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Abstract
Trees of life (ToLs) can only be rooted with direct methods that seek optimization of character state information in ingroup 
taxa. This involves optimizing phylogenetic tree, model and data in an exercise of reciprocal illumination. Rooted ToLs have 
been built from a census of protein structural domains in proteomes using two kinds of models. Fully-reversible models use 
standard-ordered (additive) characters and Wagner parsimony to generate unrooted trees of proteomes that are then rooted 
with Weston’s generality criterion. Non-reversible models directly build rooted trees with unordered characters and asym-
metric stepmatrices of transformation costs that penalize gain over loss of domains. Here, we test the empirical support 
for the evolutionary models with character state reconstruction methods using two published proteomic datasets. We show 
that the reversible models match reconstructed frequencies of character change and are faithful to the distribution of serial 
homologies in trees. In contrast, the non-reversible models go counter to trends in the data they must explain, attracting 
organisms with large proteomes to the base of the rooted trees while violating the triangle inequality of distances. This can 
lead to serious reconstruction inconsistencies that show model inadequacy. Our study highlights the aprioristic perils of 
disposing of countering evidence in natural history reconstruction.
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Introduction

Phylogenetic characters are useful biological features. They 
carry history when they spread in evolution as they trans-
form from a character state to another. Trees of life (ToLs) 

use a tree paradigm to describe the history of the diversified 
world, even if this history is network-like (Caetano-Anollés 
et al. 2018). Trees must be reconstructed from useful char-
acters that change at rates appropriate to the evolutionary 
depth of the recovered trees capturing vertical phylogenetic 
signatures. However, not many characters are sufficiently 
conserved, especially characters describing macromolecu-
lar sequences. Caetano-Anollés and Caetano-Anollés (2003) 
published the first rooted genomic ToL reconstructed from 
a census of protein-structural domain in proteomes. Struc-
tural domains show distinct 3-dimensional compact fold 
structures that are both highly conserved and recurrent in 
proteomes (Murzin et al. 1995). They can be efficiently 
identified using hidden Markov models of structural rec-
ognition (Gough et al. 2001). Some proteomes may hold 
one such domain defined at some level of protein classifica-
tion while others may hold many. For example, domains 
belonging to the TIM beta/alpha barrel superfamily that is 
common in enzymes can be found in the hundreds in a pro-
teome. We have shown that domains are excellent phyloge-
netic characters because they are highly conserved (Nasir 
and Caetano-Anollés 2012). Their numbers in a proteome 
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(genomic abundance) define character states, which embody 
‘serial homologies’ and can be used to build and root ToLs 
(reviewed in Caetano-Anollés et al. 2014, 2018). Note that 
domain gain and loss establish proteome history when 
changes in domain abundance (character state transforma-
tions) are reconstructed by optimization along the branches 
of a tree (e.g. Nasir et al. 2014).

ToL reconstructions require designing character-specific 
state transformations models that are somehow faithful to 
the biological process of change. As we will describe, the 
model of Caetano-Anollés and Caetano-Anollés (CA2) uses 
standard additive-ordered (Wagner) characters that are fully 
reversible (Caetano-Anollés and Caetano-Anollés 2003) to 
build unrooted trees (e.g. Nasir et al. 2015). These trees are 
then rooted a posteriori with Weston’s generality criterion, 
which also embodies the method of Schwartz and Dayhoff of 
rooting with paralogous genes (reviewed in Caetano-Anollés 
et al. 2018). In sharp contrast, Harish and Kurland (HK) pro-
posed a non-reversible model that uses unordered characters 
and a direct Sankoff optimization method to root ToLs (Har-
ish et al. 2013; Harish and Kurland 2017a). The HK model 
has been criticized for being unrealistic and self-inconsistent 
(Kim et al. 2014; Nasir et al. 2017). It penalizes the growth 
of domain abundance and diversity in the protein world and 
violates the triangle inequality, a property that ensures that 
the minimum distance (cost) between any two points (states) 
is a straight line. Here, we evaluate the empirical support 
for evolutionary models that root ToLs reconstructed from 
domain counts in proteomes. We do so by comparing the 
performance and fit of the CA2 and HK models to the data 
using two published proteomic datasets.

Materials and Methods

We tested two published datasets to evaluate the reliability 
and realistic nature of phylogenetic models. The proteome 
dataset from Harish et al. (2013) included abundance infor-
mation for 1732 fold superfamily (FSF) structural domains 
in 141 cellular proteomes. We labeled this dataset the HK 
dataset since HK used it to establish their model. The dataset 
from Kim and Caetano-Anollés (2011) included abundance 
information for 1420 FSFs in 102 proteomes, all from organ-
isms with free-living lifestyles. We labeled this dataset the 
CA2 dataset since it was implemented with the CA2 model 
for comparison with the HK model (Kim et al. 2014). FSFs 
were defined by the Structural Classification of Proteins 
(SCOP) database (Murzin et al. 1995; Andreeva et al. 2008). 
FSFs are groups of structural domains that are evolutionarily 
conserved and unified by common descent. In both datasets, 
proteomes were equally sampled from the three superking-
doms Archaea, Bacteria and Eukarya.

