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Abstract: Virulence in pathogenic protozoa is often tied to secretory processes such as the expression
of adhesins on parasite surfaces or the secretion of proteases to assisted in tissue invasion and
other proteins to avoid the immune system. This review is a broad overview of the endomembrane
systems of pathogenic protozoa with a focus on Giardia, Trichomonas, Entamoeba, kinetoplastids, and
apicomplexans. The focus is on unique features of these protozoa and how these features relate to
virulence. In general, the basic elements of the endocytic and exocytic pathways are present in all
protozoa. Some of these elements, especially the endosomal compartments, have been repurposed by
the various species and quite often the repurposing is associated with virulence. The Apicomplexa
exhibit the most unique endomembrane systems. This includes unique secretory organelles that play
a central role in interactions between parasite and host and are involved in the invasion of host cells.
Furthermore, as intracellular parasites, the apicomplexans extensively modify their host cells through
the secretion of proteins and other material into the host cell. This includes a unique targeting
motif for proteins destined for the host cell. Most notable among the apicomplexans is the malaria
parasite, which extensively modifies and exports numerous proteins into the host erythrocyte. These
modifications of the host erythrocyte include the formation of unique membranes and structures
in the host erythrocyte cytoplasm and on the erythrocyte membrane. The transport of parasite
proteins to the host erythrocyte involves several unique mechanisms and components, as well as the
generation of compartments within the erythrocyte that participate in extraparasite trafficking.

Keywords: protozoa; secretory pathway; endomembranes; pathogenesis; virulence; host-parasite
interaction; Giardia; kinetoplastids; Trypanosoma; Apicomplexa; Plasmodium; Toxoplasma

1. Introduction

Secretion has long been recognized as a virulence factor in pathogen bacteria. Var-
ious secretion pathways have been defined and these bacterial secretory pathways are
responsible for the secretion of adhesins, invasins, and toxins associated with bacterial
pathogenesis [1]. This same concept can also be applied to pathogenic protozoa. For
example, pathogenic protozoa express proteins that participate in host-parasite interactions
that can be classified as adhesins. Some of these adhesins may assist the pathogen in
invading tissues or cells. In addition, many pathogens secrete proteases and other factors
that break down tissues and cause inflammation. Obviously, adhesins and other virulence
factors must be expressed at the interface between the pathogen and the host, such as a
cell surface location or secretion into the host. Proteins expressed on the surface of cells
typically have signal sequences that direct proteins to the cell surface via the endoplasmic
reticulum (ER) and Golgi apparatus. Similarly, secreted virulence factors are also processed
by these same endomembrane systems.

Most of our knowledge on endomembrane systems is derived from yeast and mam-
malian systems and in general the endomembranes are not well characterized in protozoa.
All protozoa have the basic elements of the eukaryotic secretory pathway and endomem-
brane system. However, variations in the endomembrane system of protozoa have been
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noted and include the loss of some organelles or the acquisition of unique organelles that
are only found in specific phylogenic groups [2]. Often these variations in endomembranes
play a role in disease pathogenesis. This review provides a broad overview of endomem-
brane systems and secretion of virulence factors in pathogenic protozoa. In particular, the
uniqueness of endocytic and exocytic processes in pathogenic protozoa and how these
processes contribute to pathogenesis is highlighted.

Protozoa exhibit an extreme range of diversity and do not represent a monophyletic
group [3]. Organisms that are typically viewed as protozoa are found in all the major
eukaryotic supergroups (TSAR—an acronym for telonemids, stramenopiles, alveolates,
and rhizaria, Haptista, Cryptista, Archaeplastida, Amorphea, CRuMs—an acronym for
collodictyonids, Rigifilida, and Mantamonas, Discoba, Metamonada, Hemimastigophora,
and Excavata) [4]. Several species from these various supergroups are human pathogens
and a few species are capable of causing severe human disease [5,6]. The most com-
mon pathogenic protozoa are Giardia duodenalis (giardiasis), Entamoeba histolytica (amebic
dysentery), Trichomonas vaginalis (trichomoniasis), Trypanosoma brucei gambiense (African
sleeping sickness), Trypanosoma cruzi (Chagas disease), Leishmania species (leishmania-
sis), Plasmodium species (malaria), Toxoplasma gondii (toxoplasmosis), and Cryptosporidium
species (cryptosporidiosis). These species and diseases are the focus of this review due to
their medical importance, and the fact that more work has been done on these species as
compared to less virulent protozoa.

2. Basic Endomembrane Systems

Phagocytosis and the development of endomembrane systems and membrane traf-
ficking is paramount in the origin of eukaryotes [7,8], and therefore, it is expected that
pathogenic protozoa would contain similar endomembranes as other eukaryotes. Further,
and indeed, the key components of endocytic and exocytic pathways are present in all
protozoa. Key components of the endomembrane system include the nuclear envelope,
endoplasmic reticulum (ER), Golgi, lysosomes and related vacuoles, endosomes, micro-
bodies, vesicles that transport material between compartments, and the plasma membrane
(Figure 1). Proteins destined to be secreted or transported to organelles typically have
a signal sequence and pass through the ER and Golgi via transport vesicles [9]. How-
ever, the secretomes of pathogenic protozoa include many proteins being exported by
unconventional protein secretion [10].

The ER is a membrane network that emanates from the outer membrane of the nuclear
envelope. The function of the ER includes lipid synthesis, the first step in protein secretion
and sorting, and quality control of protein folding. Membrane networks corresponding
to the ER have been identified in all protozoa, and for the most part, the functions of the
ER are preserved. Although, in regards to quality control and ER stress, the elements
of ER-associated degradation and unfolded protein response do differ slightly between
the pathogenic protozoa and other eukaryotes [11]. Proteins destined for the plasma
membrane, other organelles, or to be secreted are packaged into vesicles at ER exit sites
and are usually transported to the Golgi. The Golgi consists of flattened membrane disks,
called cisternae. The cisternal face proximal to the ER is the cis-Golgi network and the face
on the opposite side is the trans-Golgi network. Some pathogenic protozoa do not have the
iconic stacks of Golgi cisternae (Table 1). Evolutionarily, this is likely due to a reduction of
the Golgi and its function, and this reduction has occurred independently several times
during evolution [12].
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Figure 1. Major components of eukaryotic endomembrane systems that are present in protozoa. The 
endoplasmic reticulum (ER) plays a central role in the generation of the endomembranes of eukar-
yotic cells. Vesicles shuttle membrane components and proteins between the ER and the various 
endomembranes such as Golgi and microsomes. Endocytosed material is transported to lysosomes 
or multivesicular bodies (MVB) via the endosome. MVB can be incorporated into the lysosome and 
degraded or secreted from the cell as extracellular vesicles called exosomes. 
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Table 1. Endomembranes of Major Protozoan Pathogens of Humans 

Pathogen 
(Super Group) 

Golgi Microbodies Unique Compartments 

Giardia 
(Excavata) 

No stacks and reduced 
function [13] Peroxisomes [14] 

• Peripheral vacuoles (ly-
sosome-like) [15] 
• Mitosome 2 [16] 

Trichomonas 
(Excavata) 

Stacked [17] lacking • Hydrogenosome 2 [16] 

Entamoeba 
(Amorphea) 

Vesicles [18]  lacking • Mitosome 2 [16] 

Figure 1. Major components of eukaryotic endomembrane systems that are present in protozoa.
The endoplasmic reticulum (ER) plays a central role in the generation of the endomembranes of
eukaryotic cells. Vesicles shuttle membrane components and proteins between the ER and the various
endomembranes such as Golgi and microsomes. Endocytosed material is transported to lysosomes
or multivesicular bodies (MVB) via the endosome. MVB can be incorporated into the lysosome and
degraded or secreted from the cell as extracellular vesicles called exosomes.

