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Conjugative plasmid transfer is the most important route for the spread of

resistance and virulence genes among bacteria. Consequently, bacteria carrying

conjugative plasmids are a substantial threat to human health, especially

hospitalized patients. Whilst detailed information about the process has been

obtained for Gram-negative type-4 secretion systems, little is known about the

corresponding mechanisms in Gram-positive (G+) bacteria. The successful

purification and crystallization of the putative transfer protein TraN from the

G+ conjugative model plasmid pIP501 of Enterococcus faecalis are presented.

Native crystals diffracted to 1.8 Å resolution on a synchrotron beamline. The

crystals belonged to space group P21, with unit-cell parameters a = 32.88,

b = 54.94, c = 57.71 Å, � = 91.89� and two molecules per asymmetric unit.

1. Introduction

Besides transformation and transduction, bacterial conjugation is

the major mechanism of horizontal gene transfer. It is the prevalent

means by which plasmid-encoded antibiotic resistance and toxicity

genes are spread (Williams & Hergenrother, 2008). During conju-

gation, plasmid DNA is transported from a donor to a recipient cell

by a multi-protein complex large enough to span the bacterial cell

wall (Llosa et al., 2002). Gram-negative (G�) bacteria with conju-

gative plasmids (e.g. Escherichia coli or Agrobacterium tumefaciens)

make use of type-4 secretion (T4S) systems, multi-protein complexes

which are dedicated to the intercellular transport of proteins or

protein–DNA complexes (Smillie et al., 2010; Wallden et al., 2010;

Thanassi et al., 2012; Zechner et al., 2012). The conjugation process

generally requires cell-to-cell contact of the donor cell with the

recipient cell to translocate substrates across the cell envelopes

(Cascales & Christie, 2003; Alvarez-Martinez & Christie, 2009). Much

more information regarding the individual function, regulation and

interaction of the proteins involved in the T4S processes is available

for G� bacteria (Grohmann et al., 2003; Kurenbach et al., 2006;

Wallden et al., 2010; Clewell, 2011). Furthermore, most knowledge

about Gram-positive (G+) systems is based on homology to their G�

counterparts (Grohmann et al., 2003; Abajy et al., 2007). However,

some structural information on G+ transfer proteins has recently

become available (Porter et al., 2012; Walldén et al., 2012).

The multiple antibiotic-resistance plasmid pIP501 was originally

isolated from Streptococcus agalactiae (Horodniceanu et al., 1979).

It has the broadest known host range for plasmid transfer in G+

bacteria and is the first self-transmissible plasmid from G+ bacteria

for which stable replication has been demonstrated in G� bacteria

(Kurenbach et al., 2003). The transfer region of pIP501 is organized

as an operon encoding 15 putative transfer (Tra) proteins. Three of

these Tra proteins show significant sequence similarity to the T4S

system from A. tumefaciens: an ATPase (TraE, a homologue of

VirB4; Abajy et al., 2007), a coupling protein (TraJ, a homologue of

VirD4; E. K. Celik, W. Keller & E. Grohmann, unpublished work)

and a lytic transglycosylase (TraG, a homologue of VirB1; K. Arends,

W. Keller & E. Grohmann, unpublished work). In addition, TraA, the

relaxase of the pIP501-encoded T4S system, has been functionally

characterized (Kopec et al., 2005; Kurenbach et al., 2006).

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pg5007&bbid=BB26
http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=pg5007&bbid=BB26
http://crossmark.crossref.org/dialog/?doi=10.1107/S174430911204184X&domain=pdf&date_stamp=2012-10-30


Here, we present the purification and crystallization of TraN, a

17.6 kDa protein (formerly ORF14, GenBank CAD44394.1) of the

transfer operon from the G+ conjugative plasmid pIP501. TraN is the

second potential transfer protein of this system to be crystallized. A

sequence-similarity search within G+ and G� T4S systems has not

revealed any related proteins. Previously performed electrophoretic

mobility shift assays (EMSAs; data not shown) mark TraN as a

dsDNA-binding protein. Its possible functions include a role as an

accessory protein for the pIP501-encoded relaxase TraA or as a

transcription regulator adjusting the frequency of expression of key

pIP501 transfer proteins. The high-resolution structure will be key to

elucidating the function of TraN.

