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Although plasmacytoid dendritic cells (pDCs) able to produce large amounts of type 1
interferons (IFN-I) play beneficial roles in host defense against viral infections, excessive
activation of pDCs, followed by robust production of IFN-I, causes autoimmune disorders
including systemic lupus erythematosus (SLE) and psoriasis. Autoimmune pancreatitis
(AIP), which is recognized as a pancreatic manifestation of systemic immunoglobulin G4-
related disease (IgG4-RD), is a chronic fibroinflammatory disorder driven by autoimmunity.
IgG4-RD is a multi-organ autoimmune disorder characterized by elevated serum
concentrations of IgG4 antibody and infiltration of IgG4-expressing plasmacytes in the
affected organs. Although the immunopathogenesis of IgG4-RD and AIP has been poorly
elucidated, recently, we found that activation of pDCs mediates the development of
murine experimental AIP and human AIP/IgG4-RD via the production of IFN-I and
interleukin-33 (IL-33). Depletion of pDCs or neutralization of signaling pathways
mediated by IFN-I and IL-33 efficiently inhibited the development of experimental AIP.
Furthermore, enhanced expression of IFN-I and IL-33 was observed in the pancreas and
serum of human AIP/IgG4-RD. Thus, AIP and IgG4-RD share their immunopathogenesis
with SLE and psoriasis because in all these conditions, IFN-I production by pDCs
contributes to the pathogenesis. Because the enhanced production of IFN-I and IL-33
by pDCs promotes chronic inflammation and fibrosis characteristic for AIP and IgG4-RD,
neutralization of IFN-I and IL-33 could be a new therapeutic option for these disorders. In
this Mini Review, we discuss the pathogenic roles played by the pDC-IFN-I-IL-33 axis and
the development of a new treatment targeting this axis in AIP and IgG4-RD.
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INTRODUCTION

Plasmacytoid dendritic cells (pDCs) were initially identified
over two decades ago as a unique subset of dendritic cells that
can produce abundant quantities of type 1 interferons (IFN-I)
(1). Although pDCs constitute a very small percentage of
human and murine immune cells (2), this cell type is a
major cellular source of IFN-I and plays critical roles in host
defense against microbial infection. This idea is supported by
the findings that mice lacking pDCs or those treated with a
pDC-depleting antibody (Ab) exhibit defective IFN-I
responses (3). Activation of pDCs, followed by enhanced
IFN-I production, is essential for the initiation of innate
immune responses against viral infections (3, 4). Recent
reports indicate that during infection with severe acute
respiratory syndrome coronavirus 2, which has recently
caused a pandemic worldwide, host immune defenses involve
pDC activation (5). However, excessive production of IFN-I by
pDCs also underlies the immunopathogenesis of a broad range
of autoimmune disorders (6). Typical autoimmune diseases
driven by the activation of pDCs include systemic lupus
erythematosus (SLE) (7, 8), psoriasis (9), and type 1 diabetes
(T1D) (10, 11). A recent clinical trial, in which patients with
active SLE were successfully treated with biologics targeting
IFN-I, verified the pathogenic roles of IFN-I produced by
pDCs (12–14).

Type 1 autoimmune pancreatitis (AIP), which is recognized
as a pancreatic manifestation of systemic immunoglobulin G4-
related disease (IgG4-RD), is a chronic fibroinflammatory
disorder of the pancreas (15–18). In this article, type 1 AIP is
hereafter referred to as ‘AIP’. IgG4-RD and AIP are newly
established multi-organ autoimmune disorders characterized
by elevated serum concentrations of IgG4 Ab and infiltration
of IgG4-expressing plasmacytes into the affected organs.
Although some of the molecular mechanisms accounting for
enhanced IgG4 Ab responses are being elucidated, their
immunopathogenesis remains poorly understood. Recently, we
found that activation of pDCs mediates the development of
murine AIP and human AIP/IgG4-RD via the production of
IFN-I and interleukin-33(IL-33) (17, 19–23). Depletion of pDCs
or neutralization of signaling pathways mediated by IFN-I and
IL-33 efficiently inhibited the development of experimental AIP.
Furthermore, enhanced expression of IFN-I and IL-33 was
observed in the pancreas and serum of patients with AIP and
IgG4-RD. Moreover, AIP and IgG4-RD share the mechanism of
their immunopathogenesis with other autoimmune diseases,
including SLE and psoriasis, in that the autoimmunity is
caused by IFN-I production by pDCs. However, the IL-33-
mediated signaling pathway is activated only in AIP and IgG4-
RD, but not in SLE or psoriasis. Given that enhanced production
of IFN-I and IL-33 by pDCs promotes chronic inflammation and
fibrosis, which are characteristic features of AIP and IgG4-RD,
neutralization of IFN-I and IL-33 could be a new therapeutic
option for these disorders. In this Mini Review, we discuss
pathogenic roles played by the pDC-IFN-I-IL-33 axis and
propose novel treatments targeting this axis in AIP and
IgG4-RD.
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IFN-I SIGNALING PATHWAYS IN PDCS