Table 1. Endomembranes of Major Protozoan Pathogens of Humans

Pathogen
(Super Group) Golgi Microbodies Unique Compartments

Giardia
(Excavata)

No stacks and reduced
function [13] Peroxisomes [14] • Peripheral vacuoles (lysosome-like) [15]

• Mitosome 2 [16]

Trichomonas
(Excavata) Stacked [17] lacking • Hydrogenosome 2 [16]

Entamoeba
(Amorphea) Vesicles [18] lacking • Mitosome 2 [16]

Kinetoplastids 1

(Excavata)
Usually a single stack [19] Glycosomes [20]

• Flagellar pocket [21]
• Predominance of GPI-anchored surface

molecules [19]

Cryptosporidium
(TSAR) Not yet identified lacking

• Apical organelles [22]
• Inner membrane complex [23]
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Table 1. Cont.

Pathogen
(Super Group) Golgi Microbodies Unique Compartments

Toxoplasma
(TSAR) Single stacked of 3-5 cisternae [24] Peroxisomes (lipid

metabolism) [25]

• Apical organelles [22]
• Inner membrane complex [23]
• Apicoplast 2 [26]

Plasmodium
(TSAR)

Single cisterna in blood stage [27];
single Golgi with 1–3 cisternae in

mosquito stage [28]
lacking

• Apical organelles [22]
• Inner membrane complex [23]
• Apicoplast 2 [26]
• Food vacuole (lysosome-like) [29]

1 Includes African trypanosomes, Trypanosoma cruzi, and Leishmania. 2 Mitosomes, hydrogenosomes, and apicoplasts are not part of the
endomembrane system and are included here to highlight unique features in protozoa.

The secretory pathway is also linked with endocytosis and lysosomes [30]. Many
lysosomal proteins are synthesized in the ER and subsequently trafficked to the lysosome
via the Golgi and trans-Golgi network. The endosomes contain material taken up via
endocytosis and fuse with lysosomes where the endocytosed material is degraded. Plasma
membrane components are returned to the plasma membrane (Figure 1). In some protozoa
the lysosomes function as food vacuoles where the digestion of macromolecules takes
place, and overall, these lysosomes are similar to other eukaryotes. Sometimes the details
vary due to specialized functions. For example, the food vacuole of the malaria parasite
during the blood stage infection is highly specialized for the digestion of hemoglobin [29].

Microbodies have been described in some of the pathogenic protozoa [25]. Micro-
bodies are more commonly known as peroxisomes since quite often they are involved in
hydrogen peroxide mediated fatty acid oxidation. However, there is a wide diversity of
enzyme content and metabolic functions across eukaryotes and that includes pathogenic
protozoa (Table 1). Notable are the glycosomes of the kinetoplastids in which the enzymes
of glycolysis are localized [20]. In addition, also notable is the apparent lack of microbodies
in Giardia, Trichomonas, Entamoeba, Plasmodium, and Cryptosporidium [25]. Microbodies are
directly derived from the ER and import of proteins into microbodies involves components
that are homologous to components of the ER-associated protein degradation pathway [31].

3. Extracellular Vesicles

Extracellular vesicles (ECV) are membrane-bound particles released from cells. They
have been described in bacteria, fungi, protozoa, plants, and animals [32]. Generally, two
major classes of ECV are recognized: exosomes and ectosomes [33,34]. Exosomes originate
from the endocytic pathway via the formation of multivesicular bodies (MVBs) which
fuse with the plasma membrane to release the exosomes. The MVBs are often part of
autophagocytosis. Ectosomes, also called microvesicles, form from a protrusion of the
plasma membrane resembling the budding of enveloped viruses from cells.

In pathogenic protozoa exosomes are the more prominent of the two [35–37]. In the
case of intracellular pathogens, the ECV can be derived from either the parasite or the
host cell [38]. Little work has been done on the biogenesis of ECV in pathogenic protozoa
and it is presumed that the biogenesis is similar to other eukaryotes. The formation of
the MVB generally involves an inward invagination of the endosomal membrane and
nanovesicles accumulate within the endosome [30]. Generally, the MVB fuse with the
lysosomes and their contents are degraded. However, if the MVB fuses with the plasma
membrane, the ECV are released into the extracellular milieu (Figure 1). ECV formation
in African trypanosomes involves a different process in which the ECV vesiculate from
tubular structures called nanotubes that originate from the flagellar membrane [39].
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Extracellular Vesicles Are Virulence Factors in Pathogenic Protozoa

A wide variety of metabolites, lipids, proteins, and nucleic acids has been identified as
cargo in the ECV, and accordingly, a wide range of functions have been ascribed to the ECV.
Such functions include roles in parasite-to-parasite communication and differentiation
processes [35,36]. For example, exosomes promote sexual differentiation in the malaria
parasite [40]. ECV often play a role in disease pathogenesis by facilitating parasite growth
and survival, as well as, promoting inflammation and damage to the host [41]. Specific
examples of ECV as virulence factors include enhancing adherence, inducing inflammation,
and evading immune responses [35,36].

4. Anaerobic Luminal Pathogens

Giardia, Trichomonas, and Entamoeba are quite distinct in terms of evolution and are not
closely related phylogenetically. Giardia, Trichomonas, and the kinetoplastids are all in the
super group Excavata. However, questions have been raised about whether Excavata is
truly a phylogenetic group [4]. Giardia, Trichomonas, and Entamoeba do exhibit similarities in
that they parasitize lumens and exhibit anaerobic metabolisms. In addition, all three possess
a mitochondrion-related organelle associated with anaerobic metabolism [16]. In Giardia
and Entamoeba this reduced mitochondrion is called the mitosome and in Trichomonas it
is called the hydrogenosome (Table 1). A unique endosomal pathway for the targeting of
proteins to the hydrogenosome has been proposed [42].

4.1. Pathogenesis Associated with Luminal Pathogens Is Associated with Cytoadherence and
Secreted Proteases

Another similarity between all three pathogens is that they adhere to an epithelium,
and this adherence plays a role in their pathogenicity. Giardia adheres to the small intestine
via a structure called the adhesive disk [43]. Various adhesins have been described from
Entamoeba [44], and in particular, the Gal/GalNAc lectin is involved in the contact depen-
dent killing of epithelial cells in the large intestine [45]. Similarly, several adhesins from
Trichomonas that participate in the adherence to the urogenital tract have been described [46].
In addition, all three pathogens secrete factors, such as proteases, that have pathological ef-
fects on the epithelium including cytotoxicity [47–50]. Thus, secretory processes contribute
to virulence. However, not much specific work has been carried out on the trafficking of
these membrane proteins and secreted factors.

