
Giráldez-Pérez et al. Acta Neuropathologica Communications 2014, 2:176
http://www.actaneurocomms.org/content/2/1/176
REVIEW Open Access
Models of α-synuclein aggregation in
Parkinson’s disease
Rosa María Giráldez-Pérez1,2, Mónica Antolín-Vallespín1, María Dolores Muñoz3 and Amelia Sánchez-Capelo1*
Abstract

Parkinson’s disease (PD) is not only characterized by motor disturbances but also, by cognitive, sensory, psychiatric
and autonomic dysfunction. It has been proposed that some of these symptoms might be related to the
widespread pathology of α-synuclein (α-syn) aggregation in different nuclei of the central and peripheral nervous
system. However, the pathogenic formation of α-syn aggregates in different brain areas of PD patients is poorly
understood. Most experimental models of PD are valuable to assess specific aspects of its pathogenesis, such as
toxin-induced dopaminergic neurodegeneration. However, new models are required that reflect the widespread
and progressive formation of α-syn aggregates in different brain areas. Such α-syn aggregation is induced in only a
few animal models, for example perikaryon inclusions are found in rats administered rotenone, aggregates with a
neuritic morphology develop in mice overexpressing either mutated or wild-type α-syn, and in Smad3 deficient
mice, aggregates form extensively in the perikaryon and neurites of specific brain nuclei. In this review we focus on
α-syn aggregation in the human disorder, its genetics and the availability of experimental models. Indeed, evidences show
that dopamine (DA) metabolism may be related to α-syn and its conformational plasticity, suggesting an interesting link
between the two pathological hallmarks of PD: dopaminergic neurodegeneration and Lewy body (LB) formation.
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Introduction
While the first description of Parkinson’s disease (PD)
may date back to ancient Indian and Chinese texts from
1000 BC, the first clear medical description of this dis-
order was presented by James Parkinson in 1817. Some
years later, in the mid-1800s, Jean-Martin Charcot sepa-
rated PD from multiple sclerosis and other disorders that
are also characterized by tremor, and in 1895 Brissaud for-
mulated the hypothesis that the substantia nigra (SN) is
the main brain nucleus pathologically affected in PD [1].
Subsequently, it was Friedrich Lewy who first described
the protein aggregates that form in different areas of the
brain of PD patients, including the dorsal vagal nucleus,
locus coeruleus and globus pallidus [2]. Not long after,
Trétiakoff validated Brissaud’s hypothesis in 1919 and, by
examining post-mortem tissue, he described the protein
aggregates in the SN and called them Lewy bodies [3,4].
Despite this long history, even today the etiology of
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idiopathic PD remains unknown and given the diversity of
the molecular mechanisms proposed, it has been sug-
gested that multiple factors may cause the disease [5].
PD is the second most common neurodegenerative

disorder that affects the human brain. It is primarily charac-
terized by motor symptoms like akinesia, rigidity, resting
tremor and postural instability, manifestations that are
mainly derived from the progressive degeneration of dopa-
minergic neurons in the SN pars compacta. Non-motor
symptoms also develop that are associated with cognitive
deficits (ranging from memory impairment to dementia),
emotional changes (depression, apathy and anxiety), sleep
perturbations, autonomic dysfunction (bladder disturban
ces, orthostatic hypotension, sweating), sensory symptoms
(pain, visual impairment, olfactory deficit, paresthesia, ageu-
sia) and gastrointestinal symptoms (constipation, dribbling
of saliva: [6].
Although the primary motor symptoms are shared by

patients, both the full presentation of the disorder and the
response to treatment are quite heterogeneous [7]. It must
be borne in mind that non-dopaminergic neuronal loss is
also detected in some areas of the brain, for example, that
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of monoaminergic cells in the locus coeruleus [8] and
raphe nuclei, cholinergic cells in the nucleus basalis of
Meynert [9] and in the pedunculopontine tegmental
nucleus [10], as well as the loss of hypocretin cells in the
hypothalamus [11]. Indeed, the other pathological changes
observed are widespread, with the appearance of LB inclu-
sions in different areas of the brain (mesostriatal system,
cortex, thalamus, hypothalamus, olfactory bulb or brain-
stem), or alterations in the autonomic system (the spinal
cord, sympathetic ganglia and myenteric plexus in the
gastrointestinal tract). The widespread nature of this path-
ology is indicative that the disorder is not just a motor
alteration but rather, a sensory, cognitive, psychiatric and
autonomic disorder.
Lewy bodies in PD
A common neuropathological feature of some neurode-
generative diseases is the presence of proteinaceous in-
clusion bodies caused by misfolded and intracellular
aggregation of proteins in many brain regions. These
abnormal protein deposits may provoke LB pathologies
that involve the deposition of LBs in cell bodies, or the
formation of Lewy neurites (LNs) and Papp-Lantos inclu-
sions. While the presence of LBs is a histological hallmark
of PD, they are also associated with disorders such as de-
mentia with LBs, multiple system atrophy, Alzheimer’s
disease, Down’s syndrome, neurodegeneration with brain
iron accumulation type I (Hallervorden-Spatz disease),
progressive autonomic failure, rapid eye movement sleep
disorder, parkinsonism-dementia complex of Guam,
Gaucher’s disease or Pick’s disease [12].
LB morphology
LBs are morphologically heterogeneous, with classic LB
arising in the brainstem as cytoplasmic inclusions of
8–30 μm in diameter, with a dense eosinophilic core and
a narrow pale stained rim. On haematoxylin/eosin stain-
ing, classic LBs are observed as a spherical body with a
dense core surrounded by a halo [13], whereas the
cortical LBs present in layers V-VI of the temporal, insu-
lar and cingulate cortex have no obvious halo [14-16]. A
third type of LBs are known as pale bodies, that are
rounded, pale, eosinophilic granules which lack the
eosinophilic core of classic LBs, and that are only weakly
and diffusely stained with eosin. These pale bodies are
thought to be precursor LBs [17]. In addition, dystrophic
LNs are present in axonal processes with both thread-
like and spheroid forms [13,18,19].
In dementia with LB disease, inclusions seem to be

morphologically homogeneous in the neocortical and
paralimbic regions of the brain. In the SN, the LBs
immunolabeled with α-syn and ubiquitin fall within the
spectrum from diffuse to pale bodies, and to classic LBs.
Indeed, this morphological diversity in the SN may rep-
resent different stages in the formation of LBs [14].
Electron microscopy has shown that the pale rim and

dense core of classic LBs correspond to zones of
radially-oriented straight filaments, and zones of circular
profiles, respectively. Cortical LBs and LNs also contain
filaments [20,21]. Three-dimensional reconstruction
from serial confocal images reflects that the LB core,
immunolabeled with α-syn and ubiquitin, has a concentric
layered structure, with neurofilament encircling these
inner layers. Indeed, a frequent continuity between LBs
and LNs has been detected, indicating that LNs may
evolve into LBs [22].