Raw proteomic abundance values for each FSF were nor-
malized, rescaled, and coded into 32 character states using 
an alphanumeric scale (0–9 and A–V) and phylogenetic 
matrices presented in Nexus file format. Maximum parsi-
mony was used to search for the most parsimonious trees 
using the phylogenetic software PAUP* ver. 4.0a (build 157; 
August 2017)(Swofford 2003). Custom models were defined 
in the Nexus ‘assumptions’ block using the DefType, User-
Type, TypeSets and Ancstates commands. Custom asymmet-
ric stepmatrices automatically rooted the phylogenetic trees. 
Similarly, transformation types derived from reconstructed 
frequencies of character change also rooted phylogenies 
intrinsically. Weston’s generality criterion implemented 
using the Lundberg rooting method (Lundberg 1972) placed 
the root at the most parsimonious location. Character state 
reconstructions (CSR) were implemented using Mesquite 
ver. 3.2 (Maddison and Maddison 2017) and MacClade ver. 
4.08 (Maddison and Maddison 2002). Bubble charts were 
used to describe the frequency of unambiguous changes 
between states in FSF abundance. Tree topologies were 
compared with tanglegrams and tree distances using Den-
droscope ver. 3 (Huson and Scornavaca 2012).

Results and Discussion

Order and Direction in Character Evolution

Since not all character states must necessarily transform into 
each other in a character state transformation model (also 
known as a transformation series), character state graphs 
(CSGs) have been used to describe landscapes of possible 
evolutionary change (Slowinski 1993). CSGs connect n ver-
tices representing character states with edges representing 
allowed state transformations (Fig. 1a). At one end of the 
spectrum of possible CSGs, maximally connected CSGs are 
‘complete graphs’ that allow all possible transformations 
between states. Characters of this kind were first proposed 
by Kluge and Farris (1969) but their optimization was elabo-
rated by Fitch (1971). They are commonly known as unor-
dered characters or Fitch characters and are very popular 
when analyzing molecular sequences of proteins and nucleic 
acids. At the other end of the spectrum, minimally connected 
CSGs are non-reticulated graphs with n–1 edge connections. 
The simplest of these CSGs are linear CSGs with no vertices 
having three or more connecting edges. Their transformation 
series can be represented with alphanumeric strings, which 
makes them amenable for simple computation. Linearly 
connected characters were originally formalized by Kluge 
and Farris (1969) and optimized by Farris (1970). They are 
known as ordered characters or Wagner characters and are 
widely used in the analysis of serial homologies, especially 
those describing morphological features of organisms. A 
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recent empirical comparison of ordered and unordered meth-
ods using inter-tree retention indices (Grand et al. 2013) sup-
ports the early conclusion of Slowinski (1993) that ordered 
characters are much superior in terms of both increasing 
resolving power and diminishing resolution artefacts. These 
studies revealed that ordered characters should be espe-
cially preferred when characters are quantitative and states 
describe gradients or clines (e.g. domain abundance counts).

Transformation changes define distances that are usually 
measured in steps. When characters are undirected, the num-
ber of steps between any two character states in one direction 
must match the number of steps in the opposite direction. In 
contrast, when they are directed, the number of steps can be 
different (Fig. 1b). This difference imposes directionality (a 
‘polarization’) to character transformation and defines a flow 
of change in the direction of time. Stepmatrices are usually 
used to make transformation costs explicit during dynamic 
programming algorithmic implementations (Sankoff and 
Rousseau 1975). These square matrices list the ‘cost’ in 
number of steps of all possible transformations. Note that 
transformations requiring many steps are costlier from a par-
simony point of view and are, therefore, less probable from 
an evolutionary point of view. Thus, cost and probability 
are inversely related. Figure 1c shows typical stepmatrix 
examples using transformation costs. In Fitch parsimony, 
change occurs between any state of an unordered character, 
with a cost of only one step, regardless of the direction of 

change. Thus, all probabilities of change between character 
states are equal in its corresponding stepmatrix. In Wag-
ner parsimony, change between any two states of a linearly 
ordered transformation carries a cost equal to the number 
of edges separating the states, regardless of the direction 
of change. For example, the distances between states 0 and 
2 or states 2 and 0 in the ordered CSG of Fig. 1c involve 2 
steps while those between 0 and 4 or 4 and 0 involve 4 steps. 
While changes in Wagner characters are additive and more 
restrictive, both Fitch and Wagner characters are considered 
typical undirected characters that are fully reversible. Their 
associated stepmatrices are symmetric and their phyloge-
netic optimization by minimization of independent origins 
(homoplasy) produces unrooted phylogenetic trees, in which 
no ‘arrow of time’ is defined.