4.2. Giardia Appears to Lack a Golgi and a Conventional Lysosome

The secretory pathways of Giardia, Trichomonas, and Entamoeba have not been exten-
sively characterized. The morphology of the ER/Golgi in Trichomonas is similar to the
typical eukaryotic secretory pathway and the overall function appears the same [17]. A
stacked Golgi is not seen in Entamoeba, but nonetheless, its secretory pathway is similar to
those of other eukaryotic cells [18,51,52]. A stacked Golgi is also not observed in Giardia. In
this case though many of the normal Golgi functions are greatly reduced and the sorting
functions of the Golgi appear to be carried out by the ER [13,53]. However, during encys-
tation the parasite secretes a large amount of cell-wall material via encystation-specific
vesicles and these encystation-specific vesicles do exhibit some features reminiscent of
the Golgi [54]. In addition, the only Rho GTPase of Giardia coordinates cyst wall protein
trafficking [55]. Some Rho GTPases are associated with the Golgi and likely play roles in
regulating intracellular trafficking [56].

Peripheral vacuoles located below the plasma membrane are seen in Giardia [15]. These
vacuoles have characteristics of both lysosomes and endosomes, and they appear to be the
only endocytic organelle of Giardia [57]. In addition, peripheral vacuoles are also involved
in the trafficking of plasma membrane proteins and secreted soluble proteins [13,53]. This
trafficking of proteins to the plasma membrane via the peripheral vacuoles is distinct
from the trafficking of the major plasma membrane protein called variant surface protein.
Further, both of these pathways are distinct from the encystation-specific vesicles.
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5. Kinetoplastids

Kinetoplastids are a monophyletic group originally identified by the presence of
concatenated mitochondrial DNA that forms a distinct staining structure called the kine-
toplast [58]. Human disease caused by kinetoplastids include human African trypanoso-
miasis (Trypanosoma brucei gambiense and T. b. rhodesiense), Chagas disease (T. cruzi), and
leishmaniasis (several Leishmania species). African trypanosomes do not secrete significant
levels of macromolecules, whereas T. cruzi and Leishmania secrete virulence factors that
assist in their survival within macrophages and other host cells [59–61]. In the case of Leish-
mania, the parasite is taken up by phagocytosis and the parasite only infects professional
phagocytes. Following fusion of the phagosome fuses with the lysosome, the parasite
secretes factors that shut down the lysosome functions and allow the parasite to survive.
T. cruzi is also an intracellular parasite that relies on host cell phagocytosis to gain entry.
However, T. cruzi is also capable of infecting non-phagocytic cells via the induction of
membrane repair in the host cell [62]. This results in the recruitment of lysosomes to the
parasite attachment site followed by an incorporation of the parasite into compartment
analogous to the phagosome. In contrast to Leishmania, T. cruzi secretes factors that allow it
to escape from the phagosome [63].

5.1. The Flagellar Pocket Is the Primary Site of Endocytosis and Exocytosis in Kinetoplastids

Most of the work on membrane trafficking in the kinetoplastids has been carried out
in the African trypanosomes and especially T. b. brucei. Overall, membrane trafficking in
the kinetoplastids is similar to other eukaryotes [19,64,65]. No particularly extraordinary
endomembranes have been noted. One unique feature of the kinetoplastids is that the
membrane trafficking at the plasma membrane is primarily restricted to the flagellar
pocket [21]. The flagellar pocket is an invagination of the plasma membrane where the
flagellum emerges from the cell. Restriction of endocytosis and exocytosis to the region
around the flagellar pocket results in a polarization of the Golgi, endosomes, and lysosome
to a region near the flagellar pocket (Figure 2). As part of this polarization an extension
of the ER is located just under the plasma membrane where the flagellum attaches to the
parasite surface [66]. This region of the plasma membrane is called the flagellar adherence
zone (FAZ). Presumably this FAZ-ER specializes in membrane trafficking involved in
secretion and endocytosis.

Life 2021, 11, x FOR PEER REVIEW 7 of 25 
 

 

 
Figure 2. Polarized membrane trafficking in kinetoplastids. The flagellar pocket is an invagination 
of the plasma membrane at the base of the flagellum near the kinetoplast (KT). The Golgi, endo-
somes, and lysosomes are also located in the vicinity of the flagellar pocket (FP). A specialized re-
gion of the ER called the flagellar adherence zone ER (FAZ-ER) is also part of the polarized mem-
brane trafficking. Figure modeled after Field and Carrington [65]. 

5.2. Glycosylphosphatidylinositol Anchors Are Abundant on the Plasma Membranes of 
Kinetoplastids 

Another unique feature of the kinetoplastids is the predominance of glyco-
sylphosphatidylinositol (GPI)-linked proteins and glycolipids on their cell surfaces 
[19,67]. In fact, GPI anchors were first described in the African trypanosomes. The GPI-
anchored proteins and lipids are important virulence factors in all three human kineto-
plastids. Specifically, GPI anchors participate in the formation of dense protective coats 
on the parasite surfaces. In the case of African trypanosomes, a single GPI-anchored pro-
tein called variant surface glycoprotein (VSG) constitutes approximately 90% of the sur-
face of bloodstream trypomastigote forms. An exceptionally high rate of endocytosis has 
been noted for the blood stage of African trypanosomes. It has been proposed that this 
high rate of endocytosis is involved in the removal and degradation of antibodies bound 
to VSG [19]. Following endocytosis, VSG is recycled back to the plasma membrane. 

Predominant GPI-anchored proteins on the surface of T. cruzi include mucin-like gly-
coproteins and an associated trans-sialidase which play critical roles in parasite adherence 
and immune evasion [68]. The predominant GPI-anchored virulence factors of Leishmania 
are a metalloprotease, called GP63, and lipophosphoglycan (LPG). Interestingly, GP63 
and LPG are shed from the parasite surface after phagocytosis by macrophages and are 
redistributed in the host cell via the secretory pathway of the host cell [69]. GPI-anchored 
proteins are also well represented in the Apicomplexa and participate in the immuno-
pathology associated with malaria and toxoplasmosis [70]. 