LB composition
LBs are thought to be mainly composed of α-syn [23]
and the morphological characterization of LBs is mostly
based on immunochemistry for α-syn, ubiquitin and
neurofilament. Furthermore, the α-syn in LBs undergoes
post-translational modifications, such as phosphorylation,
ubiquitination and oxidative nitration [24]. However, LBs
also contain many different proteins [12], such as the
Leucine-rich repeat kinase 2 (LRRK2: [25], histone deace-
tylase 6 (HDAC6: [26] and charged multivesicular body
protein 2B (CHMP2B: [27], all of which are found in the
core. Indeed, LRRK2 is associated with the endoplasmic
reticulum of dopaminergic neurons, HDAC6 is considered
a sensor of proteasomal inhibition that plays a central role
in autophagy, and CHMP2B is a component of the endo-
somal sorting complex involved in protein degradation.
The identification of proteins present in LBs may offer
molecular clues to the processes that may participate in
LBs formation.
Nevertheless, the comprehensive molecular composition

of LBs is still unclear, although new proteomics approaches
based on mass spectrometry provide an interesting ap-
proach to discover proteins not yet described in aggregates.
However, the success of such approaches will depend on
the techniques used to isolate LBs. One study used cortical
LB-enriched fractions derived from the LB variant of
Alzheimer’s disease to identify 40 LB proteins involved in
phosphorylation, ubiquitination, oxidative stress or protein
trafficking [28]. Laser capture microdissection of cortical
LBs from neurons located in the temporal cortex of
dementia with LB disease patients, allowed 296 proteins to
be detected, including the chaperone HSC71, confirming
the presence of chaperone molecules in LBs [29].

Histological localization of LBs
Studies of the topographic distribution of LBs during the
course of sporadic PD has enabled a classification of the
stages of disease progression to be drawn up. Neurons
susceptible to contain LBs have long, thin, unmyelinated
or poorly myelinated axons [30] and the parkinsonian
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brains analyzed can nearly all be categorized into one of
six different stages, based on the location of the inclu-
sion bodies [31]:

– Stage 1: At the earliest stage, only the dorsal motor
nucleus of the vagus nerve (in the lower medulla
oblongata) and the anterior olfactory nucleus are
affected, suggesting that the brain pathology
originates in these structures.

– Stage 2: LB inclusions appear in the raphe nuclei,
magnocellular reticular nuclei and locus coeruleus.

– Stage 3: The pathology occurs in the basal portions
of the midbrain and forebrain, with the SNpc,
amygdala, pedunculopontine tegmental nucleus,
magnocellular basal forebrain nuclei,
tuberomammillary nucleus and spinal cord being
affected.

– Stage 4: Cortical LBs appear in the temporal
mesocortex, in the allocortical CA2 of the
hippocampus and in thalamic structures.

– Stage 5: The anterior cingulate, insular and
subgenual mesocortex is affected, and the neocortex
appears to be affected for the first time, with LBs in
high order sensory association structures and in the
prefrontal neocortex. The hippocampus is clearly
affected in the CA1, CA3 and entorhinal cortex.
Table 1 Overview of LB-like formation in rodent models. Brai
and/or LN-like aggregates may suggest an interaction betwe

Brain Nucleus Braak’s stage PrP-A53T-α-syn mice

X-XII 1 +++ LB- LN

OB 1 ++ LB-LN

sp5 2 ++ LN

ll 2

Sc 2 ++++ LB-LN

RF/LC 2 +++ LB- LN

RN 2, 3 +++ LB-LN

VTA 3 + LB- LN

CPu 3 ++ LB- LN

SN 3 + LB- LN

Hp 3,4

Th 4 +++ LB-LN

M1-M2 5,6

Cg 5,6

cc-ic-cp –

Pn –

CB – ++++ LB-LN

Pir –

IC – +++ LB-LN

SC – +++ LB-LN
– Stage 6: LBs are present in the primary sensory
areas (the auditory field), primary motor field and
premotor neocortex.

This model reflects the pathological progression in PD
patients (Braak PD stage 4–6), with a caudo-rostral gradient
in LB deposition from the lower brainstem to the neocor-
tex, and with both dopaminergic and non-dopaminergic
areas being affected (Table 1). Some patients do not have
clinical PD symptoms, but display α-syn deposition at
autopsy in areas according to Braak PD stage 1–3. They are
referred to as showing incidental LB disease (iLBD), consid-
ered a prodromal state of PD [32].
Besides neuronal α-syn deposition in LBs and LNs, the

presence of inclusions in astrocytes has been detected by
silver staining. Glial inclusions are widespread in PD,
both in areas with neuronal loss and gliosis (substantia
nigra, locus coeruleus and dorsal vagal nucleus), and in
areas with no clear neurodegeneration or gliosis (cerebral
cortex, cerebral white matter, striatum, globus pallidus,
thalamus, cerebellum and spinal cord: [33]. Indeed, α-syn-
immunoreactive (−ir) astrocytes adopt a topographical dis-
tribution that closely parallels that of the cortical LBs [34].
However, we should consider that this disorder has a

very heterogeneous clinical manifestation [35] and as yet,
there is no clear significance attributed to the presence of
n areas with the presence of DA receptors and LB-like
en the dopaminergic system and α-syn (see text)

Rotenone in rats Smad3 null mice DA system

Yes

Yes

++ LN Yes

++ LN Yes

++ LB Yes

++ LN Yes

Yes

++ LN Yes

+++++ LB- LN ++++ LN Yes

+++++ LB- LN +++++ LN Yes

++++ LB-LN Yes

Yes

++++ LB-LN Yes

+++ LN Yes

+++ LN

++ LB Yes

++ LN Yes

+++ LN Yes

Yes
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LBs and LNs, as direct determinants of the clinical mani-
festations and symptoms evident in patients with PD
[36,37].