To root trees and convey history, a branch holding the 
ancestor of each optimal unrooted tree must be identified a 
posteriori and ‘pulled down’ to its base to reorient change 
along branches, doing so most-parsimoniously and in the 
direction of time. Wagner trees build from typical Wagner-
ordered undirected characters can be rooted with direct 
or indirect rooting methods. Direct methods use character 
information present in the ingroup (the set of taxa being 
studied) to root the trees using, for example, the ontogenetic 
or generality criterion (Bryant 1997). In contrast, indirect 
methods root the trees by defining outlying groups of taxa 
(outgroups) as being ancestral. Because ToLs cannot be 

Fig. 1   Evolutionary models in parsimony analysis. a Character state 
graphs (CSGs) for equally weighted undirected characters with five 
character states (0, 1, 2, 3 and 4). The CSG in the left is a typical 
maximally connected character, an ‘unordered’ character while the 
CSG in the right is a minimally connected character embodied in a 
‘fully ordered’ character. The CSG in the middle is a partially ordered 
CSG containing a reticulation. b Transformation between charac-
ter states can be undirected or directed depending on the costs Dij 
applied to the transformation from character state i to state j, or vice 
versa, with i ≠ j. c Character state matrices (stepmatrices) describ-

ing ordered and unordered character transformations. The matrices 
show state indices describing transformation costs (in tree lengths) 
from one character state to another. d Phylogenetic models discussed 
in this manuscript that are relevant to proteome evolution. Models 
are described by the undirected or directed characters they use, their 
CSGs, the stepmatrices describing probabilities of transformation 
between character states, and the polarization strategy that is used 
to root the resulting phylogenetic trees. The diameter of bubbles in 
stepmatrix diagrams is proportional to probabilities of character state 
change
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rooted with outgroups, phylogenomic trees of proteomes and 
domains built from structural domain counts in proteomes 
(Caetano-Anollés and Caetano-Anollés 2003) are rooted 
with direct rooting methods such as Weston’s generality 
criterion implemented empirically with Lundberg (Lund-
berg 1972)(see explanation below). These CA2 models are 
summarized in Fig. 1d. Alternatively, trees can be rooted 
by invoking character polarization directly in the model. In 
contrast with the unordered and ordered ‘static’ characters 
described by symmetric stepmatrices (e.g. Fitch and Wag-
ner models), characters with transformations described by 
asymmetric stepmatrices produce rooted trees directly dur-
ing Sankoff tree optimization. For example, the HK model 
(Fig. 1d) uses unordered characters to define a maximally 
connected CSG and assigns arbitrary probabilities to sets of 
character transformations (Harish et al. 2013). The asymmet-
ric matrices tax gains more than losses, which forces ‘back-
ward’ character state polarization and rooting of trees. This 
results in ‘upside down’ phylogenies that attract organisms 
with large proteomes to the base of the rooted trees (Kim 
et al. 2014). The HK model is also at odds with considerable 
background knowledge, including the scale-free property of 
domain networks, genomic scaling laws, inferences from the 
reconstruction of ancestors, and the fossil record (Kim et al. 
2014; Nasir et al. 2017). Furthermore, since probabilities 
of change between states in CSGs depend on their direc-
tion, the HK model resembles parametric models in which 
each probability of the stepmatrix must be ‘pre-specified’ 
as a parameter of the model. This fact is important because 
pre-specification of each one of these parameters in the HK 
model results in many additional ad hoc assumptions.

Rooting Trees a Posteriori with the CA2 Model

The relationship between the states of a CSG and the polar-
ity of change are distinct concepts, regardless of the level of 
CSG connectivity (Mabee 1989). Evolution unfolds in time 
and is, therefore, an asymmetric ‘directional’ process. Thus, 
establishing the direction of character transformation along 
branches of a CSG is a necessary step that must be defined 
at some point in the course of phylogenetic analysis. Opera-
tionally, this ‘polarization’ can be done a priori by making 
assumptions of character polarity before searching for opti-
mal rooted trees (e.g. directed characters of the HK method), 
or a posteriori once optimal unrooted trees have been identi-
fied without polarization (e.g. rooting of trees generated with 
undirected characters in the CA2 method). In other words, 
a priori polarization defines assumptions of polarity prior 
to tree optimization while a posteriori polarization defines 
assumptions once trees have been already recovered. Both 
a priori and a posteriori approaches will produce the same 
outcome in the absence of character conflict in phylogenetic 
data, i.e. in the absence of ad hoc hypotheses of homoplasy. 

However, data are never conflict-free and the purpose of 
phylogenetic analysis is to resolve it (Farris 1983). For that 
reason, Meacham (1984) suggested that characters be treated 
first as undirected and that the resulting unrooted trees be 
rooted with exploratory polarization methods and explicit 
parsimony arguments. This has been the popular view of 
modern phylogenetic analysis. We note that polarizing a 
CSG results in a rooted tree, and vice versa, rooting a tree 
results in CSG polarization.