6. Apicomplexa and Apical Organelles 
Most apicomplexans spend at least a portion of their life cycle as intracellular para-

sites. In contrast to Leishmania and T. cruzi, which depend on host endocytic mechanisms 
to gain entry into host cells [71,72], the apicomplexans have evolved a rather sophisticated 
mechanism involving specialized secretory organelles called micronemes and rhoptries 
(Table 2). These organelles are located on one end of the parasite and are associated with 
cytoskeletal elements to from the apical complex. The apical complex is one of the key 
attributes of this phylogenetic group and the basis for the name Apicomplexa. Early on it 
was surmised that these apical organelles participate in the invasion process since most 
apicomplexans enter cells from the apical end. Further, and indeed, the secretion of the 
contents of micronemes and rhoptries plays a key role in host cell invasion [22,73]. In ad-
dition, as the parasite invades the host cell a parasitophorous vacuole is formed. This vac-

Figure 2. Polarized membrane trafficking in kinetoplastids. The flagellar pocket is an invagination of
the plasma membrane at the base of the flagellum near the kinetoplast (KT). The Golgi, endosomes,
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5.2. Glycosylphosphatidylinositol Anchors Are Abundant on the Plasma Membranes
of Kinetoplastids

Another unique feature of the kinetoplastids is the predominance of glycosylphos-
phatidylinositol (GPI)-linked proteins and glycolipids on their cell surfaces [19,67]. In fact,
GPI anchors were first described in the African trypanosomes. The GPI-anchored proteins
and lipids are important virulence factors in all three human kinetoplastids. Specifically,
GPI anchors participate in the formation of dense protective coats on the parasite surfaces.
In the case of African trypanosomes, a single GPI-anchored protein called variant surface
glycoprotein (VSG) constitutes approximately 90% of the surface of bloodstream trypo-
mastigote forms. An exceptionally high rate of endocytosis has been noted for the blood
stage of African trypanosomes. It has been proposed that this high rate of endocytosis
is involved in the removal and degradation of antibodies bound to VSG [19]. Following
endocytosis, VSG is recycled back to the plasma membrane.

Predominant GPI-anchored proteins on the surface of T. cruzi include mucin-like
glycoproteins and an associated trans-sialidase which play critical roles in parasite ad-
herence and immune evasion [68]. The predominant GPI-anchored virulence factors of
Leishmania are a metalloprotease, called GP63, and lipophosphoglycan (LPG). Interestingly,
GP63 and LPG are shed from the parasite surface after phagocytosis by macrophages
and are redistributed in the host cell via the secretory pathway of the host cell [69]. GPI-
anchored proteins are also well represented in the Apicomplexa and participate in the
immunopathology associated with malaria and toxoplasmosis [70].

6. Apicomplexa and Apical Organelles

Most apicomplexans spend at least a portion of their life cycle as intracellular parasites.
In contrast to Leishmania and T. cruzi, which depend on host endocytic mechanisms to gain
entry into host cells [71,72], the apicomplexans have evolved a rather sophisticated mecha-
nism involving specialized secretory organelles called micronemes and rhoptries (Table 2).
These organelles are located on one end of the parasite and are associated with cytoskeletal
elements to from the apical complex. The apical complex is one of the key attributes of this
phylogenetic group and the basis for the name Apicomplexa. Early on it was surmised that
these apical organelles participate in the invasion process since most apicomplexans enter
cells from the apical end. Further, and indeed, the secretion of the contents of micronemes
and rhoptries plays a key role in host cell invasion [22,73]. In addition, as the parasite
invades the host cell a parasitophorous vacuole is formed. This vacuole superficially resem-
bles the phagosome in that a membrane, called the parasitophorous vacuolar membrane
(PVM), surrounds the parasite. However, this PVM is primarily generated by the parasite
and does not represent an endocytic compartment.

Table 2. Apical Organelles.

Organelle Description Features

Microneme Oval vesicles congregated at apical end

Contents include adhesins that are integrated into the
microneme membrane. Secretion of microneme exposes the

adhesin on surface of parasite at apical end. The adhesins bind
to receptors on host cells to form a junction.

Rhoptry Club-shaped organelles with duct at
apical end.

Proteins found in the neck region of the rhoptry participate in
the formation of the moving junction and glideosome. Material

in bulbs of the rhoptry contributes to the formation of the
parasitophorous vacuolar membrane.

Dense Granules Secretory vesicles found at the apical end
and throughout the parasite cytoplasm.

Material in the dense granules is released shortly after parasite
invasion and modify the parasitophorous vacuole and host cell.

Some species produce dense granules throughout the
intracellular period.
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6.1. Micronemes and Rhoptries Facilitate Host Cell Entry, Exit and Modification

Exocytosis of the micronemes releases adhesins, proteases, and perforins that play
crucial roles in host cell invasion and egress, gliding motility, and migration across biologi-
cal barriers [74,75]. During host cell invasion the release of the microneme contents occurs
immediately after the parasite makes contact with the host cell. Fusion of the microneme
to the plasma membrane exposes adhesins on the parasite surface that bind to receptors
on the surface of the host cell resulting in the formation of a junction between the parasite
and host cell [22]. The cytoplasmic domains of the transmembrane adhesins interact with a
multi-protein complex called the glideosome [76]. The glideosome contains actino-myosin
motor proteins that generate the force involved in gliding motility and parasite entry into
host cells. The junction formed between the host cell and parasite is pulled towards the
posterior of the parasite by the glideosome and is called a moving junction. Movement of
this junction towards the posterior end of the parasite propels the parasite forward into the
host cell.

The rhoptries are club-shaped membrane bound organelles with a duct at the apical
end of the parasite. As the parasite enters the host cell, the contents of the rhoptries are
discharged [77]. The rhoptry is divided into the neck region and the bulb region and
different proteins with different functions segregate to these different sub-compartments of
the rhoptry [77,78]. Proteins from the rhoptry neck are required for invasion and participate
in the formation of the glideosome and moving junction [77]. The bulb of the rhoptry
contains membranous material that participates in the formation of the parasitophorous
vacuolar membrane (PVM) as well as modifying the parasitophorous vacuole [79].

6.2. Dense Granules Participate in the Modification of Host Cells by Apicomplexa

Following the completion of invasion, the contents of the dense granules are secreted
into the parasitophorous vacuole [80]. Cargo proteins of the dense granules do not par-
ticipate in the invasion process, but rather modify the parasitophorous vacuole and the
host cell. In Plasmodium all the dense granules are discharged immediately after invasion
and are not regenerated again until merozoites are reformed during parasite replication.
In other apicomplexan species, dense granules are produced and discharged throughout
the intracellular period [81]. In those species there are likely two populations of dense
granules. One population of dense granules, like those in Plasmodium, are generated during
the production of invasive forms, and these dense granules are discharged soon after
invasion of a new host cell. The other population of dense granules are secretory vesicles
that are continuously produced and discharged as the intracellular parasite grows within
the host cell.

6.3. The PVM Is an Interface between the Parasite and the Host Cell

During cell invasion the parasite generates the PVM that surrounds the parasite, and
many apicomplexans reside in the parasitophorous vacuole throughout their intracellular
development. Some apicomplexans, such as Babesia [82], escape from the vacuole and
reside in direct contact with the host cell cytoplasm. Initially, the lipid bilayer of the PVM
is primarily derived from the host cell plasma membrane during invasion [83,84]. Host
membrane proteins are largely excluded from the PVM during invasion and most proteins
of the PVM are of parasite origin. In addition, as the parasite grows, the PVM expands
through the addition of material from the parasite. The PVM does potentially offer some
survival benefits in some situations since lysosomes cannot fuse with the parasitophorous
vacuole. Thus, the PVM also serves as a barrier between the host and parasite. Since the
intracellular parasite acquires nutrients directly form the host, the PVM possesses parasite
derived channels that are permeable to metabolites.

