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Purpose: To develop a bounding box (BBOX)-based radiomics model for the
preoperative diagnosis of occult peritoneal metastasis (OPM) in advanced gastric
cancer (AGC) patients.

Materials and Methods: 599 AGC patients from 3 centers were retrospectively enrolled
and were divided into training, validation, and testing cohorts. The minimum
circumscribed rectangle of the ROIs for the largest tumor area (R_BBOX), the
nonoverlapping area between the tumor and R_BBOX (peritumoral area; PERI) and the
smallest rectangle that could completely contain the tumor determined by a radiologist
(M_BBOX) were used as inputs to extract radiomic features. Multivariate logistic
regression was used to construct a radiomics model to estimate the preoperative
probability of OPM in AGC patients.

Results: The M_BBOX model was not significantly different from R_BBOX in the
validation cohort [AUC: M_BBOX model 0.871 (95% CI, 0.814–0.940) vs. R_BBOX
model 0.873 (95% CI, 0.820–0.940); p = 0.937]. M_BBOX was selected as the final
radiomics model because of its extremely low annotation cost and superior OPM
discrimination performance (sensitivity of 85.7% and specificity of 82.8%) over the
clinical model, and this radiomics model showed comparable diagnostic efficacy in the
testing cohort.

Conclusions: The BBOX-based radiomics could serve as a simpler reliable and powerful
tool for the preoperative diagnosis of OPM in AGC patients. And M_BBOX-based
radiomics is simpler and less time consuming.
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INTRODUCTION

Gastric cancer (GC) is one of the most common and deadly
carcinomas in the world (1). Peritoneal metastasis (PM), one of
the most common forms of metastasis in GC, occurs in ~53%-
80% of GC patients with distant metastasis (2, 3) and is generally
regarded as an incurable condition with a poor prognosis (4, 5).
It was reported that the median survival time among PM patients
is 3–6 months (5), and the treatment options are limited (6). New
treatment strategies such as intraperitoneal chemotherapy and
extensive intraoperative peritoneal lavage are associated with an
improved prognosis for those patients (7–9). Therefore,
noninvasive preoperative detection of PM of advanced gastric
cancer (AGC) is crucial for avoiding unnecessary surgery and
selecting optimal therapy in clinical practice.

CT is recommended as the first-line imaging modality for the
detection of PM (10). However, PMs (<5 mm) are frequently
missed on CT images (11). In 10 to 30% of patients with negative
CT images, intraperitoneal metastases are found during either
laparoscopy or surgical exploration (11, 12), called occult
peritoneal metastases (OPMs).

Artificial intelligence, especially deep learning, has been
explored in predicting PM in GC (13, 14), such as previous
research from our team (14). However, the interpretation is
under elucidated due to its nature of “black box”. Radiomics is an
emerging field focusing on the high-dimensional mineable
feature set captured from imaging data using a series of
quantitative characteristic algorithms. The effective extraction
and modeling of digital information is expected to aid in the
assessment and differential diagnosis of gastric tumors (15–20).
For OPMs in AGC, some studies (21–23) have utilized radiomics
analysis of preoperative CT texture features to make a
preoperative, noninvasive OPM diagnosis. All regions of
interest (ROIs) were drawn manually in these studies.
However, the manual annotation of many medical images is
time consuming, expensive, and inefficient. In addition, most
medical image annotations require a certain level of expertise,
which can add additional work for the physician. Recently, we
applied another annotation method—an easy-to-use, time-
saving and inexpensive method referred to as the bounding
box (BBOX)—that has been used in some clinical areas (24–28),
such as segmentation, diagnosis, and classification, but has
not yet been applied to the radiomics analysis of OPM in
GC patients.

The BBOX, which contains both the tumor tissue and
peritumoral area (PERI), covers more regions than manual
annotation of the tumor alone. A few studies have revealed
that the combined radiomic signature of intratumoral and
peritumoral regions can provide valuable information for the
prediction of the Lauren classification of GC (29), the
pathological complete response to neoadjuvant chemoradiation
of esophageal squamous cell carcinoma (30), and the outcomes
and chemotherapy response in GC (31, 32).

