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Salivary glands are considered important targets of severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) infection. Recent evidence suggests that along with angiotensin converting enzyme 2,
certain cell surface sialic acids (Sia) may function as receptors for binding SARS-CoV-2 spike protein. Over
50 forms of Sia have been identified in nature, with N-acetylneuraminic acid (Neu5Ac) being the most
abundant. We explored the Human Protein Atlas repository to analyze important enzymes in Neu5Ac
biosynthesis and propose a hypothesis that further highlights the significance of salivary glands in
coronavirus disease 19 (COVID-19). This work may facilitate research into targeted drug therapies for
COVID-19.

© 2021 Japanese Association for Oral Biology. Published by Elsevier B.V. All rights reserved.
Salivary glands have been suggested as important targets of
infection by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), causing coronavirus disease 19 (COVID-19). Angio-
tensin converting enzyme 2 (ACE2), the primary receptor for SARS-
CoV-2 entry into the host cell, along with TMPRSS2 (a type II
transmembrane serine protease) and furin, which are responsible
for priming and activating the spike protein of SARS-CoV-2,
respectively, are highly expressed in the salivary glands [1e3].
Recently, researchers have provided in silico evidence of a dual
strategy, wherein in addition to ACE2, certain sialic acids (Sia)
present on the cell surface may also function as potential receptors
for binding the spike protein of SARS-CoV-2 [4e7].
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Sia are monosaccharides found on the outermost ends of sugar
chains of glycoproteins or glycolipids (glycoconjugates), which are
present on the cell surface of vertebrates, higher invertebrates, and
few bacteria and play significant roles in several physiological and
pathological processes [8,9]. More than 50 forms of Sia have been
identified in nature, of which the most abundant is N-acetylneur-
aminic acid (Neu5Ac). Sia and other host sugar molecules are often
used as receptors by a wide range of viruses, including coronavi-
ruses [10,11]. Recently, it has also been demonstrated that Neu5Ac
exhibits affinity for the SARS-CoV-2 spike protein [12].

We explored the Human Protein Atlas (HPA) repository [13] to
investigate the expression of genes related to Sia metabolism in
human tissues, with an emphasis on three main enzymes involved
in the biosynthesis of Neu5Ac, namely, glucosamine (UDP-N-
acetyl)-2-epimerase/N-acetylmannosamine kinase (GNE) enzyme,
Neu5Ac 9-phosphate synthase (NANS)and Neu5Ac-9-phosphate
phosphatase (NANP) [9]. The HPA repository is a freely available
interactive resource that maps the human tissue proteome to
analyze tissue profiles of specific protein classes in order to achieve
its spatial localization down to the single-cell level [13e15], as
depicted in Fig. 1. All the information in HPA is provided without
any restrictions to allow researchers to get a holistic map of the
human body.
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Fig. 1. Brief overview of Human Protein Atlas (HPA) repository. The available data in
HPA repository comprises an integration of various omics technologies, such as
antibody-based imaging, mass spectrometry-based proteomics, transcriptomics and
systems biology. More than 13 million tissue-based immunohistochemistry images are
available, each of which is annotated by pathologists. A comprehensive overview of
protein expression patterns in human tissues is possible by stringently evaluating
these immunohistochemical staining methods, RNA-seq data from internal and
external sources, and protein/gene characterization, with an emphasis on RNA-seq.
The HPA consists of six categories: tissue atlas, single cell type atlas, pathology atlas,
blood atlas, brain atlas, and cell atlas, with each providing information on a different
aspect of human proteins. It also includes a summary page for each protein, which can
be navigated via the search engine and presents a summary gathered from the content
of different aspects of the human atlas. GTEx, Genotype-Tissue Expression is an online
portal to study tissue-specific gene expression as well as their regulation. RNA-seq data
from 36 tissue types were mapped and included in the HPA for all corresponding
genes. FANTOM5, the Functional Annotation of Mammalian Genomes 5 project pre-
sents comprehensive expression profiles and functional annotation of mammalian cell
type-specific transcriptomes using cap analysis of gene expression (CAGE). The
normalized tags per million for each gene were calculated and incorporated into HPA.
The mRNA expression levels in human tissue, presented in the HPA repository, are
based on RNA-seq data generated by the HPA, GTEx portal, and CAGE data generated
by the FANTOM5 consortium. Consensus normalized expression (NX) levels for human
tissues were obtained by the combination of data from the three datasets (HPA, GTEx,
and FANTOM5). For all annotated cell types, the protein expression ranged from: not
detected (n), low (l), medium (m), and high (h). Beneath this expression diagram, the
protein expression in each of the annotated cell types associated with the specific
tissue/organ are reported using similar units.
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An overview of various enzymes involved in Sia synthesis, as
well as their mRNA and protein expression in salivary glands and
lungs, is presented in Table 1. Considering the consensus among the
three data sets, HPA, GTEx, and FANTOM5, the normalized mRNA
expression of ACE2 was only slightly higher in salivary glands (1.1
NX) than in the lungs (0.8 NX), as reported previously [1,13,15]. The
mRNA expression in the HPA data set revealed 0.5 pTPM (1 million
transcripts per kilobasemillion) in the salivary glands and 1.7 pTPM
in the lungs. GTEx data set revealed 1.8 pTPM in the salivary glands
and 1.1 pTPM in the lungs whereas FANTOM5 data set revealed 0.3
and 2.8 scaled tags per million in the salivary glands and lungs,
respectively. ACE2 protein expression was neither present in the
salivary glands nor in the lungs (Table 1).