6.4. Endosomal Pathways May Function in the Formation of Micronemes and Rhoptries

The micronemes and rhoptries are generated de novo during parasite replication and
the formation of invasive stages. These apical organelles are likely generated post-Golgi
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and involve an endosome-like compartment [85,86]. Thus, it appears that apicomplexans
have repurposed components of the endosomal system as intermediate compartments for
the generation of micronemes and rhoptries [87]. In particular, decreased expression of
sortilin, a Golgi protein involved in transporting proteins to the endosomal pathway, ad-
versely affects the generation of micronemes and rhoptries and merozoite formation [88,89].
The function of sortilin may be to escort apical organelle proteins to their final destina-
tions [90]. Knockdown of sortilin expression in P. falciparum also disrupts the biogenesis
of dense granules [89] suggesting that the endosomal-like compartment is involved in
protein sorting to the dense granules as well as the micronemes and rhoptries. In addition,
positioning of these post-Golgi compartments and the apical organelles may involve an
unconventional myosin motor [91].

6.5. Myzocytosis and the Apical Organelles

Not all apicomplexans are intracellular pathogens, but nonetheless have apical or-
ganelles. For example, many gregarines—parasites primarily of annelids and insects—
attach to host cells and the apical organelles mediate these host-parasite interactions [92].
A similar type of interaction is also seen in predatory flagellates called colpodellids [93].
Colpodella and related species attach directly to their prey at the apical end and discharge
the contents of the micronemes and rhoptries into the prey cell. At the attachment site
the membrane of the prey is disrupted so that the plasma membrane of the predatory
colpodellid is in direct contact with the cytoplasm of the prey cell. Subsequently, the
cytoplasm of the prey cell is taken up by pinocytosis, transported to a food vacuole, and
digested. This type of feeding is called myzocytosis. A rhoptry protein of the Apicomplexa
is conserved in Colpodella [94]. This suggests some commonality between the junction
formed between predator and prey during myzocytotic feeding and the moving junction
form during host cell invasion.

Cryptosporidium appears to occupy a position between the myzocytotic feeding of
the gregarines and colpodellids and the intracellular parasitism exhibited by many api-
complexans. Cryptosporidium sporozoites and merozoites attach to intestinal epithelial
cells at their apical ends and the discharge of the apical organelles mediates the formation
of a junction between the host and parasite [93,95]. Nutrients are transported from the
host cell to the parasite via this junction called the feeder organelle [96]. Distinct from the
colpodellids and gregarines, the nutrients are taken up via membrane transporters instead
of pinocytosis [97]. In addition, Cryptosporidium remodels the host cell actin and causes an
expansion and fusion of the membranes of the microvilli and these remodeled microvilli
surround and enclose the parasite [98]. This location is referred to as extracytoplasmic
since the parasite is not inside of the host cell, but at the same time, the parasite is enclosed
by a membrane of host cell origin.

The original function of the apical organelles was likely involved in feeding via
myzocytosis. These organelles predate the Apicomplexa, in that similar organelles are
found in predatory dinoflagellates and perkinsids that also exhibit myzocytotic feeding [93].
Dinoflagellates and apicomplexans are sister groups within Alveolata [99]. Furthermore,
parallels between the rhoptries of apicomplexans and the trichocysts of predatory ciliates
have been made [100]. The trichocysts are secretory organelles that are discharged upon
contact with prey organisms [101]. This discharge immobilizes the prey and allows for
their endocytosis and digestion. In a switch from a predatory lifestyle to a parasitic lifestyle,
the apical organelles were likely repurposed to facilitate entry into host cells.

7. Alveolates and the Inner Membrane Complex

Another unique endomembrane compartment found in Apicomplexa is the inner
membrane complex (IMC). Compartments analogous to the inner membrane complex
are also found in ciliates, dinoflagellates, and some related genera, such as Perkinsus,
Colpodella, and Colponema [102]. Although these three major groups are rather distinct,
they all are characterized by membrane-bound vesicles and associated proteins that lie just
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under the plasma membrane. In general, these membrane-bound vesicles are called the
cortical alveoli and these structures are the basis for the name for the group. The alveoli
have structural roles in determining cell shape, as well as specific roles in the various
species [103].

Ciliates and dinoflagellates are primarily free-living organisms found in aquatic en-
vironments with relatively few parasitic and pathogenic species. The alveoli of ciliates
are flattened submembrane vesicles that are calcium stores with properties similar to the
ER [104]. A possible function of these cortical alveoli is the triggering the discharge of
trichocysts [101]. In dinoflagellates the cortical alveoli are called amphiesma and may par-
ticipate in the formation the pellicle [105]. Virtually nothing is known about the biogenesis
of alveoli in ciliates and dinoflagellates.

The Inner Membrane Complex Is Derived Largely from the ER
The IMC of Apicomplexa consists of flattened vesicles found in the invasive stages [23].

This creates the appearance of a three-layered membrane pellicle. Coincident with its
presence in invasive stages, the IMC and the associated subpellicular microtubules support
the glideosome [76]. In Plasmodium the IMC is degraded following invasion of host cells
or tissues and then regenerated with the production of invasive stages [106]. Biogenesis
of the IMC starts at the apical end and progresses down the length of the parasite during
the formation of merozoites [103,107] and sporozoites [28]. Thus, the malaria parasite
undergoes cycles of IMC generation followed by degradation throughout its complex life
cycle [106]. An integral membrane protein of the IMC that is associated with the glideosome
redistributes from the ER to the IMC as merozoites are formed [108]. Palmitoylation appears
to be involved in the association of other IMC proteins with the IMC [109].

The generation of the IMC in Toxoplasma is slightly different than Plasmodium in that
recycling of IMC material occurs [110]. The differences may relate to the replication process
of Toxoplasma and how it differs from Plasmodium. Toxoplasma replicates by a process
called endodyogeny in which daughter cells are assembled within the mother cell [111].
In the early stages of daughter cell formation the IMC is generated from the ER as in
Plasmodium [110]. As replication proceeds IMC material from the mother cell is recycled
into the IMC of the daughter cells. This recycling may involve fusion of the maternal IMC
with the ER and subsequent movement of IMC material to the daughter IMC via the Golgi
and an endosome-like compartment.