Therefore, in this study, we hypothesized that ROI annotation
by BBOX might provide adequate information for the diagnosis
of OPM. We aimed to develop and validate a BBOX-based
Frontiers in Oncology | www.frontiersin.org 2
radiomics model for the preoperative, noninvasive diagnosis of
OPM in AGC patients.
MATERIALS AND METHODS

The radiomics processing flowchart of this study is shown
in Figure 1.

Patients
This multicenter retrospective study was approved by the
institutional review board of each center, and the informed
consent requirement was waived. A total of 599 patients from
three centers were divided into three cohorts: one training cohort
(395 patients from center 1), one internal validation cohort (149
patients from center 1), and one external testing cohort (55
patients from center 2 and center 3). The details of PM status
confirmation are described in Section 1 in the Supplementary
Material. The inclusion criteria and exclusion criteria are
available in Section 2 in the Supplementary Material.

CT Image Acquisition and Data Preparation
The details of the CT protocol are presented in Section 3 and
Table S1 in the Supplementary Material. Portal vein phase CT
images were first exported to ITK-SNAP software (version 2.2.0;
www.itksnap.org) for manual segmentation. GC lesions were
then manually annotated by a radiologist with 5 years of
experience in gastroenterology imaging and confirmed by
another abdominal specialist with 14 years of experience.

These two radiologists reviewed all slices obtained from each
patient, selected the slice with the largest tumor area, and
manually delineated the lesion to obtain the final ROIs. The
BBOX was obtained by calculating the minimum circumscribed
rectangle of the ROI, as shown in Figure 2A, called the R_BBOX.
The nonoverlapping area between the ROI and BBOX was
regarded as the PERI. For all patients, the radiologist was
required to determine the smallest rectangle that could
completely contain the tumor area and directly perform BBOX
annotation. The manually obtained BBOX annotation was called
M_BBOX. An example is shown in Figure 2B, as indicated by
the blue line.

Radiomic Feature Extraction
Radiomic features were extracted using Pyradiomics (33), an
open-source radiomics toolbox. Eight classes of stable radiomic
features were extracted according to the standards in the Image
Biomarker Standardization Initiative (34). Ultimately, 119
quantitative two-dimensional (2D) radiomics features were
extracted for each annotation of the ROI, R_BBOX, PERI and
M_BBOX. For each patient in the training cohort and validation
cohort, we constructed an annotation type called MERGE, which
includes the features of both the ROI and the PERI. Thus, the
number of features in the MERGE region was 238. The MERGE
approach is another way to analyze the tumor area and PERI at
the same time.
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Feature Selection in Terms of Reproducibility
Two months after data annotation, 50 patients were randomly
selected from the training cohort and reannotated by the
previous radiologist. The same annotation rules were applied;
that is, the ROIs and M_BBOXes of 50 patients were manually
delineated. The R_BBOX and PERI for each patient could be
Frontiers in Oncology | www.frontiersin.org 3
obtained based on the ROI. For each patient, the radiomics
features of the ROI, R_BBOX, PERI, M_BBOX and MERGE
could be obtained. To evaluate the intraobserver agreement
between the two repeated annotations, intraclass correlation
coefficients (ICCs) were utilized. An ICC greater than 0.75 was
considered a sign of reproducibility for the observer, and features
FIGURE 1 | Radiomics processing flowchart.
December 2021 | Volume 11 | Article 777760
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with ICCs lower than 0.75 were excluded in the following feature
selection process.

Feature Selection and Classifier Modeling
As shown in Section 4 in the Supplement, the feature selection
process included three steps, with the aim of avoiding overfitting
during the model-building process and potential biases
associated with the results.

After the three-step feature selection process, the remaining
radiomics features were used to construct a multivariate logistic
regression model for OPM positivity prediction, namely, the
radiomics model.

We used independent predictors of preoperative clinical
characteristics to build a clinical model by multivariate logistic
regression for comparison. The independent predictors were also
screened by multivariate logistic regression analysis. Backward
stepwise selection was performed based on the Akaike
information criterion (AIC) (35).