LB genetics
It is considered that most patients with PD develop the
idiopathic form of the disease as opposed to that which
is genetically inherited. Although, 10-30% of PD patients
report a first-degree relative with the disorder, this does
not necessarily reflect genetic inheritance as it may cor-
respond with exposure to a common environmental fac-
tor [38,39]. However, it is increasingly clear that genetic
factors contribute to the pathogenesis of PD and it is
currently considered a multifactorial complex disorder,
caused by interactions between genetic and environmental
risk factors. Alternatively, only 10% of cases develop the
rarer form of PD that follows Mendelian inheritance,
representing 2% of late-onset and 50% of early-onset
familial PD [40,41]. Studies into these familial forms have
identified several causative genes related to mitochondrial
or lysosomal dysfunction, protein aggregation, the prote-
asome system and kinase signaling [42].
LB deposition is associated with specific mutations in

some of these already known genes, including α-syn
(SNCA: [4,43] and LRRK2 [44,45]. Moreover, the distinc-
tion between the familial and idiopathic form of PD is
currently not clear in all cases, as some evidence sug-
gests that SNCA or LRKK2 mutations also participate in
the sporadic disease.

SNCA
Several dominant mutations have been described in the
gene encoding α-syn, SNCA, with varying penetrance. In
1997, the A53T missense mutation was reported in a
large Italian family associated with familial PD [4]. Sub-
sequently, two additional missense mutations in SNCA
were also seen to be associated to familial PD, A30P [46]
and E46K [47], although these point mutations are
extremely rare. Duplicate and triplicate loci of SNCA of
different sizes (from 0.4 to 4.5 Mb) have been seen to
give rise to PD, which has been related to the overex-
pression of the wild-type protein [43,48], influencing the
age of onset and severity of the disorder [49]. Indeed,
SNCA duplications have also been reported in apparently
sporadic PD patients [50] and interestingly, patients carry-
ing these mutations present a broad clinical phenotype,
even within a given family, suggesting an influence of gen-
etic modifiers [25,51,52]. In addition, a dinucleotide repeat
polymorphism (Rep1) has been described in the promoter
region, 10 Kb upstream of the start codon, which induces
SNCA overexpression and that may account for increased
risk in 3% of non-familiar PD [53,54]. Moreover, specific
haplotypes, primarily in the 3’ UTR region, may also be
associated to sporadic PD [55,56].
Although SNCA mutations are very rare, their identifi-
cation led to the association of α-syn with LBs. This pro-
tein is predominantly localized in presynaptic nerve
terminals [57,58] and missense mutations may reduce its
affinity for lipids, enhancing its propensity to adopt a β-
sheet conformation and promoting self-assemble into
oligomers and fibril formation [59]. In this sense, the
A53T mutation of SNCA is associated with the predomin-
antly neuritic aggregation of α-syn in the human brain
[60,61] and in a mouse model [62], as well as with severe
motor impairments. Alternatively, SNCA overexpression
may decrease the density of dopaminergic vesicles and of
synaptic contacts [63]. Neuropathological diagnosis of PD
requires both dopaminergic neurodegeneration in the
SNpc and the presence of LBs, and as described previ-
ously, the severity of the clinical manifestation has been
correlated with the broad distribution of LBs [31], which
may be related to the number of alleles. Both triplication
and point mutations in SNCA are associated with the
formation of cortical and subcortical LBs, and a clinical
diagnosis of PD with dementia [47,64].
The SNCA gene and that encoding the microtubule-

associated protein tau (MAPT) have consistently been
associated in different populations of sporadic PD [65],
mainly those of European origin [66]. However, such an
associated was not identified in Japanese population
[67], suggesting that population-specific differences may
exist in the genetics of PD.
Leucine-rich repeat kinase 2 (LRRK2)
Point mutations in the LRRK2 gene are frequently associ-
ated to PD, and they are found in both late onset familial
and sporadic PD. LRRK2 mutations have the highest preva-
lence rate in PD patients discovered to date, having been
found in 10% of cases with autosomal dominant familial
PD, in 3.6% of sporadic PD cases and even in 1.8% of
healthy controls [44,45,68]. The presence of mutations in
healthy controls may suggest a reduced and incomplete
age-dependent penetrance. However, while over 80 mis-
sense variants have been identified, only seven mutations
are considered pathogenic (N1437H, R1441G/C/H, Y16
99C, G2019S and I2020T), most of them lying in the C-
terminal half of the protein, while two others are consid-
ered as risk factors (G2385R and R1628P: [69]. Of these,
G2019S is the most frequent mutation in the Caucasian
population, which explains 1% of PD cases [70]. The preva-
lence of this mutation is strongly influenced by ethnicity
and as such, it is more frequent in patients of Southern
European or North African origin, and in Ashkenazi Jews
(18-40% PD cases), yet it is very rare in Asians or Northern
Europeans [40,69]. The risk of PD for a person who in-
herits this mutation is 28% at age 59 years, 51% at 69 years
and 74% at 79 years [71]. The G2019S mutation gives rise
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to a uniform clinical phenotype that resembles sporadic
PD, both in homozygous and heterozygous carriers [71].
LRRK2 is a gene with 51 exons and it encodes a large

protein with two different enzymatic activities in the
same molecule: that of a kinase and a GTPase. LRRK2
also has multiple protein interaction domains suggesting
that it may serve as a scaffold for the assembly of other
proteins. The G2019S mutation affects the kinase do-
main of the protein, with other common mutations lying
in the GTPase domain or in the protein interaction
domains. The function of LRRK2 remains largely elusive
but G2019S mutations enhance its kinase activity, which
may mediate neural toxicity [72]. LRRK2 is widely
expressed in the healthy adult brain, mainly in the endo-
plasmic reticulum. Interestingly, in sporadic PD patients
LRRK2 is found in the core of LBs in the SN and locus
coeruleus, suggesting it may contribute to LB formation
[25]. Indeed, some PD patients with LRRK2 mutations
have LB pathology [73] but this is not always the case,
even within a family [40]. How LRRK2 might participate
in LB formation remains unknown, although dysfunc-
tional autophagy has been proposed [74], as well as
altered solubility and aggregation of α-syn [75].