8. Host Targeting Sequences in Apicomplexa

Many apicomplexan proteins that are exported into their host cells contain a unique
targeting sequence. This targeting sequence was first identified in proteins exported into
the host erythrocyte by the malaria parasite and called the Plasmodium export element
(PEXEL). PEXEL is typically located downstream of a canonical ER signal sequence and
is defined as RxLxE/Q/D [112] where x is any amino acid and the fifth position is either
glutamate, glutamine, or aspartate. Within the ER an aspartyl protease, called plasmepsin V,
cleaves the PEXEL motif between the third (L) and fourth (x) residues (Figure 3). Following
this proteolytic processing the PEXEL-containing protein is acetylated on the N-terminus by
an unknown transferase. The recognition, translocation, and proteolytic processing of these
PEXEL containing proteins utilize the Sec61 translocation channel on the ER membrane,
as do other secreted proteins. However, additional auxiliary proteins are associated with
the Sec61 channels that translocate PEXEL-containing proteins [113]. For example, the
plasmepsin V is associated with these specialized Sec61 translocation channels instead of
the canonical signal peptidase. Other prominent auxiliary proteins are designated as Sec62
and Sec63.
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Figure 3. Processing of PEXEL-containing proteins. Exported proteins generally have a hydrophobic signal sequence at their
N-terminus (yellow). Some proteins also have the PEXEL motif (red) downstream from the signal sequence. PEXEL-negative
exported proteins (PNEP) are translocated into the ER by the canonical Sec61 translocation complex and the signal sequence
is removed by signal peptidase (SP). The ER exit sites for these proteins is associated with Rab1b and the proteins are likely
transported directly to the parasitophorous vacuole. The translocon for PEXEL-containing proteins is Sec61 complexed with
other proteins (Sec62 and Sec63) and the processing is carried out by plasmepsin V (PmV). The inset shows the proteolysis
and acetylation (Ac) of the PEXEL motif. Exit from the ER involves Arf1 and proteins probably pass through the Golgi on
their way to the parasitophorous vacuole. The details on the entry and exit of Toxoplasma export element (TEXEL)-containing
proteins has not yet been determined as denoted by the question marks (?), but it is proposed that Sec61 and signal peptidase
are involved [114]. Processed TEXEL-containing proteins then move to the Golgi and are further processed at the TEXEL
motif by aspartyl protease 5 (Asp5). These processed proteins are then incorporated into dense granules (DG) and carried to
the parasitophorous vacuole.

Numerous Plasmodium proteins that do not contain PEXEL are also exported into
the host erythrocyte and these are generally known as PEXEL-negative exported proteins
(PNEPs) [115]. Presumably these PNEPs are translocated into the ER by the conventional
Sec61 channel and signal peptidase without the associated Sec62/Sec63. Exit of PEXEL-
containing proteins and PNEPs from the ER appears to occur in different subdomains of
the ER [116]. In particular, exit of PEXEL-containing proteins are associated with an Arf1
homolog and presumably move from the ER to the Golgi. PNEPs are associated with a
Rab1b homolog and presumably are transported directly to the parasitophorous vacuole.

8.1. PEXEL-Like Motifs in other Apicomplexans

PEXEL-like motifs (PLM) and orthologs of plasmepsin V have also been identified
in Toxoplasma, Babesia, and Cryptosporidium [114,117]. Both Toxoplasma and Babesia contain
a significant number of secreted proteins with a PEXEL-like sequence (eg., RxLx, RxxL,
RxL) downstream of a signal peptide. Only 15 proteins with a PLM were identified in
Cryptosporidium, and in general, the parasite does not appear to secrete many proteins into
the host cell. This may reflect the parasite residing in an extracytoplasmic compartment
instead of being intracellular. Surprisingly, no PLM were identified in Theileria considering
the close evolutionary relationship between Babesia and Theileria [118].

PLM-containing proteins of Toxoplasma and Babesia proteins are primarily found in
the dense granules [117,119,120]. This may not be a major functional distinction since
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dense granules ultimately secrete their contents into the parasitophorous vacuole and
host cell. In addition, RESA, a dense granule protein of Plasmodium transferred to the
erythrocyte membrane shortly after invasion, has a relaxed PEXEL motif that is processed
by plasmepsin V [121]. Dense granules have been identified in Cryptosporidium [122],
although, little is known about their role on host-parasite interactions. Another distinction
between Toxoplasma and Plasmodium is the processing of the PLM. The processing of the
Toxoplasma PLM occurs in the Golgi [123] instead of the ER (Figure 3). It is speculated that
the signal peptide is removed in the ER before the processing of the PLM in the Golgi. The
cellular locations of plasmepsin V orthologs from other apicomplexans is not known.

8.2. Possible Ancient Origin of the PEXEL-Like Motif

The presence of a PLM in Cryptosporidium suggests PEXEL-based protein targeting has
deep roots in the Apicomplexa. Cryptosporidium is more closely related to the gregarines
than other Apicomplexa and represents an early branch in the apicomplexan tree [92].
Furthermore, PEXEL actually predates the Apicomplexa in that a PLM is also present in
the potato pathogen Phytophthora infestans [124] and other oomycetes [125,126]. Oomycetes
are stramenopiles which form a sister group with the alveolates [4] and possibly diverged
from the alveolates in the early Mesoproterozoic period 1.6 billion years ago [127]. Despite
this large evolutionary difference, the oomycete PLM is functional in Plasmodium [128] and
PEXEL is functional in P. infestans [129]. In addition, the oomycete PLM is likely subjected
to similar proteolytic processing and acetylation [130].

P. infestans, the causative agent of the Irish potato famine, and other oomycetes are
extracellular pathogens that intimately interact with the host plant cell via a structure called
the haustorium [131]. Haustoria are intercellular hyphae that project into the parasitized
plant cell. The wall of the plant cell is disrupted, but the plasma membrane of the plant
cell remains intact. This forms an intimate interaction between the membranes of the
pathogen and host, and in some ways this interaction resembles the relationship between
of the plasma membrane of apicomplexan parasites and the PVM. Furthermore, pathogen
proteins are translocated across the haustorium membrane and plant cell membrane via a
mechanism utilizing the PLM. Factors secreted from the oomycete into the host plant cell
suppress plant cell immunity, and thus, a major function of the PLM both in stramenopiles
and apicomplexans is the translocation of virulence factors and other proteins into their
host cells.

9. Remodeling the Host Erythrocyte by the Malaria Parasite

The malaria parasite extensively alters the host erythrocyte during blood-stage mero-
gony [132,133]. These extensive renovations of the host cell are necessary in part due to
the rather limited functionality of the erythrocyte. During development, the mammalian
erythrocyte loses all organelles and endomembrane systems. In addition, the erythrocyte
has a rather scaled-down metabolism. Therefore, the intracellular parasite cannot com-
pletely rely upon the host cell for a source of metabolites. To compensate for the paucity of
metabolites, new permeability pathways (NPP) are found on the erythrocyte membrane of
infected cells [134]. The exact nature of the NPP is not known but parasite proteins that
affect the host erythrocyte membrane are clearly involved in the formation of the NPP.
Some of the proteins involved in the formation of these NPP originate in the rhoptries
and are deposited in the PVM during invasion [135,136]. Subsequently, the proteins are
translocated from the PVM to the erythrocyte membrane. The parasite also secretes many
other proteins into the host erythrocyte, and in fact, P. falciparum may export approximately
10% of its proteome into the erythrocyte [137].