Innate immune responses initiated by Toll-like receptors (TLRs)
are critical for host defense against pathogens (24). pDCs
preferentially express endosomal TLR7 and TLR9, which detect
single-stranded RNA and double-stranded DNA derived from
bacteria and viruses (24). Innate immune responses mediated by
TLR7 and TLR9 depend upon the activation of myeloid
differentiation primary response protein 88 (MyD88). The
interaction between TLR7/9 and MyD88 is followed by the
activation of interleukin-1-receptor-associated kinase 4
(IRAK4) (24, 25). The kinase activity of IRAK4 mediates the
formation of complexes consisting of IRAK1, tumor-necrosis
factor receptor-associated factor 3 (TRAF3), TRAF6, inhibitor of
NF-kB kinase a (IKKa), and interferon regulatory factor 7
(IRF7) (4, 24, 25). Formation of this complex leads to the
nuclear translocation of IRF7, a critical transcription factor for
the initial production of IFN-I in pDCs (24–26). IRF7, which is
polyubiquitinated by TRAF6 after interaction with MyD88 (27),
is the master regulator of IFN-I production. This idea is fully
supported by studies showing that pDCs isolated from mice
deficient in IRF7 or MyD88 exhibit defective IFN-I production
upon stimulation with TLR9 ligands (28).

As mentioned above, sensing of single-stranded RNA and
double-stranded DNA by endosomal TLR7 and TLR9 induces
the activation of the MyD88-IRAK4-IRAK1-TRAF6-TRAF3-
IKKa-IRF7 pathway, thereby leading to the initial production
of IFN-I by pDCs (24–26). Although the initial production of
IFN-I is low, IFN-I-mediated signaling pathways are augmented
by the presence of a positive feedback loop (26, 29). IFN-I
activates the cell surface IFN-I receptor followed by nuclear
translocation of IFN-stimulated gene factor 3, which is
composed of signal transduction and activator of transcription
1 (STAT1), STAT2, and IRF9 (26, 29), and promotes the
transcription of IRF7 by binding to its putative promoter
regions. The newly synthesized IRF7, in turn, leads to the
amplification of IFN-I transcription. This positive feedback
loop of IFN-I response is useful for the eradication of viruses
and bacteria; however, it may also augment IFN-I responses
associated with autoimmunity.
PATHOGENIC ROLES OF PDCS IN
AUTOIMMUNE DISEASES

Although pDCs play beneficial roles in host defense against viral
infections, excessive activation of pDCs, followed by robust
production of IFN-I, causes autoimmune diseases. SLE is the
most well-studied autoimmune disease the pathogenesis of
which is significantly affected by the pDC-IFN-I axis (30). This
notion is supported by the finding that elevated serum
concentrations of IFN-I observed in patients with SLE
correlate with both disease activity and severity (31). SLE is a
chronic multi-organ disorder characterized by the production of
Abs to self-nucleic acids and by the deposition of immune
complexes (32, 33). In SLE, immune complexes composed of
July 2021 | Volume 12 | Article 713779
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self-nucleic acids and antinuclear Abs are efficiently taken up by
cell surface Fc receptors and then delivered into the endosomal
components of pDCs (3, 34, 35). Sensing of self-nucleic acids by
endosomal TLR7 and TLR9 results in IFN-I production by
pDCs. Thus, activation of TLR7 and/or TLR9 by self-nucleic
acids is an indispensable step for pDC-mediated IFN-I responses
in SLE.