Further exploration of HPA presented some noteworthy findings
[13,15]. Interestingly, we observed that the GNE gene was also
highly enhanced in the salivary glands compared to the lungs
(Table 1) [16]. As mentioned previously, GNE plays a crucial role in
the initiation and regulation of the synthesis of Neu5Ac, which is
the precursor of Sia. Considering the consensus among three
datasets such as GTEx, HPA, and FANTOM5, normalized GNE
expression was higher in the salivary glands (45.3NX) than in the
lungs (5.5NX) [13,15,16]. This is also in accordancewith the findings
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of the individual data sets. The mRNA expression in the HPA data
set revealed 33.4 pTPM in the salivary glands and 13.7 pTPM in the
lungs. Similarly, both GTEx and FANTOM5 data sets also revealed
higher GNE expression in the salivary glands (17.8 pTPM and 47.3
scaled tags per million, respectively) than in the lungs (9.3 pTPM
and 28.2 scaled tags per million). The salivary glands showed the
highest GNE mRNA expression in the body following the liver,
where the maximum expression was observed. Nevertheless, GNE
protein expression was highest in the lungs next to the naso-
pharynx, with high detection in macrophages and no detection in
the alveolar cells (Table 1). These findings corroborate the obser-
vation that SARS-CoV-2 can engage in Sia found in human respi-
ratory cells [13].

According to the HPA repository, the normalized mRNA
expression levels of NANS were also reported to be higher in the
salivary glands (80.0 NX) than in the lungs (17.1 NX), as revealed by
HPA, GTEx, and FANTOM5 datasets [13,15,16]. This is also in
accordance with the findings in the individual datasets. The mRNA
expression in the HPA data set revealed an 80.4 pTPM in the sali-
vary glands and a 57.3 pTPM in the lungs. GTEx data set revealed
101.7 pTPM in the salivary glands and 68.8 pTPM in the lungs. The
FANTOM5 dataset revealed 56.2 and 62.4 scaled tags per million,
respectively, in the salivary glands and lungs. Interestingly, ac-
cording to the consensus data, the highest mRNA expression of
NANS in the human body was reported in the salivary glands. In
addition, NANS protein expressionwas high in the glandular cells of
the salivary glands and lung macrophages, whereas it was reported
to be absent in the alveolar cells (Table 1).