The CA2 model takes full advantage of the benefits of 
Wagner characters and a posteriori polarization. The CA2 
method generates optimal unrooted trees from multistate 
ordered characters with Wagner optimization and then 
applies the Lundberg optimization strategy to attach a hypo-
thetical ancestor most parsimoniously to the internode of 
the unrooted trees recovered during tree optimization (Lun-
dberg 1972). Polarization is done a posteriori. It is not done 
a priori by “pre-specification” of an ancestor as wrongfully 
claimed (Harish and Kurland 2017a); see Nasir et al. (2017) 
for extensive discussion. The ‘standard’ implementation of 
Lundberg sets all character states of the ancestor as ‘miss-
ing’ using the ‘ancstates’ command (ancstate = ?) and pro-
ceeds to optimize attachment of all possible ancestors to 
optimal trees, a strategy that complies with Weston’s rule 
and the generality criterion (Bryant 1997). Alternatively, 
arbitrarily defined ancestors can be optimally attached to 
the most parsimonious tree reconstructions. These ancestors 
delimit alternative Lundberg polarization schemes that can 
be compared with the ‘standard’ implementation to deter-
mine if some schemes are more parsimonious than others 
and are less affected by homoplasy. We have repeatedly 
observed in ToL reconstructions generated for over a dec-
ade that most parsimonious ToLs generated with the ‘stand-
ard’ and ‘all-0’ ancestor implementations of Lundberg are 
not only topologically isomorphic but are also optimal in 
terms of tree length and ensemble retention indices (RI). 
Tree length evaluates the most parsimonious solutions of 
Lundberg. RI is a measure of tree support that tests both 
the fit of character data to a reconstructed tree and levels of 
homoplasy in the analysis (Farris 1989). In all cases, opti-
mally rooted ToLs consistently supported the Archaea-first 
hypothesis (Caetano-Anollés et al. 2014), in sharp contrast 
to ToLs build with the HK model, which are rooted in the 
branch leading to Eukarya.

To illustrate the analytical benefits of a posteriori polar-
ization, we used the undirected ordered characters of the 
CA2 model to analyze the effect of alternative polarization 
scenarios in the reconstruction of ToLs generated from 
proteomic counts of structural domains in the CA2 dataset 
(Fig. 2a). The ‘standard’ implementation of Lundberg sets 
all character states of the ancestor as ‘missing’ using the 
‘ancstates’ command (ancstate = ?) and proceeds to optimize 
attachment of all possible ancestors to optimal unrooted 
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trees, a strategy that complies with Weston’s rule and the 
generality criterion (Bryant 1997). Alternatively, arbitrar-
ily defined ancestors can be optimally attached to the most 
parsimonious tree reconstructions. These ancestors delimit 
alternative Lundberg polarization schemes that can be com-
pared with the ‘standard’ implementation to determine if 
some schemes are more parsimonious than others and are 
less affected by homoplasy. Figure 2 plots RI values against 
the length of the most parsimonious trees when these were 
rooted with ancestors holding the same ancestral state for 
every character. All 32 possible states in the ordered series 
(labeled in alphanumeric format from 0 to 9 and A to V) 
were explored as being ancestral. An RI value of 1 implies 
perfect fit and absence of ad hoc assumptions of homoplasy. 
An RI value of 0 implies the tree fits data as poorly as pos-
sible and exhibits maximum instances of independent origin. 
The ‘standard’ Lundberg implementation and Lundberg with 
‘all-0’ and ‘all-1’ ancestors (i.e. ancestors that assign state 0 
or state 1 to the entire character ensemble) were the best out 
of all possible implementations. They produced most par-
simonious rooted ToLs with identical topologies that were 
the shortest, had the highest RI values, and placed Archaea 
at their base. This topological isomorphy and optimality of 
ToL reconstructions using the ‘standard’ and ‘all-0’ ancestor 
implementations of Lundberg have been repeatedly observed 
in our laboratories for over a decade. Thus, maximum par-
simony consistently supports the Archaea-first hypothesis 
(Caetano-Anollés et al. 2014). Results have two important 

implications for phylogenetic analysis of proteomes: (i) the 
rooting scheme complies with Weston’s rule and the gener-
ality criterion, the rooting method that uses the least num-
ber of ad hoc assumptions (Bryant 2001), and (ii) optimal 
character polarization with ‘all-0’ ancestors shows there is 
a tendency of growth of structural domains in proteomes, 
and not global tendencies of reductive evolution as HK sug-
gest. Results, therefore, add to the long list of evidence in 
support of the evolutionary principle of continuity (Nasir 
et al. 2017).

One remarkable finding is that RI and tree length decrease 
monotonically with perfect fit (y = − 5.10− 6 × + 1.07; 
R2 = 1.000; P < 0.001) when character states of Lundberg 
ancestors were defined with increasing values (from anc-
state = 0 to ancstate = V). This regular monotonic decrease 
that manifests when polarization of the ordered series is 
gradually ‘inverted’ provides strong indication that proteome 
abundance data significantly fits the CA2 model of ordered 
characters and evolutionary growth in the nested lineages of 
the ToL. In fact, the regular patterns suggest the nesting of 
serial homologies is equally affected by increasing subop-
timality of the rooting variants. As a control, we analyzed 
the effect of alternative Lundberg polarization scenarios on 
ToLs generated using unordered maximally connected char-
acters (Fig. 2b). Again, the Lundberg ‘standard’ and ‘all-0’ 
ancestors were the most parsimonious and produced trees 
rooted paraphyletically in Archaea. However, there was no 
monotonic decrease pattern since the relationship between 

Fig. 2   Rooting trees of life (ToLs) a posteriori with the Lundberg 
method. ToLs were generated using ordered (a) and unordered char-
acters (b) from phylogenetic encodings of a genomic census of 1420 
fold superfamilies (FSFs) of protein structural domains in 102 pro-
teomes (CA2 dataset). Proteomes were from organisms with free-
living lifestyles belonging to superkingdoms Archaea (red), Bac-
teria (blue) and Eukarya (green). Ensemble retention indices (RI) 

of recovered trees were plotted against tree length. Topologies with 
paraphyletic or monophyletic basal superkingdoms were labeled with 
open and close circles, respectively, and colors describing support 
for an Archaea-first or Eukarya-first evolutionary scenario of origin. 
Sc, Saccharomyces cerevisiae; Eh, Emiliania huxleyii; Sb, Sorghum 
bicolor; Dm, Drosophila melanogaster; Xl, Xenopus laevis 
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RI and length was haphazardous. The fit of abundance data 
to model was weaker.