Regarding the trigger for IFN-I production by pDCs, recent
studies have highlighted the importance of neutrophil
extracellular traps (NETs), web-like structures released by
activated neutrophils (36–39). NETs, composed of chromatin
DNA, oxidized mitochondrial DNA, antimicrobial peptides, and
the high-mobility group box 1 (HMGB1) protein, can function as
a trigger for excessive IFN-I secretion through the activation of
TLR7 and/or TLR9 in pDCs of patients with SLE (36–39). In fact,
increased formation of NETs and elevated concentrations of
NET components, such as antimicrobial peptides and HMGB1,
were observed in the serum of patients with SLE as compared
with those in healthy controls (37). Thus, enhanced IFN-I
production caused by NET-mediated TLRs activation underlies
the immunopathogenesis of human SLE (Figure 1). As for
transcription factors for IFN-I production involved in the
immunopathogenesis of SLE, recent studies highlight the
importance of IRF5 in parallel to IRF7 (40, 41). IRF5 gene
polymorphisms associated with SLE cause enhanced expression
of IRF5 and hyperactivation of IRF5 underlies the
immunopathogenesis of SLE through induction of IFN-I
production (40, 41).

In line with human studies, experimental murine models of
lupus provided evidence supporting the immunopathogenicity
of pDCs. NZB and BXSB mice spontaneously develop murine
Frontiers in Immunology | www.frontiersin.org 3
lupus (30). Neutralization of the IFN-I receptor in BXSB mice
and genetic deletion of the IFN-I receptor in NZB mice protected
these mouse strains from the development of lupus, suggesting
that spontaneous development of murine lupus required intact
IFN-I signaling pathways (42, 43). Recent studies have
successfully shown that pDC-mediated IFN-I responses cause
experimental murine lupus. To investigate the specific
contribution of pDCs in murine lupus, transgenic mice were
created that expressed the diphtheria toxin (DT) receptor under
the control of the highly specific human pDC CLEC4C/BDCA2
promoter. Administration of DT before disease onset inhibited
the development of lupus by selective systemic ablation of pDCs,
which was accompanied by impaired expression of genes
stimulated by IFN-I (44). Interestingly, these beneficial effects
of transient pDC depletion were sustained even after pDC
recovery, indicating crucial roles of pDC-mediated IFN-I
responses in disease initiation (44). This idea was supported by
another study in mice with impairment of pDC function caused
by monoallelic deletion of the pDC-specific transcription factor
E2-2. Sisirak et al. reported that impairment of pDC function
resulted in the amelioration of murine lupus caused by the
overexpression of TLR7 (45). These animal studies confirmed
the concept that TLR-mediated IFN-I responses by pDCs play
crucial roles in the development of both human SLE and
murine lupus.