Recessive mutations
Homozygous or compound heterozygous mutations in
the recessive genes Parkin, PINK and DJ-1 are associated
to relatively rare forms of familial PD, and these result in
early onset PD and nigral dopaminergic neuronal loss.
Parkin mutations account for around 50% of familial
juvenile and early onset PD, reaching 80% in patients
with onset before the age of 20 and decreasing with
increasing age at onset, becoming very rare when onset
occurs after the age of 50 [42]. At least 170 mutations
have been described in Parkin, including point mutations,
exon rearrangements, “indels” and duplications. Homozy-
gous mutations with loss-of-function predominantly induce
neuronal loss in the SN and locus coeruleus, in the absence
of LBs. However, compound heterozygous mutations with
LB pathology have been described in a minority of patients
[76]. This variability may indicate some mutation-specific
effect, as it has been described loss-of-function, inactivating
and activating mutations [77]. Parkin is a cytosolic E3
ubiquitin ligase that transfers ubiquitin to specific protein
substrates for proteasomal and autophagic degradation.
Mutations may impair Parkin activity, which might reduce
the clearance and aggregation of proteins. As such, these
mutations could participate in decreased α-synuclein clear-
ance [78] or alternatively, Parkin mutations might decrease
its solubility and lead to aggregate formation [79].
Other recessive mutations are less common, such as

PINK-1 [80] and DJ-1 [81], producing clinical manifesta-
tions broadly similar to Parkin mutations and in the
absence of LBs.
GBA mutations
Glucocerebrosidase (GBA) mutations were first described
in Gaucher’s disease, a recessive lysosomal storage dis-
order that may develop into parkinsonism, and PD pa-
tients may have an increased frequency of GBA mutations
[82]. Indeed, carriers of GBA mutations exhibit clinical
features related to early-onset, levodopa-responsive PD,
experiencing hallucinations and symptoms of cognitive
decline or dementia, with the abundant presence of LBs in
the neocortex [83]. GBA mutations in PD patients confer
increased susceptibility to an earlier disease onset, to have
affected relatives and to develop atypical clinical manifes-
tations [84].

Animal models of α-syn aggregation
Animal models are used in order to study the neurobio-
logical basis of human disorders and to develop new treat-
ments. When examining the validity of an animal model
we can consider face validity (similarity between neuro-
logical and behavioral phenotypes seen in an animal
model and the human patient), construct validity (consist-
ent with a theoretical rational, such that the molecular
and cellular changes that result from genetic manipula-
tions should be the same as those that occur in humans),
and predictive validity (i.e. it should respond to pharmaco-
logical treatment as in humans) [85,86]. Face validity is a
major criterion for model evaluation. One can argue that
modeling of LB deposition and dopaminergic neurodegen-
eration may correlate to the human pathology. However,
the behavioral phenotypes differ considerably between
animals such as mice and humans. Thus, face validity may
prove to be an unrealistic criterion for some symptoms of
the disease such as motor and cognitive deficits or
emotional changes. Although some researchers advocate
the primacy of one of these approaches, in practice, the
validity of a model should consider all three sources of
evidence [87].
Considering the histopathological hallmarks of PD,

models of the disorder should address the progressive
loss of dopaminergic neurons in the SNpc, reduced stri-
atal dopamine content and altered catabolism, and it
should be age dependent and with progressive alteration
of the animal’s movement. Furthermore, the Braak staging
scheme has strongly influenced what we think would be a
good animal model for PD. Indeed, the presence of LBs
and LNs, the post-translational modifications observed in
the human disorder, and the composition and histological
localization of LBs are all central features that an animal
model of PD must address. In this review we will focus on
those models related to α-syn aggregation and LB-like
formation.
Classical neurotoxin-induced rodent models of PD have

been studied in depth and they involve treatment with 6-
hydroxydopamine (oxidative stress), MPTP, rotenone and
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paraquat (mitochondrial complex I inhibition), PSI and
epoxomicin (proteasomal inhibition), and lipopolysacchar-
ide (glial activation). Some of these models address the
toxic insult hypothesis, whereby pesticide and herbicide
use can increase the risk of PD. Most of these chemical
models induce degeneration of the dopaminergic neurons
in the rodent and primate SN, inducing a motor syndrome
that can be modulated by anti-parkinsonian medication.
Indeed, the MPTP-treated primate is still the animal
model used to test drugs during their selection for clinical
trials in humans [88]. These models have been useful to
propose pathogenic events that occur in the disease and
each mechanism (oxidative stress, mitochondrial complex
I inhibition, etc.) is thought to contribute to the pathogen-
esis of the disorder. While all these models usually display
robust nigro-striatal degeneration, the formation of LB in-
clusions is not a common feature. In this sense, MPTP
and 6-OHDA neurotoxic models have face validity related
to motor features, although construct (also known as
aetiological) validity are limited [89]. Indeed, the poor pre-
dictive validity of these models seems to be related to the
high failure rate of new treatments in clinical trials [90].
The discovery of mutations in patients has led to the

generation of different genetic models, which may prove
to be a more realistic approach to study PD. Many
different species and cell models are useful for genetic
manipulation, including mice, Drosophila melanogaster
and Caenorhabditis elegans. In this sense, several trans-
genic models have been described that carry SNCA or
LRRK2 mutations, and while many of these develop
inclusions they fail to display robust neurodegeneration.
Recessive models using knockout mice of PINK-1,
Parkin or DJ-1 similarly fail to exhibit a nigro-striatal
pathology [88]. Animal models carrying mutations in
GBA have recently been described in the context of PD
[91-93], while other animal models focus on altering the
intracellular signaling of neurotrophic factors like Smad3
or on the mechanisms of aggregation of α-syn. It should
be noted that most models do not capture the main hall-
marks of PD in the same animal and hence, most
models are only suitable to address one particular issue.
However, interesting approximations for LB-like forma-
tion have been obtained with rotenone treatment, α-syn
transgenesis with either wild-type or A53T mutation and
in Smad3 deficient mice. Thus, the current models do ap-
pear to be useful to asses not only motor symptoms but
also aetiological and predictive validity of neuroprotective
molecules that could halt the pathological progression of
the disease.

Non-human primates
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) is
a neurotoxin used in non-human primates as the most
relevant animal model of PD, given its ability to induce
persistent parkinsonism in humans and on the induction
of selective destruction of midbrain dopaminergic neurons
[94-96]. Cardinal motor symptoms of PD are reproduced
in this model, as well as other non-motor symptoms such
as constipation, salivation, sleep disturbance and cognitive
deficits [97]. The MPTP model has limitations as the rapid
toxicity results in the acute onset of neurodegeneration
and neurological symptoms. Although increased α-syn im-
munoreactivity (−ir) within surviving neurons is detected,
MPTP-affected dopaminergic neurons do not develop LBs
or LNs [98].