Evaluating the Biological Realism and Difficulties 
of the HK Model

Maximally connected characters are evolutionarily the most 
agnostic and least informative of all possible models. Mick-
evich labeled them “nihilistic” in that they are maximally 
agnostic and unrealistic (Mickevich 1982). HK chose a max-
imally connected CSG as foundation for their HK model. 
They then took a small fraction of possible character state 
transformations in the maximally connected CSG (~ 3% of 
the 992 possible transformations) and endowed them with a 
same but different probability of change, penalizing struc-
tural domain growth in proteomes. For their binary data 
matrices of domain occurrence, gains were taxed two times 
more than losses. For multistate data matrices of domain 
abundance, gains were taxed three times more than losses 
for the first gain. Stepmatrix penalties were chosen based on 
the premise that “the propensity for change in superfamily 
frequency due to innovation is more constrained than the 
changes in frequencies (copy number) due to duplication 
and loss of members of a superfamily” (Harish and Kurland 
2017a). Crucially, the penalty value for innovation (twice 
for occurrence and thrice for abundance) was chosen as the 
“smallest penalty for each taxon sampling that supports a 
fully resolved tree with monophyletic clades that is consist-
ent with the major groups identified in the corresponding 
unrooted trees”. The “major groups” that must be monophy-
letic in the HK model were defined by Harish et al. (2013) 
as superkingdoms Archaea, Bacteria and Eukarya. Thus, the 
‘empirical’ support for the HK model rests on an assumption 
that arises from the reconstructed phylogenetic tree (the end 
product of the phylogenetic exercise) and not the data or 
model that is used to build the historical hypothesis. This is 
troublesome for several reasons.

First, adding an assumption of monophyly amounts to 
adding an additional ad hoc hypothesis that is external to 
phylogenetic analysis with the sole purpose of disposing 
conflicting observations of independent origins. This addi-
tional hypothesis can constrain or override the minimization 
of ad hoc hypotheses of homoplasy that occurs during tree 
optimization. Within the phylogenetic hypothetico-deductive 
framework, severity of test decreases when invoking ad hocs 
and auxiliaries, often resulting in a “verificationist slippery 
slope [that] ultimately ends in tautology” (Kluge 1997). 
Typical examples of such ad hocs and auxiliaries invoked 
in the HK model include a priori weighting of characters or 
character transformation costs compatible with some form of 
phylogenetic congruence (such as monophyly-driven penal-
ties), considering assumptions of pattern and process (such 
as incorporation of arguments on superfamily innovation), 

or adding an assumption of rooting (such as penalties in 
asymmetric stepmatrices). These difficulties are exacerbated 
when making global statements typical of a ToL.

Second, hypotheses of evolutionary pattern must be ‘dis-
covered’ and must not be ‘pre-specified’ in phylogenetic 
analysis. HK claim penalties must be derived from “Hen-
nig’s premise … that all species arise through the nested 
bifurcations that describe phylogenetic divergence from a 
common ancestor” (Harish and Kurland 2017a). However, 
by definition, all species of a ToL arise from a common 
ancestor even in the absence of monophyly in some region 
of the tree, so the foundational premise of the argument is 
faulty.

Third, monophyly is a relative statement that depends on 
the rooting of a tree and the definition of ingroups. Thus, 
manipulating character polarization to root a tree or invok-
ing background knowledge to define an ingroup defeats the 
phylogenetic enterprise. Since the HK model forces mono-
phyly of superkingdoms, the superkingdom-related ingroups 
constrain rooting to only three branches out of hundreds. 
However, there is no guarantee that ingroups have been 
properly defined or that further exploration will fine grain 
superkingdoms into smaller groups.

Testing Empirical Support for the CA2 and HK 
Models

Since their introduction by Dayhoff et al. (1978), amino 
acid substitution matrices are widely used models for 
the evolutionary analysis of amino acid sequences. PAM 
and BLOSUM matrices describe amino acid change in 
sequence alignment data assumed to represent the extant 
world of protein sequences. This change is derived from 
amino acid mutability and frequency in sequences. Thus, 
stepmatrix substitution models can be directly derived from 
phylogenetic data. This can be done within the generalized 
maximum parsimony framework. Given a phylogeny and an 
initial evolutionary hypothesis one can reconstruct histories 
of character state change along the branches of the optimal 
trees and use this information to define a model of character 
evolution (Maddison and Maddison 2002). Doing so could 
be useful to test how compatible is an evolutionary model 
to actual data.