Four Sizes of Input Boxes
Four sizes of input boxes containing the primary tumor with
different amounts of surrounding tissues were used to evaluate
their diagnostic performance, as shown in Section 6 in
the Supplement.

Statistical Analysis
Differences in continuous variables were analyzed with the
Mann-Whitney U test, and differences in categorical variables
were analyzed with the chi-squared test. The radiomic
classification model and the clinical classification model
were evaluated with the validation cohort. The variance
in performance was assessed using receiver operating
Frontiers in Oncology | www.frontiersin.org 4
characteristic (ROC) curve analysis and quantified by assessing
the areas under the ROC curves (AUCs) (36). The DeLong test
(37, 38) was used for statistical comparisons of ROC curves.
Considering the class imbalance in the validation cohort and
testing cohort, bootstrapping (n = 1000) was used to calculate
tfrhe 95% confidence interval (CI). A decision curve was
plotted to evaluate model efficacy by quantifying the net
benefits at different probability thresholds. All statistical
analyses were performed with R software (version 3.5.0; http://
www.Rproject.org) and SPSS 22.0 (IBM, Armonk, NY, USA).
Differences with a two-tailed p-value less than 0.05 were
considered statistically significant.
RESULTS

Clinical Characteristics
The demographic information is shown in Table 1. Table 1
shows significant differences between the lesion location and
Borrmann type between OPM-positive and OPM-negative
patients in the training cohort (p < 0.001). There were no
significant differences in age, sex, carcinoembryonic antigen
(CEA), or carbohydrate antigen 19–9 (CA19–9) between
OPM-positive and OPM-negative patients in the entire cohort.

Clinical Model
Multivariate logistic regression analysis identified location-
L/L+D [b = -0.791, OR = 0.453 (95% CI, 0.247–0.832), P = 0.010]
and Borrmann type [b = -1.132, OR = 3.103 (95% CI, 1.504–6.401),
P = 0.002] as independent predictors of OPM status. A clinical
model incorporating the location-L/L+D and the Borrmann type
was developed.
FIGURE 2 | Annotation example in one patient. (A) ROI and R_BBOX indicated by the red and green lines, respectively. (B) M_BBOX indicated by the blue line;
R_BBOX same as in (A).
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Annotation Type Analysis
We evaluated the impact of different annotation types on the
performance of the radiomics model in the validation cohort. As
shown in Table 2, after the three-step feature selection process,
the number of radiomics features for the different annotation
types was 3, 3, 2, 3 and 6. The radiomics model based on
R_BBOX yielded an AUC of 0.873 (95% CI, 0.820–0.940),
which was significantly better than the ROI model [AUC:
0.781 (95% CI, 0.710–0.863); p = 0.047]. Similarly, in the
radiomics model that combined the tumor area and the PERI
for analysis, an improvement in the predictive performance was
noted [AUC: M_BBOX 0.871 (95% CI, 0.814–0.940), MERGE
0.869 (95% CI, 0.811–0.938)], although there was no significant
difference by the Delong test (p: M_BBOX 0.081, MERGE 0.080).
On the other hand, for the radiomics model that used only PERI
for analysis, a decrease in the predictive performance was
observed, with an AUC of 0.696 (95% CI, 0.620–0.785). After
setting the threshold, the specificity of each model was compared
when the sensitivity reached 0.8. The R_BBOX radiomics model
Frontiers in Oncology | www.frontiersin.org 5
produced the highest specificity, and the specificity of all
radiomics models that combined tumor area and PERI
exceeded 0.85 (specificity: R_BBOX 0.867, M_BBOX 0.852,
MERGE 0.859). In contrast, the radiomics models using only
tumor area or PERI had lower specificity (specificity: ROI 0.672,
PERI 0.531). The ROC curves of the different radiomics models
are shown in Figure 3.