Based on the consensus among the HPA, GTEx, and FANTOM5
datasets, the normalized mRNA expression of NANP was higher in
the salivary glands (7.8 NX) than in the lungs (6.7 NX) [13,15,16].
The mRNA expression in the HPA data set was 1.2 pTPM in the
salivary glands and 4.4 pTPM in the lungs. The GTEx dataset
revealed a 2.4 pTPM in the salivary glands and 2.7 pTPM in the
lungs. The FANTOM5 dataset revealed 1.7 and 7.1 scaled tags per
million in the salivary glands and lungs, respectively. However, no
data are available regarding NANP protein expression (Table 1).

The central dogma of molecular biology closely connects DNA,
RNA, and protein molecules [13,15,16]. The nucleotide sequence
determines the sequence of its mRNA product, and the mRNA
sequence determines the amino acid sequence of the resulting
polypeptide. The relationship between the concentration of a
transcript and that of a protein derived from a particular locus is not
trivial. Systematic studies at the genomic level that quantify tran-
scripts and proteins revealed the significance of several processes
beyond transcript concentration that influence the protein
expression level. These processes include translation rates, trans-
lation rate modulation, protein half-life, protein synthesis delay,
and protein transport. Thus, a direct comparison between protein
and mRNA abundances from the same location or from the same
cell type may not be appropriate. This could explain the variations
between the protein expression and mRNA levels of several en-
zymes observed in the data sets in the present study. For instance,
GNE protein expression was minimally detected in the glandular
cells of the salivary glands despite its high mRNA expression. In
addition, the protein in silico findings in the HPA are concerned
with immunohistochemistry, which may not be the best tool for
quantitative evaluation as it simply provides information pertain-
ing to localization [2]. This may also partially explain why the data
repositories yielded contradictory information that could be
reconciled by missing data in one being present in the other.

Hence, we hypothesize that the high expression of enzymes
such as GNE, NANS, and NANP in the salivary glands, which play a
pivotal role in the synthesis of Sia, needs to be considered. This
correlation further implicates the significance of salivary glands as



Table 1
mRNA and protein expression of ACE2, GNE, NANS and NANP in salivary glands and lungs.

Salivary Glands Lungs

Angiotensin converting enzyme 2 (ACE2)

RNA
Consensus, NX 1.1 0.8
HPA, pTPM 0.5 1.7
GTEx, pTPM 1.8 1.1
FANTOM5, scaled tags per million 0.3 2.8
Protein Glandular cells: not detected Macrophages: not detected

Alveolar cells: not detected

GNE (Glucosamine (UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase)

RNA
Consensus, NX 45.3 5.5
HPA, pTPM 33.9 13.7
GTEx, pTPM 17.8 9.3
FANTOM5, scaled tags per million 47.3 28.2
Protein Glandular cells: low detection Macrophages: high

Alveolar cells: not detected

Neu5Ac 9-phosphate synthase (NANS)

RNA
Consensus, NX 80.0 17.1
HPA, pTPM 80.4 57.3
GTEx, pTPM 101.7 68.8
FANTOM5, scaled tags per million 56.2 62.4
Protein Glandular cells: high detection Macrophages: high detection

Alveolar cells: not detected

Neu5Ac-9-phosphate phosphatase (NANP)

RNA
Consensus, NX 7.8 6.7
HPA, pTPM 1.2 4.4
GTEx, pTPM 2.4 2.7
FANTOM5, scaled tags per million 1.7 7.1
Protein No data No data

HPA, human protein atlas; GTEx, genotype tissue expression; FANTOM5, functional annotation of mammalian genomes 5; NX, normalized expression; pTPM,
1 million transcripts per kilobase million. Protein data are interpretated as follows (according to The Human Protein Atlas): “Protein expression score is
manually annotated on immunohistochemical figures based on the intensity of staining (negative, weak, moderate or strong) as well as fraction of stained
cells (<25%, 25%e75% or >75%): negative-no detection; weak <25%- no detection; weak combined with 25%e75% or >75%- low detection”.
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an important target in COVID-19 infection. Hypothetically, this
observation could contribute to obtaining greater insight into the
SARS-CoV-2 disease process, which will aid in developing future
interventions and research.
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