Proteomic change in structural domain abundance has not 
been modeled for phylogenetic analysis. We, therefore, used 
the most agnostic model that is compatible with the HK 
model to generate unrooted trees (Fig. 3a) or trees rooted 
with Lundberg (Fig. 3b, c) from the HK dataset of Harish 
et al. (2013) and derived frequencies of character change by 
character state reconstruction. These frequencies can be used 
to build transformation model types that best match phylo-
genetic data. As mentioned earlier, the agnostic undirected 
unordered characters of the Fitch type with 32 character 
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steps serve as foundational basis of the HK model. Figure 3 
shows bubble charts that describe relative frequencies of 
reconstructed character change for unrooted and rooted ver-
sions of the most parsimonious trees. In all cases, changes 
occurred most frequently in single steps. More importantly, 
gains were favored over losses throughout the stepmatrix 
of character state transformations. Most notable trends of 
increased frequencies of gains were evident in changes 
from state 0 to states 3–9 relative to their loss counterparts, 
changes from states 3–9 to 0. These patterns of change go 
counter to those of the HK model, a simple observation that 
challenges the claim that the HK model is ‘empirical’.

Stepmatrices obtained from relative frequencies of char-
acter change can be applied to the characters of that the 
same dataset to build new ‘refined’ trees in iterative man-
ner (Mickevich 1982). The idea encompasses the ‘dynamic 
weighting’ approach of Williams and Fitch (1990) that 
simultaneously and iteratively derives probabilistic models 
and trees until estimates and tree topologies are stabilized. 
We used this approach to compare the HK and CA2 mod-
els and test if a single round of iteration provided refined 
trees with stable topologies. The goal was to evaluate the 

likelihood fit between the model and data. First, we used 
the HK model (with its asymmetric stepmatrix) and the 
HK dataset to build an intrinsically rooted ToL and derive 
a transformation model type from frequencies of character 
change (Fig. 4a). As expected, patterns of increased gains 
that are present throughout the frequency bubble charts of 
the HK model were only biased in those cells in which the 
HK model originally taxed gains three times more than 
losses for the first gain (first row versus first column). Thus, 
the HK model reverses a crucial natural trend that exists 
in phylogenetic data (see Fig. 3). Construction of trans-
formation model types from the frequency matrices using 
transformation weight functions of Wheeler (1990) were 
then used to build a new refined tree, which we find did 
not maintain the topology of the tree used to build the HK-
derived stepmatrix model. Instead, the operation brought 
organisms with large genomes (e.g. Xenopus laevis) to the 
base of the ToL changing its rooting from monophyletic 
to paraphyletic. This reveals an artefactual attraction of 
large proteomes towards the root of the trees. Further-
more, tanglegrams and tree (hybridization and cluster) 
distances quantified significant topological mismatches 

Fig. 3   Deriving frequencies of character state changes from charac-
ter state reconstructions. Phylogenetic trees were reconstructed from 
the HK dataset by treating coded domain abundance values as undi-
rected unordered (Fitch) characters and producing unrooted trees (a), 
or trees rooted with Lundberg using ancstate = V (b) or ancstate = 0 
(c). Bubble charts were derived from character state reconstruction 

of changes along the branches of the optimal trees. Taxa belong-
ing to Archaea, Bacteria and Eukarya are labeled with red, blue and 
green circles, respectively. Tree statistics: a 2 optimal trees, tree 
length = 44,784, retention index = 0.499; b 4 trees, length = 45,872, 
retention index = 0.473; c 8 trees, length = 45,063, retention 
index = 0.495
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between the trees. These results were not dependent on 
the dataset that was used. A similar outcome was obtained 
when trees were reconstructed with transformation model 
types derived from the HK model but using the CA2 data-
set instead (tanglegrams are described in Supplementary 
Fig. 1). Second, we used the CA2 model and the CA2 data-
set to build a ToL rooted with the Lundberg method. We 
then derived a transformation type from the frequency dia-
grams (which very much resembled those from unordered 
characters, Fig. 2). The tree built from this transformation 

type had a topology that was almost identical to the origi-
nal tree, including the paraphyletic rooting in Archaea, 
as shown by tanglegrams and tree distances (Fig. 4b). A 
similar outcome was obtained when using the HK dataset 
but with increased tree distance values (Supplementary 
Fig. 1). Topology mismatches were expected given that 
the HK dataset included proteomes from obligate parasites 
shown to act as rogue data destabilizing leaves in phy-
logenetic analyses (Nasir et al. 2017). Table 1 describes 
hybridization and cluster distances of tanglegrams for the 

Fig. 4   Testing the performance of stepmatrices of transformation 
costs derived from character state reconstruction (CSR) along the 
branches of trees (T0) obtained using the HK model (a) or the CA2 
model (b). Significant changes in tree topology, revealed in tangle-
grams comparing the two trees (right), were only observed when the 
refined tree (T1) obtained from the stepmatrix character type of the 
HK model was compared to the original tree (T0) in a first round of 

possible iterations. Higher hybridization and cluster distances indi-
cate higher departures in tree topologies. Taxa belonging to Archaea, 
Bacteria and Eukarya are labeled with red, blue and green circles 
in connectors, respectively. Tree statistics for panel a T0, 1 optimal 
tree, length = 53,746; T1, 2 trees, length = 81,966. Tree statistics for 
panel b T0, 1 tree, length = 70,095, retention index = 0.723; T1, 1 tree, 
length = 54,906
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four sets of iterative reconstructions. Lower distance val-
ues imply better match between the initial and refined tree 
(less crisscross when comparing topologies), which in our 
analyses quantifies the fit between phylogenetic data and 
evolutionary model (Fig. 4). Our study reveals significant 
data-model mismatch when using the HK methodology, but 
not when the CA2 model was used.