M_BBOX was used as the final radiomics model because of its
high prediction accuracy and extremely low annotation cost. The
prediction score of the M_BBOX radiomics model was calculated as
follows: -1.8863 + (-0.3683 * GLRLM_RunLengthNon
UniformityNormalized) + (-0.0416 * GLDM_GrayLevel
NonUniformity) + (-0.5014 * Shape2D_PerimeterSurfaceRatio).

Comparison of the Clinical Model With the
Radiomics Model
The comparison of the discrimination performance of the
radiomics model and the clinical model in the validation cohort
is shown in Section 5 and Table S2 in the Supplementary
TABLE 2 | Performance of the radiomics models with different annotation types.

Annotation type Feature count AUC (95% CI) Sensitivity Specificity p p*

ROI 3 0.781 (0.710–0.863) 0.810 0.672 \ 0.047
PERI 3 0.696 (0.620–0.785) 0.810 0.531 0.158 <0.001
R_BBOX 2 0.873 (0.820–0.940) 0.810 0.867 0.047 \
M_BBOX 3 0.871 (0.814–0.940) 0.810 0.852 0.081 0.937
MERGE 6 0.869 (0.811–0.938) 0.810 0.859 0.080 0.814
December 2021 | V
olume 11 | Article
p is the Delong test result for ROIs versus other annotation types.
p* is the Delong test result for BBOX versus other annotation types.
ROI, region of interest; PERI, peritumoral area; R_BBOX, bounding box was obtained by calculating the minimum circumscribed rectangle of the ROI; M_BBOX, manual bounding box;
AUC, area under the curve; CI, confidence interval.
TABLE 1 | Characteristics of the patients.

Characteristic Training cohort (n = 395) Validation cohort (n = 149) Testing cohort (n = 55)

OPM-Pos
(n = 58)

OPM-Neg
(n = 337)

p OPM-Pos
(n = 21)

OPM-Neg
(n = 128)

p OPM-Pos
(n = 14)

OPM-Neg
(n = 41)

p

Age (years, mean ± SD) 58.17 ± 13.24 57.99 ± 11.74 0.451 55.86 ± 16.33 60.41 ± 10.76 0.121 60.61 ± 10.71 66.57 ± 12.34 0.122
Sex (N, %) 0.270 0.469
Male 34 (58.6%) 226 (67.1%) 12 (57.1%) 87 (68.0%) 11 (78.6%) 26 (63.4%)
Female 24 (41.4%) 111 (32.9%) 9 (42.9%) 41 (32.0%) 3 (21.4%) 15 (36.6%)

Location (N, %) 0.002 0.116 0.917
U/U+M 12 (20.7%) 68 (20.2%) 3 (14.3%) 36 (28.1%) 2 (14.3%) 9 (22.0%)
M/M+L 20 (34.5%) 63 (18.7%) 6 (28.6%) 18 (14.1%) 3 (21.4%) 8 (19.5%)
L/L+D 18 (31.0%) 181 (53.7%) 9 (42.9%) 63 (49.2%) 8 (57.1%) 19 (46.3%)
U+E 1 (1.7%) 11 (3.3%) 0 (0.0%) 5 (3.9%) 0 (0.0%) 3 (7.3%)
Whole stomach 7 (12.1%) 14 (4.2%) 3 (14.3%) 6 (4.7%) 1 (7.1%) 2 (4.9%)

Borrmann type (N, %) 0.000 0.009 0.123
Types 1, 2 48 (82.8%) 194 (57.6%) 18 (85.7%) 71 (55.5%) 1 (10.0%) 9 (39.1%)
Types 3, 4 10 (17.2%) 143 (42.4%) 3 (14.3%) 57 (44.5%) 9 (90.0%) 14 (60.9%)
Unknown 0 0 0 0 4 18

CEA (N, %) 0.313 0.128 0.616
Normal 36 (62.1%) 235 (69.7%) 18 (85.7%) 88 (68.8%) 8 (80.0%) 28 (87.5%)
Elevated 22 (37.9%) 102 (30.3%) 3 (14.3%) 40 (31.2%) 2 (20.0%) 4 (12.5%)
Unknown 0 0 0 0 4 9