The pDC-IFN-I axis has been implicated in psoriasis
development. Psoriasis is the most common autoimmune
disease of the skin and is characterized by the infiltration of
immune cells and hyperproliferation of keratinocytes (46). The
accumulation of pDCs expressing IFN-I and IRF7 was much
greater in the skin of patients with psoriasis than in those of
FIGURE 1 | IFN-I produced by plasmacytoid dendritic cells mediates systemic lupus erythematosus and autoimmune pancreatitis/IgG4-related disease. Neutrophil
extracellular traps (NETs) activate plasmacytoid dendritic cells (pDCs) to produce large amounts of IFN-I. pDC-mediated IFN-I responses underlie the immunopathogenesis of
systemic lupus erythematosus (SLE). Myeloid differentiation primary response protein 88 (MyD88)-dependent activation of Toll-like receptor 7 (TLR7) and TLR9 induces IFN-I
production through nuclear translocation of interferon regulatory factor 5 (IRF5) and IRF7 (top panel). Intestinal dysbiosis and NETs activate pDCs to produce large amounts of
IFN-I through nuclear translocation of IRF7, which, in turn, results in the enhanced production of IL-33 by pDCs. The pDC-IFN-I-IL-33 axis underlies the immunopathogenesis
of autoimmune pancreatitis (AIP) and IgG4-related disease (IgG4-RD) (bottom panel).
July 2021 | Volume 12 | Article 713779
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healthy controls (9). Sensing of self-DNA coupled with
antimicrobial peptides by TLR9 induces IFN-I production by
pDCs residing in the skin of patients with psoriasis (47). Glitzner
et al. directly addressed the role of pDCs in the development of
experimental psoriasis by crossing Junf/fJunBf/fK5cre-ERT mice
with BDCA2-DTR mice to deplete pDCs (48). They found that
the depletion of pDCs by DT injection resulted in the
ameliorat ion of experimental psoriasis , which was
accompanied by downregulation of IL-23 expression (48).
Thus, they provide evidence that activation of pDCs mediates
psoriatic lesions by enhancing signaling pathways mediated not
only by IFN-I but also by IL-23. The latter cytokine plays a
crucial role in the development of psoriasis, as evidenced by the
fact that biologics targeting IL-23 are very effective in patients
with psoriasis (49). In addition to psoriasis, IFN-I production by
pDCs plays pathogenic roles in the development of T1D (10, 11).
In these studies, activation of pDCs by self DNA, DNA-specific
IgG, and antimicrobial peptide induces IFN-I production
through TLR9 in the pancreatic islets (10, 11).
PDCS AND AUTOIMMUNE
PANCREATITIS/IGG4-RELATED DISEASE

Although AIP and IgG4-RD are characterized by enhanced
adaptive immune responses that include the IgG4 Ab response,
recent studies have shed light on the presence of innate immune
responses as well. Repeated injection of polyinosinic:
polycytidylic acid (poly (I:C)) into MRL/MpJ mice leads to the
development of AIP, autoimmune sialadenitis, cholangitis, and
glomerulonephritis, all of which are organ-specific manifestations
of AIP and IgG4-RD (50). Extensive flow cytometry analyses
performed using pancreatic immune cells found massive
accumulation of pDCs in the pancreas of MRL/MpJ mice
displaying AIP. Consistent with the pancreatic accumulation of
pDCs, IFN-I expression wasmarkedly enhanced in the pancreas of
MRL/MpJ mice (19). The development of experimental AIP was
dependent upon the activation of pDC-mediated IFN-I signaling
pathways because the administration of pDC-depleting or IFN-I
neutralizing Abs efficiently prevented the development of
experimental AIP (19). Administration of the IRF7-specific
siRNA almost completely prevented the development of
experimental AIP through the downregulation of IFN-I
expression, suggesting that experimental AIP required the nuclear
translocation of IRF7 (21).

A specific type offibrosis called storiform fibrosis is one of the
characteristic pathological findings in AIP and IgG4-RD (15–
18). IL-33 produced by pancreatic acinar cells induces chronic
fibroinflammatory responses in experimental chronic alcoholic
pancreatitis (51, 52). As in the case of chronic pancreatitis, the
pancreatic expression of IL-33 is much greater in AIP mice than
in normal mice (20). Interestingly, cell purification and cell
depletion studies have revealed that pDCs are a cellular source
of IL-33 (20). IL-33 that is produced by pDCs in an IFN-I
dependent manner is necessary for the development of chronic
fibroinflammatory responses in the pancreas, as is shown by the
Frontiers in Immunology | www.frontiersin.org 4
neutralization of IL-33-mediated signaling pathways and
attenuation of experimental AIP by using an anti-ST2 Ab (20).
Although, pro-IL-33 is proteolytically activated into a bioactive
form by caspase-1, 3, 7, it remains unknown whether caspase-
mediated processing is operating in IL-33 production by pDCs in
AIP and IgG4-RD (53).