Innovation and Innovation Spread are Different 
Concepts

When building ToLs from proteome data, characters 
describe the spread of individual structural innovations in 
the proteomes of the living world. They do not describe 
their rise, i.e. their first appearance in evolution, especially 
because taxa are not protein structural domains but pro-
teomes. Character state models apply to each individual 
character, i.e., the proteomic occurrence or abundance of a 
FSF superfamily describing a ‘specific’ structural domain. 
Thus, each model relates to a single domain and describes 
change within a vector of FSF occurrences or abundances 
of that domain for a collective of sampled proteomes (not 
a vector of proteomes for each FSF). Characters, therefore, 
overwhelmingly describe how that FSF spreads in the line-
ages of the ToL.

Harish and Kurland (2017a) state: “The observed low 
frequencies of novel superfamily innovation as well as the 
higher frequencies of duplication and loss are summarized 
in the [HK] evolution model as lower propensities of inno-
vation ... Since a lower relative propensity implies a higher 
constraint on the possible character-state transitions due 
to innovation, these transitions were assigned higher costs 
(penalty)”. This reasoning is faulty because the issue is 
not innovation but rather the balance of gains and losses in 
the trees of a domain that had already appeared in evolu-
tion. In fact, a structural innovation implies evolutionary 
transitions in protein fold space capable of generating a 
novel previously unseen structure. While the first appear-
ance of these innovations are rare events, their retention 
and loss in trees of these highly conserved features is a 
durable and relatively common phenomenon. We have 

made the distinction between innovation and innovation 
spread explicit in a dynamic model of proteome evolu-
tion, which we found explains the phylogenomics of the 
CA2 characters (Tal et al. 2016). The model uses global 
birth–death differential equations and domain abundances 
as state values and is governed by two parameter classes, λj 
or the rate (birth minus death) of generating new variants 
of a same domain structure j, and aij or the rate of ‘forward’ 
transition from structure j to structure i. Individual FSFs 
under this model diversify in approximately exponential 
manner accumulating in a growing funnel with rate λj. At 
some point, given rate aij, the growing funnel generates a 
new FSF structure. This new structure is a unique and rare 
innovation (since aij < < λj) that creates a new growing fun-
nel of variants. The growth of protein domains in evolution 
is thus governed by sets of two parameter classes that are 
analogous to imitation and innovation parameters q and 
p, respectively, of the Bass innovation model (Norton and 
Bass 1987). Only λj contribute significantly to the spread 
of FSF innovations in ToLs, challenging the construction 
rationale of the HK model.

Parametric Contingencies

The fully-reversible and non-reversible models we compare 
are stationary and time-reversible, i.e., the evolutionary pro-
cesses responsible for character state change and their sto-
chastic fluctuations have occurred long enough to make them 
independent of the starting character state and insensitive to 
both the vagaries of stochasticity and the flow of time. Thus, 
stepmatrices of transformation costs differ from tables of 
instantaneous transition rates (Q matrices) used by paramet-
ric model-based methods of phylogeny reconstruction, such 
as maximum likelihood or Bayesian analysis, which often 
use non-equilibrium transition probabilities to drive nonsta-
tionary directional Markovian (memory-less) evolution (e.g. 
Klopfstein et al. 2015). Instead, the stepmatrix models we 
compare are typical of discrete characters of the morphologi-
cal type that are widely used in systematics and cladistics. 
It could be argued, however, that stepmatrix models could 
be tested and improved by a mathematical approximation to 
more realistic statistical models, using, for example, fitted 
model and time parameters inferred from an evolutionary 
model of proteome evolution (e.g. a dynamic birth–death 
model; Tal et al. 2016) or probabilities informed by step-
matrices obtained from CSR. Indeed, the HK model has 
been parametrized for Bayesian reconstruction from binary 
characters of FSF occurrence (Harish and Kurland 2017b) 
using the nonstationary model developed by Klopfstein et al. 
(2015). However, the validity of priors, the performance of 
the directional evolution model, and its statistical consist-
ency have not been established or confirmed by simulation. 
Goloboff et al. (2018) highlight the perils of studying the 

Table 1   Tree distances of tanglegrams comparing phylogenetic trees 
reconstructed using the HK and CA2 models and transformation types 
that are function of frequency of chances derived from the respective 
models using CSR

