods combined will lead to exciting research results.

5. Conclusions

The current trend in science is to develop methods of measurement of the surface roughness
of human articular cartilage in different joint diseases. AFM seems to constitute a powerful tool
for the surface analysis of biological samples based on indentation measurements and imaging.
The quantitative characterization of structural changes in the cartilage surface could be used
for understanding the disease progression and for developing objective OA assessment criteria.
Such a method could be used as a convenient screening tool complementary to the conventional
histological analysis.
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