Rodents
MPTP in mice
In mice, the MPTP model must be induced in specific
strains for it to be a consistent model, such as C57 and
Swiss Webster mice [99]. The loss of dopaminergic neu-
rons depends on the administration regime (from acute to
chronic), ranging from 60% to 90% [88]. Acute or sub-
chronic administration does not lead to the formation of
inclusions and while α-syn inclusions have been detected
in the study of some chronic models, this is not always
replicated. In this sense, α-syn-ir was detected in dopa-
minergic neurons when chronic MPTP treatment was
coupled with probenecid administration to block the rapid
clearance of MPTP and its derivates. On examination by
electron microscopy, the neurons that accumulate α-syn
appeared to contain lipid droplets or secondary lysosomes
covered by proteins. Although this is quite a distinct
morphology to the straight filaments detected in human
LBs, it was suggested that lipofuscins may be important
for the development of LBs [100,101]. When MPTP was
administered continuously using an osmotic minipump,
ubiquitin-ir and α-syn-ir nigral inclusions formed, al-
though their co-localization in the same cell or aggregate
was not studied. Ultrastructurally, these inclusions ap-
peared as concentric membranes containing α-syn that
was transformed into fibrillar morphology [102]. However,
other studies failed to find such inclusions following acute,
semi-chronic or chronic MPTP treatment with probene-
cid or using osmotic minipumps [103-105]. Thus, further
work is required before this model can be used to study
aggregate formation.

Rotenone in rats
Rotenone is an insecticide that accumulates in the mito-
chondria, inhibiting complex I and promoting oxidative
stress [106], as well as inhibiting the ubiquitin-proteasome
system in vitro [107]. While this model is one of the most
promising models for PD studies, it has several drawbacks
since rotenone is not a selective dopaminergic neurotoxin,
it produces high rates of mortality (~30%) and there is also
strong variability in neurodegeneration (only observed in
50% of rats). Interestingly, peripheral treatment with
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rotenone induces the formation of α-syn inclusions, with
a dense core and fibrillar surrounding that resembles
those observed in PD [108,109]. The aggregation of α-syn
may be enhanced by neonatal lipopolysaccharide (LPS)
treatment, suggesting some cooperation between perinatal
inflammatory processes and exposure to this pesticide
[110]. In vitro studies have shown that rotenone induces a
conformational change in α-syn and that it accelerates the
rate of fibril formation [111,112]. Indeed, like the human
pathology α-syn deposits are observed in the myenteric
plexus [113]. In order to avoid peripheral rotenone tox-
icity and hence, the high mortality rate in rats, intracere-
bral administration of this toxin has been used, showing
significant nigro-striatal neurodegeneration but not the
appearance of α-syn inclusions [114]. Indeed, variability in
the results obtained following peripheral administration
(subcutaneous versus intravenous infusion) has limited
the use of this model as a reliable tool to study PD
[115,116].
Combined administration of other herbicides and fungi-

cides, such as paraquat and Maneb also produces a high
mortality rate and modest nigro-striatal neurodegenera-
tion without LB deposition [88].

Proteasome inhibitors
The discovery of mutations in parkin and ubiquitin
carboxy terminal hydrolase-1 (UCH-L1) in familial PD
focused attention on the ubiquitin-proteasome system,
suggesting that the toxicity of α-syn was associated with
misfolding of the protein, and impaired proteasomal and
lysosomal degradation [117]. Indeed, the combined sys-
temic administration of the proteasome inhibitors PSI/
epoxomicin produces a loss of nigro-striatal neurons and
progressive motor disabilities. Moreover, inclusion bodies
were observed not only in the SN but also, in the locus
coeruleus, raphe and substantia innominata [118]. How-
ever, this model has proved very difficult to reproduce and
the data has not been replicated in mice, rats or primates,
in which only a partial response to proteasomal inhibitors
is obtained [88]. This variability frustrates the use of this
model in PD research. More recently, conditional genetic
deletion of a proteasomal subunit in mice that disrupts
26S proteasome degradation was shown to induce the loss
of dopaminergic neurons and the appearance of inclusions
in SN neurons that contain ubiquitin and α-syn. Although
no biochemical studies of aggregation or double-immu
nolabeling have been performed to clarify the nature of
these inclusions, the inclusions appear to contain mito-
chondria and double-membraned autophagolysomes at
the ultrastructural level. However, there was no resem-
blance of the radially oriented, straight filaments observed
in LBs [119]. Indeed, in this model the accumulation of
aberrant mitochondria into inclusions seems to be inde-
pendent of α-syn [120].
Mitochondrial dysfunction
A loss of mitochondrial complex I is observed in sporadic
PD that may lead to selective dopaminergic neurodegener-
ation due to oxidative stress [121]. Midbrain dopaminergic
neurons of PD patients and elderly humans carry high
levels of somatic mtDNA mutations [122]. Indeed, neuro-
toxins like MPTP and rotenone inhibit this mitochondrial
complex [123]. Transgenic mice overexpressing wild-type
α-syn induces mitochondrial fragmentation, which may
predispose to neural degeneration [124], and transgenic
mice overexpressing human A53T α-syn mutation also
display mitochondrial abnormalities that may explain
some aspects of the aggregated α-syn toxicity [125].
Disruption of the respiratory chain has been modeled in
mice by deleting the gene encoding the mitochondrial
transcription factor A (TFAM) in dopaminergic neurons,
thereby inhibiting the transcription of mtDNA genes. Al-
though these mice have an interesting phenotype, with
impaired motor function and neurodegeneration, α-syn is
not needed to express this phenotype. Indeed, the inclu-
sions found in dopaminergic neurons have no α-syn but
rather, abnormal mitochondrial membranes [126].

α-syn transgenesis
Different transgenic models have been developed that
overexpress wild type, A53T, A30P and truncated α-syn.
However, despite initial results with mutated α-syn in
rodents, they have failed to translate into truly effective
transgenic models of PD [127]. Attempts to overexpress
or to knock-out α-syn in rodents have produced a variety
of pathological abnormalities, including aggregate forma-
tion. However, no clear loss of dopaminergic neurons is
observed. On the other hand, viral transduction induces
rapid neurodegeneration but it is limited to the region
targeted [125]. The use of cell-type promoters, such as
tyrosine hydroxylase, is a limitation to transgenic overex-
pression that prevents the induction of the broad brain
pathology observed in humans. However, this localized
overexpression of α-syn (or truncated forms) may be use-
ful to address specific features of PD. A variety of trans-
genic models using different promoters that drive broad
expression have induced the graded appearance of α-syn
aggregations with no fibrillar morphology [125,128,129].
One particularly interesting model is the transgenic A53T
α-syn under the control of the mouse prion promoter,
which overexpresses the mutant protein in neurons. These
mice develop progressive motor failure at 8 months of age
leading to paralysis and death [62]. Inclusions have been
detected in different brain areas like the SN, raphe, pons,
pontine reticular nuclei, locus coeruleus and deep cerebel-
lar nuclei. The biochemical characterization of these
inclusions showed SDS-insoluble α-syn aggregation into
dimers, trimers and multimers, and these LB-like inclu-
sions have a filamentous structure like human LBs
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[62,130]. However, as indicated, a major drawback of this
model is that no dopaminergic neurodegeneration is de-
tected in the SN. Conversely, there is neurodegeneration
in areas not affected in PD, such as among motor neurons
[127,131,132].