Comparative analyses used either the HK or CA2 datasets

HK dataset CA2 dataset

Hybridization distance HK model 37 31
CA2 model 29 20

Hardwired cluster distance HK model 67 53
CA2 model 48 29
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evolution of morphological features with a model originally 
developed for restriction sites of nucleic acid sequence. In 
the case of HK, these morphological features take the form 
of high-level protein structural topologies, the evolution of 
which is poorly understood and is far away from the highly 
dynamic changes that often bring molecular sequences to 
saturation. In fact, Goloboff et al. (2018) discourage the use 
of the parametric model-based approach of reconstruction 
altogether by showing that parsimony performs as well or 
better than model-based methods for discrete morphological 
characters of the type proposed by Klopfstein et al. (2015). 
Instead, and despite the unsubstantiated belief that para-
metric models are superior, a parsimony “common sense” 
approach to what is known or not known of the evolutionary 
process shields against von Neumann’s fitting elephants—
“With four parameters I can fit an elephant, and with five I 
can make him wiggle his trunk” (quoted by Enrico Fermi 
via Freeman Dyson). It also avoids taking a ‘philosophical’ 
stance with stochastic models of change. In this regard, the 
histories of complicated traits such as fold structures are 
likely biological singularities unfolding at different levels of 
molecular organization, i.e. historical random walks in the 
highly structured and percolated neighborhoods of genotype 
space, which are tailored by the function and structure of 
macromolecules (e.g. Ferrada and Wagner 2010). Concerns 
about the statistical inconsistency of parsimony developed 
for molecular sequences do not apply to morphological fea-
tures, vanish with larger datasets, and cannot be adequately 
validated by simulation, especially when the model used 
to evolve the data has not been independently validated or 
when it is not supported by empirical evidence (Goloboff 
et al. 2018). In turn, many assumptions of nucleic acid mod-
els do not apply to morphological-type features, including 
the use of: (i) not more than 4-character states; (ii) fixed 
substitution rates, (iii) equilibrium of compositional frequen-
cies often linked to substitution rates; (iv) constant selec-
tion pressures through time; and (v) concerted increases or 
decreases of transition probabilities for all characters at the 
same branches. Similarly, many assumptions of morpholog-
ical-type features are not considered in models of sequence 
evolution, including assumptions explaining gain-loss (the 
effect of indels or genomic rearrangements) or character 
state independence (the effect of molecular structure). This 
blurs the careful balance of parameters and realism that pro-
pels the justification of parametric evolutionary models.

The Archaea‑First Model and the Paraphyletic 
Rooting of the ToL

The basal branches of a ToL define different models of 
diversification of life. All rootings with the CA2 model 
and rootings with the CA2 and HK models refined by the 
‘dynamic weighting’ approach were paraphyletic (Fig. 4). 

These paraphyletic rootings can be interpreted to result 
from early grades, “groups of diversifying organisms (pri-
mordial archaeons) in active transition that were initially 
unified by the same and archaic level of physiological 
complexity” (Caetano-Anollés et al. 2014). When obli-
gate parasites were excluded (e.g. CA2 dataset) to avoid 
the effect of rogue taxa (Nasir et al. 2017), phylogenies 
obtained with the better-fitting CA2 model placed archaeal 
organisms at their base, and therefore, supported once 
again the Archaea-first scenario for origins of diversified 
life (Caetano-Anollés et al. 2014). This scenario suggests 
that the ‘turning point’ of origin of grades during the late 
evolution of the common ancestor of life was triggered 
by a significant transition process capable of eliciting 
an evolutionary ‘crystallization’ (sensu Carl R. Woese). 
Remarkably, phylogenomic analysis provides strong sup-
port to archaeal organisms diversifying by an early reduc-
tive evolutionary force and later on by co-evolution with 
other emerging lineages of the ToL (Staley and Caetano-
Anollés 2018).

Conclusions

As stated by Farris (1983), “Science requires that choice 
among theories be decided by evidence, and the effect of an 
ad hoc hypothesis is precisely to dispose of an observation 
that otherwise would provide evidence against a theory. If 
such disposals were allowed freely, there could be no effec-
tive connection between theory and observation, and the 
concept of evidence would be meaningless”. Here, Farris 
refers to the need of minimizing ad hoc hypotheses of homo-
plasy when reconstructing history. Over decades, this ration-
ale developed into modern phylogenetic analyses. Proposals 
of character state models for phylogenomic reconstruction 
must be empirically grounded and must minimize the num-
ber of ad hoc and auxiliary assumptions. Here, we evaluate 
the two models that have been used so far to build rooted 
ToLs from a census of structural domains in proteomes. We 
find that the standard use of ordered Wagner characters and 
Weston’s generality rooting criterion is superior to the use 
of unordered characters and asymmetric stepmatrices. The 
standard models match reconstructed frequencies of char-
acter change and are faithful to the distribution of serial 
homologies in trees. In contrast, the asymmetric stepmatrix 
models do not reflect the data. Instead, they attract organisms 
with large proteomes to the base of the rooted trees while 
violating the triangle inequality of distances. They also pose 
many other difficulties. For example, a 32-state stepmatrix 
parsimony model ventures into Kluge’s slippery slope of 
deciding to add or not 992 new ad hoc assumptions that 
can support a ‘pre-specified’ monophyletic tree topology, 
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without paying attention to how the morphological-type 
biological characters might actually evolve (Goloboff et al. 
2018). This highlights the aprioristic perils of disposing of 
countering evidence in natural history reconstruction.
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