The clinical relevance of these data in experimental AIP has
been verified in human samples from patients with AIP and
IgG4-RD. pDCs expressing IRF7, IFN-I, and IL-33 accumulated
in the pancreas of patients with AIP and IgG4-RD (19–21).
Moreover, peripheral blood pDCs isolated from patients with
AIP and IgG4-RD promoted IgG4 Ab production by naïve B
cells present in the peripheral blood of healthy controls in an
IFN-I-dependent and T cell-independent manner (19). Thus,
these studies support the idea that pDC-mediated production of
IFN-I and IL-33 underlies the immunopathogenesis of AIP and
IgG4-RD. We recently identified serum concentrations of IFN-I
and IL-33 as novel biomarkers for AIP and IgG4-RD (54). Serum
concentrations of these two cytokines were much higher in
patients with AIP and IgG4-RD than in those with chronic
pancreatitis or healthy controls. In addition, the induction of
remission by prednisolone (PSL) was associated with a marked
reduction in serum concentrations of IFN-I and IL-33 in patients
with AIP and IgG4-RD. Thus, IFN-I and IL-33 produced by
pDCs are also useful as biomarkers in the clinical identification
of patients with AIP and IgG4-RD.

NETs and intestinal dysbiosis have been implicated as
possible triggers of pDC activation in AIP and IgG4-RD. NETs
formation was confirmed in the pancreas of MRL/MpJ mice
displaying AIP and in patients with AIP and IgG4-RD (19). In
addition to NETs, intestinal dysbiosis also mediates pDC
activation in experimental AIP. Bowel sterilization by
antibiotics completely prevented the development of
experimental AIP, which was accompanied by reduced
activation of pDCs expressing IFN-I and IL-33 (22). Repeated
injections of 10 mg and 100 mg poly (I:C) into MRL/MpJ mice
induced mild and severe types of AIP, respectively (22). We took
advantage of the relationship between poly (I:C) doses and AIP
severity and then performed co-housing and fecal microbiota
studies. As expected, mice treated with 10 mg of poly (I:C)
developed a mild degree of AIP. Interestingly, mice treated
with 10 mg of poly (I:C) developed severe AIP equivalent to
that induced by injection of 100 mg of poly (I:C) upon co-housing
with mice treated with 100 mg of poly (I:C) or when they were
exposed to fecal microbiota from donor mice treated with 100 mg
of poly (I:C) (22). Such development of severe AIP was
associated with enhanced pancreatic accumulation of pDCs
producing IFN-I and IL-33. Thus, these studies provide
evidence that intestinal dysbiosis mediates the development of
experimental AIP through the activation of pDCs (Figure 1). In
line with the results of experimental AIP, alterations in fecal
microbiota composition were observed in patients with AIP (23).
Disappearance of Klebsiella pneumoniae was observed in the
stool of two of three patients with AIP after successful induction
of remission by PSL. Mice treated with 10 mg of poly (I:C)
in combination with oral administration of heat-killed
July 2021 | Volume 12 | Article 713779
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K. pneumoniae developed more severe AIP as compared with
the condition of mice treated with poly (I:C) or K. pneumoniae
alone. Severe AIP induced by co-administration of poly (I:C) and
K. pneumoniae was associated with increased accumulation of
pDCs producing IFN-I and IL-33. Taken together, these findings
suggest that intestinal dysbiosis mediates AIP through the
activation of pDCs producing IFN-I and IL-33. However, it
should be noted that cellular sources of IL-33 are not limited
to pDCs (55–57). In particular, M2 macrophages present in the
salivary glands have been identified as potent producers of IL-33.
As for possible triggers for pDC activation in human AIP and
IgG4-RD, NETs formation was observed in the pancreas of
patients with IgG4-associated AIP (19). Moreover, intestinal
dysbiosis was associated with the induction of remission in
patients with AIP (23). Therefore, NETs and intestinal
dysbiosis may function as possible triggers for pDC activation.

It is well established pDCs preferentially activate regulatory T
cells (Tregs) (58, 59). If pDCs are abundant in the affected organs
of AIP and IgG4-RD, then activation of Tregs is induced in the
lesions of AIP and IgG4-RD. In fact, chronic inflammatory
lesions of AIP and IgG4-RD are characterized by accumulation
of Tregs (17).
PDCS AS A THERAPEUTIC TARGET
IN AUTOIMMUNE DISEASES