The malaria parasite also induces numerous ultrastructural alterations in the infected
erythrocyte (Figure 4). For example, electron-dense knobs are observed on the surface of P.
falciparum infected erythrocytes [138] and caveole-vesicle complexes are observed on the
surface of P. vivax infected erythrocytes [139]. In addition, various membranous tubules and
whorls originating from the PVM are also seen in the cytoplasm of the infected erythrocyte.
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Although best described in P. falciparum, such membranous structures are seen in other
Plasmodium species including rodent malaria parasites [140]. These various membranous
extensions of the PVM are sometimes called the tubovesicular network (TVN) [84]. The
appearance of the TVN is somewhat variable and sometimes is not present, and therefore,
the role of the TVN is not clear. It has been hypothesized that the TVN may be storage
site for improperly folded exported proteins [141] and this could explain the variable size
and appearance of the TVN. If true, this implies that the TVN is analogous to the ER
stress response [11]. Another membrane-bound compartment found in the cytoplasm of P.
falciparum infected erythrocytes are the Maurer’s clefts [142]. Maurer’s clefts are distinct
from the TVN since the two structures have distinct protein compositions.
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A particularly well characterized modification of the host erythrocyte by the malaria
parasite are the knobs on the surface of P. falciparum infected erythrocytes. Proteins syn-
thesized by the parasite and exported to the erythrocyte membrane rearrange the sub-
membrane cytoskeleton of the erythrocyte to form the knobs [133,143]. Embedded in
this knob is another parasite protein called erythrocyte membrane protein 1 (Pf EMP1).
Pf EMP1 spans the erythrocyte membrane and is exposed on the erythrocyte surface where
it functions as a ligand that binds to receptors on endothelial cells [144,145]. Thus, the
knobs serve as focal points for binding of infected erythrocytes to endothelial cells that
result in the sequestration of infected erythrocytes in the deep tissues. This sequestration
avoids removal by the spleen and promotes parasite survival, and thus, sequestration plays
a major role in the increased virulence of P. falciparum. Furthermore, sequestration is a
major element in the pathophysiology of severe falciparum malaria [145,146].

9.1. A Possible Subdomain of the ER in Plasmodium for Host-Targeted Proteins

Export of proteins into the host erythrocyte begins in the ER. An ER domain, called
the Plasmodium export compartment (PEC), that specializes in the export of proteins to
the host erythrocyte has been proposed [147]. The PEC was initially identified due to the
segregation of exported proteins into to a compartment distinct from but overlapping
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with the ER following brefeldin A treatment [148–150]. It appears that both PEXEL-
containing exported proteins and PNEPs both accumulate in this compartment. Proteins
with molecular masses of 68 kDa, 45 kDa, and 22 kDa were identified as possible resident
proteins to this compartment [151]. These proteins partially co-localize with Pf Sar1 and
Pf Sec31, which are components of coat protein complex II (COPII). COPII functions in the
transport of vesicles from the ER to the Golgi [152]. In addition, the 68 kDa protein has
been identified as Pf HSP70-2, an ER-resident protein [153]. These ER-resident proteins
(Pf HSP70-2, Pf Sar1 and Pf Sec31) all exhibit a wider sub-cellular distribution than the
compartment generated from exported proteins by brefeldin A. This suggests that exported
proteins are found in a sub-compartment within the ER. The observations that PEXEL-
containing and PNEPs are processed by different Sec61 translocons and proteases [113,116]
are also consistent with distinct sub-compartments of the ER. The PEC is found adjacent to
the parasite plasma membrane and may provide for a direct transit to the parasitophorous
vacuole [147].

9.2. Plasmodium Has a Unique Translocon for Exporting Proteins from the
Parasitophorous Vacuole

As discussed above, PNEPs may go directly from the ER to the PV, whereas PEXEL
containing proteins possibly process through the Golgi before arriving in the PV (Figure 3).
Thus, exported proteins destined for the erythrocyte also need to be translocated across
the PVM after their arrival to the parasitophorous vacuole [132,154]. This translocation is
accomplished by a large membrane complex called the Plasmodium translocon of exported
proteins (PTEX) [154,155]. The three major proteins making up this complex are HSP101,
PTEX150, and EXP2. PTEX is prepackaged into dense granules and transferred to the PVM
after parasite invasion [156]. HSP101 is a chaperone that unfolds proteins and threads them
through a pore formed from PTEX150 and EXP2. Another protein complex located in the
PV, called exported protein interacting complex (EPIC), may participate in the movement
of cargo within the PV and its delivery to PTEX [157]. Both PEXEL-containing effector
proteins and PNEPs are translocated by PTEX [158,159]. Presumably, resident proteins of
the parasitophorous vacuole are excluded from EPIC and PTEX.

Interestingly, EXP2 also functions as a nutrient channel for small metabolites when it
is not associated with HSP101 and PTEX150 [160]. The PTEX channel for the movement
of exported proteins from the parasitophorous vacuole to the host erythrocyte cytoplasm
appears unique to Plasmodium. Homologs of EXP2 are found in Toxoplasma and other
vacuole dwelling apicomplexans even though PTEX is not [161]. This suggests that EXP2
has been repurposed in Plasmodium for two transport related functions. Other differences
between the endomembrane systems of Plasmodium and Toxoplasma have been noted
(Table 3). Most of these differences are related to how the two parasites modify their host
cells and may reflect differences between erythrocytes and nucleated cells as host cells.
However, Plasmodium and Toxoplasma, the two most studied apicomplexans, exhibit more
similarities in their endomembrane systems than differences.

Table 3. Differences Between Plasmodium and Toxoplasma.

Feature Plasmodium Toxoplasma

Replication Schizogony (multiple rounds of nuclear replication
followed by cytoplasmic segmentation)

Endodyogeny (internal formation of
invasive stages)

IMC De novo formation of IMC during each
replication cycle

Extensive recycling of IMC material from mother
cell to daughter cell

Dense Granules Only found in invasive stages and contents
released shortly after invasion

Found in invasive stages and continuously
produced during intracellular period

PEXEL processing Occurs in ER Occurs in Golgi

PEXEL targeting Primarily to the parasitophorous vacuole with
possible exception of RESA to the dense granules

To the dense granules first and then to the
parasitophorous vacuole

PVM translocon PTEX MYR1 [162]
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9.3. Extraparasite Trafficking within the Erythrocyte Cytoplasm

The mature erythrocyte being devoid of endomembranes raises questions about how
proteins are specifically targeted to the erythrocyte membrane and other specific locations
within the infected erythrocyte. The parasite does not simply secrete proteins into the
host erythrocyte but appears to generate a mechanism of extraparasite trafficking within
the host erythrocyte. Molecular chaperones likely play a major role in this extraparasite
trafficking. The parasite exports several chaperones into the parasitophorous vacuole
and host erythrocyte cytoplasm, and these chaperones mediate many aspects of protein
trafficking in Plasmodium [163,164]. For example, a paralog of HSP70, called Pf HSP70-x,
and several HSP40 paralogs are exported into the parasitophorous vacuole and the host
erythrocyte. Presumably, these chaperones assist in the refolding of exported proteins as
they emerge from PTEX and may also assist in the association of exported proteins with the
TVN, Maurer’s clefts, or the erythrocyte membrane. These various membranous structures
may also participate in the movement of parasite proteins to the erythrocyte membrane.
For example, two potential intermediate compartments in the transport of parasite proteins
to the erythrocyte membrane are J-dots and Maurer’s clefts (Figure 5).
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HSP40 binds to cholesterol as well as PfHSP70-x, and thus, J-dots may have a membra-
nous nature [167]. Furthermore, the adhesin PfEMP1 and other exported proteins are tran-
siently associated with J-dots implying a role in extra-parasite trafficking [136,164,165]. 
Maurer’s clefts are membrane bound structures found in the host erythrocyte cytoplasm 
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Figure 5. Possible components of extraparasite transport. After crossing the parasite plasma membrane (PPM) and arriving
in the parasitophorous vacuole, proteins destined for the erythrocyte (triangles) are translocated across the parasitophorous
vacuole membrane (PVM) via Plasmodium translocon of exported proteins (PTEX). Chaperones in the parasitophorous
vacuole and the erythrocyte cytoplasm may assist in the process. HSP40 (circles) and HSP70-x (squares) interact with cargo
proteins (triangles) to form J-dots. Cargo proteins may be moved from J-dots to the Maurer’s clefts (MC). Most Maurer’s
cleft resident proteins (rectangles) are exported into the erythrocyte cytoplasm via PTEX. Cargo proteins are subsequently
translocated from the Maurer’s clefts to the erythrocyte membrane (EM). The lipid components and possibly some resident
proteins of the Maurer’s cleft may originate from the PVM.