LRRK2 transgenesis
LRRK2 null mice have no overt dopaminergic deficit or
clear pathology in the brain, although age-dependent
renal atrophy is observed that is associated with the ag-
gregation of α-syn in renal tubules of the aged kidney
[133,134]. The R1441C mutation in LRRK2 generated by
a knock-in strategy in mice does not induce dopamin-
ergic neurodegeneration but rather, DA neurotransmis-
sion and D2 receptor dysfunction. However, no obvious
accumulation of α-syn is detected [135]. Mice overex-
pressing the G2019S mutation in LRRK2 do not repro-
duce any obvious gross neuropathological phenotypes
nor is α-syn aggregation observed, although this LRRK2
mutation may accelerate the pathogenic phenotype of
A53T α-syn mice [136-138].

Autophagy-lysosome system
Several studies have suggested a role for autophagy in
PD. The autophagy-lysosome system is a catabolic path-
way involved in protein and organelle degradation. Sev-
eral types of autophagy have been described, including:
microautophagy; macroautophagy, engulfing large struc-
tures; and chaperone-mediated autophagy that degrades
only soluble proteins in a selective manner. Cellular
homeostasis of autophagy is crucial to maintain the bal-
ance between healthy and unhealthy cells [139]. In PD
and related LB diseases an accumulation of autophago-
somes has been described, coupled with a reduction of
lysosomal markers in nigral dopaminergic neurons, sug-
gesting a defect in lysosome-mediated clearance of α-syn
aggregates [140,141]. Indeed, α-syn is physiologically
degraded by both the ubiquitin-proteasome and the
autophagy-lysosome system (even by the chaperone-
mediated mechanism), although the mutant forms of α-
syn appear to inhibit their own degradation. Hence,
these pathways would appear to participate in LB forma-
tion [142,143].
In mice, deletion of the gene essential for macroauto-

phagy (Atg7) in dopaminergic neurons induces progressive
moderate dopaminergic loss in the SN and striatal DA de-
pletion at an age of 9 months, although most dopamin-
ergic neurons are resistant to the long-term stress induced
by impairing autophagy. These mice have ubiquitinated-
SQSTM1 inclusions in dopaminergic neurons but no
abnormal aggregation of α-syn [74]. In PD patients, the
translocation to the nucleus of the TFEB transcription
factor (a regulator of autophagy), is dampened in midbrain
dopaminergic neurons and it co-localizes with α-syn in
LBs. Using adeno-associated viral vectors to model α-syn
transgenesis in rats, under the control of the synapsin-1
promoter and the WPRE enhancer, stimulation of TFEB
and Beclin (an activator of autophagy) was shown to res-
cue nigral DA neurons from α-syn toxicity [144]. These
results identify interesting new mechanisms, however no
clear α-syn aggregates have yet been formed by manipulat-
ing the autophagy-lysosome system.

Neurotrophic factors: Smad3 deficiency
GDNF and its close relative Neurturin provide functional
rescue of nigro-striatal dopaminergic neurons after 6-
OHDA or MPTP treatment. These results led to clinical
trials into the use of these molecules in patients with PD,
although the use of exogenous GDNF in clinical trials pro-
duced inconclusive results. The neuroprotective effect of
this neurotrophic factor may not be translated to the clinic
as GDNF fails to protect against α-syn-induced toxicity,
probably due to the blockade of GDNF signaling by α-syn
[145]. Indeed, transgenesis of α-syn induced by viral
overexpression in the nigro-striatum, induces dystrophic
terminals in the striatum containing α-syn aggregates,
which are not modified by exogenous administration of
GDNF [146,147].
Recently, intracellular TGF-β1 signaling has been

implicated in different pathological events related to PD
in a mouse model, including LB-like formation. In
humans, TGF-β1 is up-regulated in the striatum and in
the ventricular cerebrospinal fluid of patients with PD
[148,149]. Moreover, active TGF-β1 overexpression in
the nigro-striatal system of MPTP-treated mice using
adenoviral vectors produces poorer survival of dopamin-
ergic neurons and higher levels of striatal DA depletion
[150,151]. However, since the effects of TGF-β1 are
dose- and context-dependent [152], its overexpression
may introduce a bias in studies on animal models.
Smad3 deficiency, a molecule involved in the intracellu-
lar TGF-β1 signaling cascade, provides us with a new
and interesting model of PD, as it promotes selective
postnatal neurodegeneration of dopaminergic midbrain
neurons, strong MAO-mediated catabolism of DA in the
striatum and oxidative stress, as well as dampening the
trophic and astrocytic support to dopaminergic neurons.
Interestingly, Smad3 deficiency induces the formation of
α-syn inclusions in selected brain areas, which accumulate
with age in a progressive and gene dosage dependent
manner. These α-syn inclusions appear in both the peri-
karyon (SN and paralemniscal nucleus) and in neurites (in
the motor and cingulate cortices, striatum, corpus callo-
sum and spinal cord). Indeed, these α-syn deposits are
phosphorylated at Ser129 and ubiquitinated, and they form
a core/halo distribution that resembles the deposits
observed in human LBs. In other brain areas α-syn ex-
pression is associated with an irregular morphology,
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increased α-syn-ir staining and neurite thickness (pontine
nuclei, cerebellar white matter, cerebral peduncle, dienceph-
alic nuclei and internal capsule). Moreover, α-syn inclusions
are also detected in glial cells in the cerebellum and spinal
cord. Biochemical analyses show the presence of detergent-
insoluble dimers, trimers and oligomers of α-syn in the
ventral midbrain, motor cortex and spinal cord [153].
There is currently increasing attention being paid to