Clinical success targeting the pDC-IFN-I axis in SLE led us to
hypothesize that patients with AIP and IgG4-RD can be
successfully treated by blocking this pathway (Figure 2). As in
the case of SLE, neutralization of IFN-I by anifrolumab or
Frontiers in Immunology | www.frontiersin.org 5
sifalimumab may be effective in patients with AIP and IgG4-
RD (12–14). In contrast to the case with SLE, IL-33 produced by
pDCs can be another treatment target for AIP and IgG4-RD.
Serum concentrations of IFN-I and IL-33 have been identified as
novel biomarkers useful for the diagnosis and evaluation of
disease activity in patients with AIP and IgG4-RD, whereas
serum concentrations of the latter cytokine were comparable in
patients with SLE and healthy controls (54, 60, 61). Therefore, an
anti-ST2 Ab or etokimab (62) targeting IL-33-mediated signaling
pathways might be a unique therapeutic option for patients with
AIP and IgG4-RD. This notion is supported by the finding that
the blockade of IL-33-mediated signaling pathways by anti-ST2
Ab prevented not only fibrogenesis but also inflammation in
experimental AIP (20). Thus, biologics targeting IFN-I and IL-33
may be promising therapeutics in patients with AIP and IgG4-
RD, as evidenced by the results of animal studies, in which the
neutralization of IFN-I or IL-33-mediated signaling pathways by
Abs efficiently prevented the development of experimental AIP.

In addition to the IFN-I-IL-33 axis, correction of intestinal
dysbiosis by antibiotics or probiotics might be useful for the
suppression of pDC activation. This idea is supported by the fact
that bowel sterilization by a broad range of antibiotics almost
completely prevented the development of experimental AIP (22).
The intracellular signaling pathway involves the activation of
endosomal TLR7 and TLR9, followed by nuclear translocation of
IRF7, to initiate the transcription of IFN-I. In the case of SLE,
chloroquine, a potent inhibitor of endosomal activation of TLR7
and TLR9, has been shown to offer a survival advantage (33).
Moreover, mycophenolate mofetil, another inhibitor of IRF7
(63), is a first-line therapy in the management of lupus
nephritis and cutaneous disease (33). Thus, chloroquine and
mycophenolate mofetil may be effective for patients with AIP
FIGURE 2 | Development of new treatments targeting the plasmacytoid dendritic cell-IFN-I-IL-33 axis in autoimmune pancreatitis and IgG4-related disease. Intestinal
dysbiosis activates endosomal Toll-like receptor 7 (TLR7) and TLR9 followed by nuclear translocation of IFN regulatory factor 7 (IRF7). pDCs produce IFN-I through the
nuclear translocation of IRF7. IL-33 is produced by pDCs in an IFN-I-dependent manner. Antibiotics and probiotics may be useful for correction of intestinal dysbiosis.
Chloroquine inhibits the activation of endosomal TLR7 and TLR9. Mycophenolate mofetil (MMF) suppresses nuclear translocation of IRF7. IFN-I-mediated signaling
pathways are efficiently inhibited by Abs against IFN-I or IFN-I receptor. An anti-ST2 Ab, neutralizing the IL-33 receptor, blocks IL-33-mediated signaling pathways.
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and IgG4-RD as they would inhibit signaling pathways mediated
by the activation of TLR7, TLR9, and IRF7.

In most cases of AIP and IgG4-RD, PSL is very effective for the
induction of remission (15–18). It should be noted, however, that
a significant fraction of patients with AIP and IgG4-RD
experience repeated episodes of relapse, even upon standard
treatment with PSL. Moreover, treatment with PSL can cause
severe side effects such as diabetes mellitus, opportunistic
infections, and osteoporosis. The new treatment targeting the
pDC-IFN-I-IL-33 axis may be useful for such patients. Rituximab
therapy is useful for patients with IgG4-RD (64). However, it is
poorly understood whether induction of remission by rituximab
is accompanied by reduction in IFN-I-IL-33 responses.
CONCLUSION

AIP and IgG4-RD are characterized by the activation of pDCs
producing IFN-I and IL-33. Serum concentrations of IFN-I and IL-
33 have been identified as novel biomarkers for AIP and IgG4-RD.
Targeting the IFN-I-IL-33 axis in pDCs might constitute a
successful approach to treat patients with AIP and IgG4-RD,
especially those who suffer from repeated episodes of relapse even
with PSL treatment or side effects associated with PSL.
Frontiers in Immunology | www.frontiersin.org 6
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