2. Protein purification

traN was cloned into the 7�His-tag expression vector pQTEV (a gift

from K. Büssow, Max-Planck-Institute for Molecular Genetics,

Berlin, Germany), and E. coli BL21-CodonPlus (DE3)-RIL (Strata-

gene, Amsterdam, The Netherlands) competent cells were trans-

formed with the recombinant construct pQTEV-traN. Large-scale

expression was performed in 500 ml LB medium supplemented with

100 mg ml�1 ampicillin. TraN expression was induced at an OD600 of

�0.6 by addition of 1 mM IPTG and expression continued for 3 h at

310 K. Cells were harvested and immediately frozen at 253 K. TraN

expression levels were monitored by SDS–PAGE (Fig. 1a).

TraN cell pellets were first lysed in 40 ml 25 mM HEPES pH 7.6,

75 mM Na2SO4 (buffer A). 2 U DNAse (Sigma–Aldrich, St Louis,

USA), phenylmethanesulfonylfluoride and benzamidine (final

concentrations of 1 and 2 mM, respectively) were added. The cell

suspension was vigorously mixed (UltraTurrax, IKA, Staufen,

Germany) and kept on ice for 30 min. The solution was sonicated

(Sonopuls HD2070, Bandelin; 1 min, continuous sonication, �80%

amplitude) and centrifuged for 30 min at 281 K and 15 000g. Pellet

and supernatant fractions were analysed by SDS–PAGE. The pellet

was applied to a second extraction step with 20 ml buffer A. The

TraN-containing supernatant fractions were pooled and loaded onto

a HisTrap FF 1 ml column (GE Healthcare, Chalfont St Giles,

England) for affinity purification (Fig. 1b). The purity of TraN was

assessed by SDS–PAGE (Fig. 1a). Imidazole was removed by buffer

exchange during concentration (Amicon tubes, 3000 MWCO, Merck,

Darmstadt, Germany).

Purified TraN protein at a concentration of 1 mg ml�1 was

subjected to an adapted differential scanning fluorometry buffer

optimization screening (Ericsson et al., 2006) using all crystallization

buffers present in the Index, PEG/Ion, MembFac (Hampton

Research, Aliso Viejo, California, USA) and Morpheus (Molecular

Dimensions, Newmarket, England) screens (Fig. 2). For the assay,
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Figure 1
TraN protein production. (a) 18% SDS–polyacrylamide gel to assess protein production and purification (TraN, 17.6 kDa). Lanes 1 and 2, expression before and after 3 h
IPTG induction; lanes 3 and 5, supernatant of the two-step extraction; lanes 4 and 6, pellet of the two-step extraction; lanes 7–9, main fractions of the His-affinity purification;
lane 10, pooled and concentrated His-affinity fractions; lanes 11–13, main size-exclusion chromatography fractions; lanes M, molecular-mass marker (PageRuler SM0671,
Thermo Fisher Scientific, Waltham, Massachusetts, USA; labelled in kDa). (b) His-affinity purification of TraN; the imidazole gradient is shown as the percentage of buffer B
(discontinuous line).

Figure 2
Example of the buffer-optimization assays. The melting temperatures (K) of TraN are plotted as a function of the buffer and differ significantly corresponding to the
respective chemical composition. The values on the x axis correspond to the numbering of the Index crystallization screen; missing values represent melting curves that were
measured but were not interpretable, which are likely to arise from precipitation or aggregation.



10 ml protein sample was mixed with 10 ml of the respective buffer

and 5 ml of a 50� SYPRO Orange (Sigma–Aldrich, St Louis, USA)

stock. The resulting thermostability curves were analysed and a new

extraction buffer was designed combining the buffer components

(Collins et al., 2004) which showed a thermostabilizing effect, while

keeping the composition as simple as possible (TraN_lysis). This

buffer consisted of 50 mM HEPES pH 7.6, 100 mM ammonium

sulfate and was used for all subsequent TraN extractions, as well as

for crystallization.