the non-motor symptoms of PD, such as cognitive im-
pairment and behavioral disorders. The hippocampus is
implicated in physiological learning and memory, as well
as in the cognitive dysfunction seen in some PD patients
where there is an interaction with the dopaminergic
system [154]. The hippocampus of PD patients is also af-
fected by the presence of LBs [31] and in mouse models,
α-syn modulates adult neurogenesis in the dentate gyrus
[155]. Indeed, the accumulation of extracellular α-syn
oligomers impairs hippocampal LTP and it enhances
basal synaptic transmission [156]. Both triplication and
point mutations of SNCA are associated with cortical
and subcortical LB accumulation, and such patients are
clinically diagnosed as PD with dementia [47,64]. These
data suggest a role for the α-syn aggregates in the cogni-
tive impairment observed in demented PD patients.
Similarly, Smad3 deficient mice have α-syn inclusions in
the neuronal layers of the hippocampus. Smad3 is
strongly expressed in hippocampal neurons and Smad3
deficiency induces a strong decrease in adult neurogen-
esis in the dentate gyrus, inducing the apoptosis of early
stage and highly proliferative intermediate precursor
cells (IPCs). Indeed, Smad3 deficiency abolishes the in-
duction of LTP in the dentate gyrus but not in the CA1,
highlighting the specificity of this effect. Both neurogen-
esis and LTP induction in the adult hippocampus are
two aspects of hippocampal brain plasticity related to
learning and memory that decline with age, and as a
result of neurological disorders [157]. Smad3 deficiency
sheds light on a new interesting pathological mechanism
and provides a new model of PD to be explored in which
dopaminergic dysfunction, widespread α-syn inclusions
and cognitive impairment co-exist.

Invertebrate models
Several invertebrate models have been developed that re-
capitulate key features of human PD. Drosophila models
of α-syn overexpression show loss of dopaminergic neu-
rons, locomotor dysfunction and formation of α-syn in-
clusions. Indeed, these inclusions are observed as a core
with peripherally radiating filaments [158,159]. Despite
the simplicity of the nematode model Caenorhabditis
elegans, the presence of eight dopaminergic neurons has
allowed their evaluation following parkinsonian toxic
and genetic insult. Overexpression of human wild-type
or mutant α-syn on C. elegans induces dopaminergic
neurodegeneration and the formation of α-syn aggre-
gates with fibrillar morphology [160-162]. It is interest-
ing to note that both Drosophila and C. elegans do not
express α-syn and thus, other genes like LRRK2 cannot
be studied in the context of α-syn inclusion formation.
These models also lack the complexity of vertebrates
and hence, they are not perfect models of PD but rather,
they may be useful for comprehensive genetic analysis
and drug screening.

Dopamine metabolism and α-syn
Several studies associate α-syn with the DA metabolism
in the presynaptic terminals. It is known that α-syn in-
hibits tyrosine hydroxylase, the rate limiting enzyme of
DA biosynthesis [163,164], and aromatic amino acid de-
carboxylase, the enzyme that converts L-Dopa to DA
[165]. Indeed, deregulation of DA biosynthesis in the SN
induces increased toxicity to α-syn [166].
The Smad3 deficient mouse model described earlier also

associates α-syn and DA metabolism, whereby Smad3 de-
ficiency drives α-syn overexpression and aggregation, as
well as the deregulation of DA turnover by inducing
MAO-dependent DA catabolism, provoking a loss of
dopaminergic neurons [153]. Other mouse models, such
as α-syn, parkin, DJ-1 or PINK1 null mice, also display
deregulated striatal DA metabolism, release or re-uptake,
although without dopaminergic neuronal loss. Increased
extracellular DA, decreased DAT, increased GSH levels
and differences in the catabolism of DA have all been
described in Parkin deficient mice [167-169]. However,
neither the number of dopaminergic neurons nor the stri-
atal DA levels and turnover are altered in DJ-1 or PINK
knock-out mice. Nevertheless, the evoked DA overflow in
these mice diminishes due to increased DA uptake [170]
or to the decreased quantal release of DA [171], respect-
ively. The α-syn knock-out mice have less striatal DA, en-
hanced activity-dependent DA release and smaller reserve
pools of synaptic vesicles [172,173], which may be due to
a uninhibited DA vesicular release [174]. All these mutant
mice illustrate that impaired presynaptic DA metabolism,
release or re-uptake may be common to PD, although the
presence of α-syn aggregates and DA neuronal loss is only
detected in Smad3 deficient mice. Indeed, 3,4-dihydroxy-
phenylacetaldehyde (DOPAL), a MAO intermediate
metabolite of DA, can induce toxic aggregation of α-
synuclein [175]. These data suggest that DA metabolism
and α-syn interactions may underlie the susceptibility of
SN neurodegeneration in PD [176].
It was recently suggested that the spread of the patho-

logical elements in PD, as described in the Braak stages,
can occur by neuron-to-neuron transmission of aggregates
to healthy cells [177,178]. In this hypothesis, preformed
fibrils of α-syn enter neurons, probably by endocytosis, to
recruit soluble endogenous α-syn into insoluble LB- and
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LN-like aggregates [179,180]. Interestingly, peripheral
inoculation of α-syn fibrils by intramuscular injections can
propagate the pathogenic protein to brain nuclei [181].
However, another study showed that α-syn fibrils injected
into transgenic mice overexpressing α-syn mutations pro-
motes the widespread formation of α-syn inclusions in the
brain of A53T but not E46K mutant mice, nor in non-
transgenic mice. The authors suggest inespecificity with
neurofilament of the antibodies used and that only A53T
mutant mice have the capacity to induce α-syn aggrega-
tion upon exogenous administration of α-syn [182]. This
aggregate transmission may be related to the existence of
extracellular forms of α-syn that are released from neu-
rons and glia by exocytosis [183]. Indeed, extracellular α-
syn may induce DA release in the striatum, establishing a
new link between α-syn and DA metabolism. Further-
more, α-syn function may be related to the reorganization
of plasma membrane microdomains [184].
Conformational plasticity of α-syn
Advances in cell-free systems and model cell systems
have shed light on the process of α-syn aggregation. The
role proposed for α-syn is in the modulation of neuro-
transmitter release in the presynaptic nerve terminal, as
well as influencing DA neurotransmitter biosynthesis,
vesicle trafficking and exocytosis. In the cytoplasm and/
or vesicle lumen, α-syn is present as an intrinsically
disordered protein (IDP: i.e. a monomer that lacks a
well-organized secondary structure), yet when bound to
membranes it adopts several conformations, such as an
extended α-helix or a broken-helix [185,186]. Indeed,
despite the overwhelming evidence that α-syn is a disor-
dered monomer in solution, two recent reports suggest
that the native protein exists as a helical tetramer under
physiological conditions, with reduced aggregation tenden-
cies, and that the dissociation of the tetramer into mono-
meric subunits promotes toxic aggregation [187,188].
Indeed, when monomeric α-syn binds to membranes, it
changes its conformation to a partially helical form [189].
Many IDPs are known to interact with a large number