CA19–9 (N, %) 0.091 0.221 1.000
Normal 37 (63.8%) 254 (75.4%) 11 88 8 (80.0%) 26 (81.3%)
Elevated 21 (36.2%) 83 (24.6%) 10 40 2 (20.0%) 6 (18.7%)
Unknown 0 0 0 0 4 9
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Material. The DeLong test showed that the diagnostic
performance of the radiomics model was significantly better
than that of the clinical model (p = 0.007). Both the sensitivity
and specificity values of the radiomics model were higher than
those of the clinical model (sensitivity: 0.857 vs. 0.524; specificity:
0.828 vs. 0.719).

As shown in Section 5 and Table S3 in the Supplementary
Material, in the testing cohort, the AUC, sensitivity and
specificity values of the radiomics model for all patients were
0.841 (95% CI, 0.697–0.956), 0.857 and 0.805, respectively.
Considering that the clinical characteristics of some patients in
the testing cohort were incomplete, a subset of the testing cohort
containing 24 patients with complete clinical information was
constructed. The predictive performances in the testing cohort
(subset) are described in Section 5 and Table S3 in the
Supplementary Material. Although there was no significant
difference by the Delong test, the AUC of the radiomics model
was better than that of the clinical model (AUC: radiomics model
0.889, clinical model 0.648), and it had higher specificity under
Frontiers in Oncology | www.frontiersin.org 6
the same sensitivity (specificity: radiomics model 0.778, clinical
model 0.333).

Clinical Use
Decision curve analysis (DCA) was used to evaluate the benefits
of the radiomics model and both the all-laparoscopy and no-
laparoscopy schemes. The net benefit of the no-laparoscopy
scheme was always 0. The all-laparoscopy scheme means that
additional laparoscopy was performed on all patients. The DCA
results for the validation cohort are shown in Figure S2A. The
radiomics model had the highest net benefit when the threshold
probability in clinical decision-making was between 5% and 45%.
Figure S2B shows the DCA results for the testing cohort, which
indicated that the radiomics model had the highest net benefit
when the threshold probability was between 10% and 60%.

Four Sizes of Input Boxes
Our results indicated that the model achieved the highest AUC
by using BBOX as input. (Figures S2, S3). However, when the
A

C

B

FIGURE 3 | ROC curves of the radiomics models in the training cohort (A), validation cohort (B) and external test cohort (C), respectively.
December 2021 | Volume 11 | Article 777760
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size of the BBOX increased by 10 mm, 15 mm, or no limit, the
performance of the models worsened, which might be because
the larger the BBOX is, the more tissues are covered.
DISCUSSION

In this multicenter study, we developed a radiomics model based
on 2D images annotated according to the BBOX containing the
primary tumor and PERI to identify OPM in AGC patients prior
to surgical treatment. The BBOX radiomics model had high
diagnostic performance in the validation cohort, testing cohort
(all), and testing cohort (subset).

The BBOX, an easy-to-use tool, can reduce the need for
additional labeling and has been used in many clinical
investigations (24–28). The region of the BBOX containing
both the primary tumor and nearby peritoneum is larger than
the ROI of the primary tumor. Recent reports (26, 29–32, 39, 40)
have illustrated that peritumoral tissue-based radiomics analysis
may reveal valuable information for diagnosis, prognosis and
treatment response evaluations. Therefore, in our study, we
focused on both the characteristic features of the primary
tumor and the peritumoral tissue delineated with the BBOX to
develop a radiomics model for the noninvasive diagnosis
of OPM.

The analysis of peritumoral tissues surrounding the tumor
mass can reveal important information related to tumor
aggressiveness; it can reflect lymphovascular invasion,
lymphangiogenesis, and angiogenesis (41–43) and provide
other information that can be used for diagnostic and
prognostic predictions (26, 29–32, 39–42). Moreover, such
information may be effectively captured by radiomics analysis
(26, 29–32, 39, 40). In our study, the nonoverlapping area
between the tumor and R_BBOX was regarded as the PERI,
which is theoretically a part of the whole peritumoral region. Our
results indicated that the predictive value of PM based on the
peritumoral region alone was limited, worse than that of the
primary tumor alone, but showed significant improvement when
integrated with the ROI of the primary tumor. This may be
because the primary tumor, the main disease component,
theoretically holds more information about tumor phenotypes
than that of PERI, and BBOX covers more regions than the mass
or peritoneal region alone.