J-dots are highly mobile large molecular complexes found in the cytoplasm of infected
erythrocytes consisting of an exported HSP40 [165] and Pf HSP70-x [166]. The HSP40 binds
to cholesterol as well as Pf HSP70-x, and thus, J-dots may have a membranous nature [167].
Furthermore, the adhesin Pf EMP1 and other exported proteins are transiently associated
with J-dots implying a role in extra-parasite trafficking [136,164,165]. Maurer’s clefts are
membrane bound structures found in the host erythrocyte cytoplasm of infected cells [142].
Initially, the Maurer’s clefts are mobile within the cytoplasm of the erythrocyte but as the
parasite matures, they become tethered to the erythrocyte membrane [168]. It has been
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proposed that cargo proteins, such as Pf EMP1, may move from the J-dots to the Maurer’s
clefts [136,169].

Several proteins associated with Maurer’s clefts have been identified [136,170]. Some
of these proteins play a role in the shape of the clefts. Other proteins are involved in loading
erythrocyte membrane bound cargo onto the clefts, and other proteins are involved in
transferring the cargo from the clefts to the erythrocyte membrane. The primary cargo
of the Maurer’s clefts appears to be the adhesin Pf EMP1 [171]. Accordingly, many of
the Maurer’s clefts proteins seem to be limited to the subgenus Laverania which includes
P. falciparum and parasites of the great apes [172]. As discussed above, the increased
virulence associated with P. falciparum is correlated with the expression of the Pf EMP1
adhesin on the erythrocyte surface. In addition, P. falciparum exports many more proteins
into the host erythrocyte than other Plasmodium species [173]. Nonetheless, orthologs for
some Maurer’s clefts proteins are found in rodent parasites and the P. falciparum proteins
function in transgenic rodent parasites [174]. These results imply that the general features of
transporting and translocating parasite proteins to the erythrocyte membrane are conserved
in Plasmodium.

The origins of J-dots and Maurer’s clefts, and the relations of these structures to the
membranous loops and whorls that extend from the PVM, are not known [84]. No stable
continuities between Maurer’s clefts and either the PVM or the host erythrocyte membrane
have been noted [142]. However, recently, a Maurer’s cleft protein, call skeleton-binding
protein 1 (SBP1), and electron dense material associated with Maurer’s clefts have been
observed to originate in the parasite and pass through the parasitophorous vacuole in
route to the mature Maurer’s clefts [175]. Furthermore, Maurer’s clefts adjacent to the PVM
suggest that Maurer’s clefts are derived from the PVM.

10. Summary

Endocytosis and exocytosis are hallmark features of eukaryotes, including pathogenic
eukaryotic microbes. Secretory processes are often directly linked with pathogenesis
and thus can be viewed as virulence factors. Virulence factors associated with secretory
processes in these species are primarily adhesins expressed on the surface of the parasites
and secreted proteins. Many of the secreted proteins are proteases that damage host tissue
and allow parasite invasion of tissue. Other virulence factors are associated with the
evasion of the immune system. In general, the targeting of proteins to the cell surface and
the secretion of proteins into the host exhibit similar features as other eukaryotes. For the
most part, protozoa have an endomembrane trafficking system consisting of the ER, Golgi,
and endosomes that is comparable to other eukaryotes.

However, there does appear to be a reduction in the relative amount of Golgi and its
function in the pathogenic protozoa. This is most pronounced in Giardia and Plasmodium.
In Giardia most of the Golgi functions are found in the ER and it has been proposed that
the parasite has completely lost the Golgi. Like Giardia, many Golgi functions are also
found in the ER of Plasmodium. A distinct Golgi has been identified in Plasmodium, but it is
rather limited in size and its exact role in membrane trafficking is not clear. In the other
pathogenic protozoa, a distinct Golgi has been identified. However, quite often the Golgi is
limited to a single stack, or possibly two, per cell. The position of the Golgi is polarized
within the cell in the kineoplastids and is located near the flagellar pocket which is the site
of all endocytic and exocytic activities. A specialized region of the ER is associated with
the Golgi of trypanosomes. Plasmodium also appears to have sub-domains of the ER. It
appears that decreased functionality of the Golgi and increased functions in the ER may be
common feature in pathogenic protozoa.

Little is known about the endosomes of pathogenic protozoa. Giardia has a unique
compartment with both endosome and lysosome like properties called peripheral vacuoles
which also participates in the trafficking of proteins to the plasma membrane. Some
repurposing of the endosomal compartment may also have occurred in the Apicomplexa
as endosomes appear to be involved in the genesis of the apical organelles.
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The Apicomplexa have several unique endomembrane systems that are involved in
host-pathogen interactions. Most notable are the highly specialized apical organelles that
play a key role in invasion of host cells. These organelles include micronemes and rhoptries
which participate in the formation of a junction between the parasite and host cell. This
junction is linked to a unique actino-myosin motor complex called the glideosome. Their
evolutionary origin likely relates to the attachment of free-living predatory protozoa to
their prey. Over time these organelles may have evolved to facilitate interactions with host
cells during the evolution of parasitism. For example, linkage of the host-parasite junction
with the glideosome would allow for invasion. The glideosome is also associated with
another unique compartment in Apicomplexa called the inner membrane complex.

After gaining entry into the host cell, apicomplexan parasites—especially the malaria
parasite—extensively modify their host cells. The elaborate modifications of the host
erythrocyte by the malaria parasite play an essential role in the parasite’s biology, as
well as in the pathophysiology of the disease. These modifications involve the export of
numerous parasite proteins into the host erythrocyte. Many of the exported proteins utilize
a unique targeting sequence called PEXEL. PEXEL is also found in other apicomplexans and
pathogenic stramenopiles. However, the number of PEXEL containing proteins appears to
be greatest in Plasmodium, and among the malaria parasites, P. falciparum appears to have
the largest repertoire of PEXEL-containing proteins. Coincidently, P. falciparum is the most
virulent malaria parasite and the extensive export of material into the host erythrocyte
contributes to this increased virulence. Plasmodium also has a unique translocon for the
movement of proteins from the parasitophorous vacuole to the erythrocyte cytoplasm.
Furthermore, the malaria parasite has created mechanisms to traffic proteins beyond its
own plasma membrane within the cytoplasm of the erythrocyte.
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