of proteins, serving as a nodes or hubs, in a way that IDPs
undergo a disorder-to-order transition upon interaction
with specific partners. More than 50 proteins have been
reported to interact with α-syn, although it is unknown
the proportion unfolded α-syn or that which has adopted
a secondary structure as a consequence of binding within
the cell [186].
The α-syn peptide has 140 amino acids, with 3 distinct

regions: a N-terminal (1–60 residues) that contain four
imperfect repeats of KTKEGV motifs; a NAC region
(61–95 residues), with 3 additional KTKEGV repeats,
and the hydrophobic and amyloidogenic NAC region; a
C-terminus (96–140 residues) that is enriched in acidic
and proline residues, and that facilitates interactions
with different proteins [185].
The major constituent of LBs is a fibrillar form of α-

syn that adopts a β-sheet structure and hence, the disor-
dered monomer or helical tetramer is transformed into
highly organized fibrils in the course of this pathology.
In vitro studies suggest a nucleation-dependent process
due to a conformational transition to anti-parallel β-
sheet structures, including a committed step of α-syn
dimer formation [190]. Nucleation follows a sigmoidal
growth profile, with an initial lag phase where the pro-
tein changes to a partially folded intermediate to form
nuclei with oligomers (Figure 1). This conformational
change exposes the NAC domain that can participate in
hydrophobic interactions that may initiate the aggrega-
tion process. During the growth phase, the nucleus adds
monomers to form larger oligomers, polarized protofibrils
and finally, fibrils. In the last steady-state phase both the
fibrils and monomers appear to be in equilibrium, this
model therefore reflecting the addition of monomers to
existing aggregates [186,191-193]. Recently, a key con-
formational intermediate was characterized after oligomer
formation, with the appearance of stable and compact
oligomers that are more damaging to cells (Figure 1). In-
deed, it seems that the assembly process can be reversed
and that fibrils may disaggregate to form these stable,
cytotoxic oligomers [194].
The pathogenic aggregation of α-syn can be modulated

by endogenous and exogenous factor, such as metals and
pesticides, genetic mutations in SNCA, post-translational
modifications and protein-protein interactions [186]. It is
not clear how α-syn bound to membranes, such as synaptic
vesicles or presynaptic plasma membrane, can aggregate.
One model proposes that the broken-helix membrane
bound state of α-syn releases its C-terminal region, con-
verting the protein into a partially helical membrane bound
state, which may lead to oligomerization and fibril forma-
tion. Alternatively, α-helical forms of α-syn bound to mem-
branes may inhibit fibril formation, and membrane-bound
α-syn monomers may be protected from aggregation.
Indeed, oligomers have a high propensity to bind to
membranes, which may promote permeabilization and
disrupt cellular homeostasis [195,196]. Furthermore,
α-syn localizes to the nerve terminal, where modest
increments in α-syn (such as those produced by gene
duplication) inhibit neurotransmitter release by redu-
cing synaptic vesicle density and by altering vesicle
reclustering after endocytosis [197].
By contrast, oligomers might be kinetically detained by

interactions with small molecules, inducing secondary
structures such as annular pores or spheres [198-200].
The point mutations detected in the SNCA gene of PD
patients are also endogenous factors that could acceler-
ate α-syn aggregation in vitro, with A53T and G46L



Figure 1 Models of α-syn aggregation and LBs formation. A α-Syn is present in the vesicle lumen and in the cytoplasma as an intrinsically
disordered protein. α-Syn bound to membranes has distinct conformation such as an extended α-helix or a broken-helix. In the pathological
context, disordered monomers may lead to oligomerization and fibril formation, following a nucleation-dependent process, in which monomers
are added to existing aggregates. B Rotenone administration in rats, A53T α-syn transgenesis in mice and Smad3 deficient mice are interesting
models to study LB formation. While A53T α-syn transgenesis and Smad3 deficiency can modulate DA metabolism, rotenone and Smad3 deficiency
induce oxidative stress, mechanisms that may participate in LBs formation. Indeed, proteasome and autophagy inhibitors may impair degradation of
α-syn. LRRK2 mutations may participate in LB formation by altering autophagy and α-syn solubility.
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forming oligomers and fibrils, and A30P forming oligo-
mers but not fibrils [201].

Post-translational modification of α-syn
Several post-translational modifications of α-syn may occur,
such as phosphorylation, truncation, ubiquitination, nitra-
tion, sumoylation and enzymatic cross-linking. In LBs,
phosphorylation at serine 129 is a common α-syn modifica-
tion, although its role is unclear if we consider that overex-
pression of the phosphorylated serine 129 isoform in
animal models does not produce toxicity [202,203]. The
majority of α-syn is mono- to tri-ubiquinated [204], and
while poly-ubiquitination serves as a signal for α-syn deg-
radation by the proteasome, it does not seem to be required
for α-syn fibrillation and LB formation. Nevertheless, an
interplay between phosphorylation and ubiquitination may
render the protein more susceptible to aggregation [205]. It
is estimated that 85% of all human proteins undergo Nα-
acetylation due to the activity of Nα-acetyltransferases,
probably influencing the subcellular localization of proteins,
their rate of synthesis and protein-protein interactions
[206]. Tetramers of α-syn seem to be Nα-acetylated, as is
probably are the aggregated α-syn isolated from PD de-
posits. However, Nα-acetylation does not seem to alter pro-
tein aggregation but more likely, lipid binding [185]. Small
amounts of various C-terminal truncated forms of α-syn
have been detected in LBs, which exhibit greater fibrillation
capacity [204]. Furthermore, four alternatively spliced forms
add another level of complexity. Compared to the canonical
α-syn, the three alternative isoforms aggregate significantly
less, forming shorter fibrils that are arranged in parallel or
with anular structures [207].
Despite the huge amount of research into the properties

of α-syn aggregation, there is still no coherent picture on
the structure, dynamics, and the physiological and patho-
logical roles of α-syn. New animal models for PD need to



Giráldez-Pérez et al. Acta Neuropathologica Communications 2014, 2:176 Page 12 of 17
http://www.actaneurocomms.org/content/2/1/176
explore LB formation in the context of neurodegeneration
and DA metabolism, such as the rotenone, α-syn trans-
genesis and Smad3 deficient mice, in order to clearly
understand the pathological mechanism of LB formation
as well as to attain effective therapies for this disease.
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