Few studies (23–28) have investigated radiomic applications
for PM diagnosis using CT. Liu et al. (21) and Kim et al. (22)
focused on the preoperative CT texture features of the primary
tumor area and the omentum area, respectively, to evaluate the
possibility of PM in AGCs instead of considering the primary
tumor and the surrounding tissue. Dong et al. (23) conducted a
radiomics study using the CT phenotypes of primary tumors
and the nearby peritoneum to accurately predict OPM in AGC
patients. In their study, the diagnostic value of either the
peritoneum or the mass was worse than the merged value for
the detection of PM, which is consistent with our conclusions.
However, they chose regions near the peritoneum rather than
the primary tumor, which may be relatively far away from the
Frontiers in Oncology | www.frontiersin.org 7
mass. The delineated ROI of the peritoneum was part of the
peritumoral tissue, and the annotated peritoneal area was >2
cm (2), which might not be representative of the entire
surrounding condition of the mass on 2D CT images. In
addition, manual sketching is a time-consuming and
laborious process. The peritoneum is a wide and irregular
structure without clear boundaries and forms multiple reflex
structures (such as ligaments). Therefore, it is impossible to
outline the whole peritoneum. This previous study also selected
the local peritoneum, a small area. Although the researchers
provided a rationale for selecting this method, delineating the
peritoneal area of interest is still very subjective, and thus, it is
difficult to determine reproducibility. We used the BBOX
method to include all the information on the primary lesion
at the 2D level and the information on the peritoneal area
surrounding the lesion. These peritoneal areas were not selected
subjectively; rather, they were selected incidentally based on
their location relative to the primary lesion. Therefore, we
believe that our delineation model is simple, easy to use,
and reproducible.

Our results showed that by merging the ROI with the PERI, the
radiomics model could achieve a higher AUC. This presented a
question: what BBOX size would achieve satisfactory diagnostic
value for identifying OPM? When the size of the BBOX increased
by 10 mm, 15 mm, or no limit, the performance of the models
worsened, which might be because the larger the BBOX is, the
more tissues are covered. The tissues far away from the carcinoma
provided less or no information about the neoplasms. Considering
the lower annotation cost and similar AUC of the M_BBOX
model compared with the R_BBOX model, the M_BBOX
radiomics model was ultimately selected as the final
radiomics model.

Laparoscopy remains a useful procedure for evaluating PM
status (44–46), but it is invasive and expensive, and its specific
applications for GC remain controversial. Our results revealed
that the clinical model could not accurately predict PM status.
The value of the radiomics model was then assessed by DCA. If
the predicted probability of OPM is between 10 and 45%, more
cases of undetected OPM on conventional CT images can be
detected by the radiomics model than by the all-laparoscopy or
no-laparoscopy scheme, avoiding unnecessary surgical
procedures and extra costs. Furthermore, patients deemed to
have a high possibility of OPM by the radiomics model may
undergo diagnostic laparoscopy for further identification,
helping to guide proper treatment.
LIMITATIONS

There are several limitations to this study. First, we focused on
2D slices of lesions rather than whole lesions. In future work,
automatic segmentation of the whole tumor is worth developing
to better predict OPM status. Second, our study was retrospective
in nature, and some initially available clinical factors were
analyzed. Third, a small number of patients from two external
centers were used to evaluate the generalizability of the radiomics
December 2021 | Volume 11 | Article 777760
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model; however, large independent patient cohorts are still
needed to validate our results.
CONCLUSIONS

The radiomics model based on M_BBOX had higher diagnostic
performance for the preoperative detection of OPM in AGC than
the radiomics models based on tumor tissue or peritumoral
tissue alone. In addition, its annotation is simpler and less
time consuming.
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