3. Crystallization

His-tagged TraN was initially set up with an Index screen at a stock

concentration of 4.8 mg ml�1 using the microbatch method (Chayen

et al., 1992). After evaluation of this first plate, the following screens

were prepared at different concentrations: Index, Crystal Screen,

Crystal Screen 2, MembFac, PEG/Ion (Hampton Research), JCSG

and Morpheus (Molecular Dimensions). The drop ratio was 1:1, with

a total drop volume of 1 ml. All plates were covered with paraffin oil

(�4 ml in total) and stored at 293 K. The formation of crystals was

monitored over several weeks. Potential protein crystals were tested

for diffraction using a rotating-anode diffractometer (MicroStar,

Bruker AXS, Madison, Wisconsin, USA). From several positive

conditions, the two most promising, Index No. 42 [0.1 M bis-tris pH

5.5, 25%(w/v) PEG 3350] and No. 72 [0.2 M NaCl, 0.1 M HEPES pH

7.5, 25%(w/v) PEG 3350], were selected for microbatch pH/PEG/

protein concentration optimization matrices. A constant protein drop

volume of 1 ml and different protein stock concentrations were used.

The original conditions showed thin and fragile platelets and the

diffraction of these crystals was very anisotropic. The optimization

did not improve the crystal diffraction limit or quality, but the use of

the enhanced extraction buffer TraN_lysis led to the formation of

thicker crystals with improved diffraction behaviour (see Fig. 3 for

details of the setup). These optimized crystals were used for data

collection at the synchrotron. We analysed dissolved crystals via

matrix-assisted laser desorption/ionization–time of flight (MALDI–

TOF) mass spectrometry (MS) measurements (ultrafleXtreme,

Bruker, Vienna, Austria) to confirm the integrity of TraN in the

crystals. The crystals were dissolved in 10 ml pure H2O. The MS

analysis showed that TraN was significantly smaller than the original

His-tagged construct. Two peaks of equal height were visible with

molecular masses of 14 222 and 14 478 Da (data not shown), implying

two cleavage sites with a difference of two amino acids. The His tag,

including the TEV cleavage site and linker, amounts to a molecular

weight of 3213 Da (ExPASy; Gasteiger et al., 2003). This corresponds

well to the difference between the full-length protein (17 566 Da;

ExPASy) and the two species of TraN observed in the crystals. The

measured masses correspond to calculated fragments within 20 Da.

However, we cannot present the exact cleavage site because of the

absence of N-terminal sequencing. We conclude that the N-terminal

tag is cleaved by in situ proteolysis during the crystallization process.

4. Data collection and processing

Crystals were flash-cooled without cryoprotectant. Data collection

was performed at 100 K on the synchrotron beamline X06DA at SLS,

Villigen, Switzerland. The tested crystals diffracted to a resolution of

about 3 Å on our home source and to 1.8 Å at the SLS. All tested

crystals still showed severe anisotropic behaviour, diffracting to

approximately 1.8 Å resolution in the best and 2.6 Å in the worst

direction. A crystal with the most uniform diffraction pattern was

chosen for a 180� data collection (Fig. 3) using a crystal-to-detector

distance of 150 mm, an oscillation range of 1.0� and an exposure time
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Figure 3
TraN crystallization and data collection. (a) A representative TraN crystal which grew very compactly to a maximal size of about 400 mm. The crystal was grown using the
microbatch method at 293 K and using paraffin oil only to seal the plate. The protein drop ratio was 50% with a protein stock concentration of 4.6 mg ml�1. The drop size was
1 ml with the crystallization buffer Index condition No. 72: 0.2 M NaCl, 0.1 M HEPES pH 7.5, 25%(w/v) PEG 3350. (b) Diffraction pattern of a native TraN crystal obtained
using synchrotron radiation on beamline X06DA, SLS, Villigen, Switzerland; resolution rings have been added. The picture was generated using ADXV (A. Arvai). Inset,
detail of the diffraction shown in (b).



of 1 s per image. Data-collection and processing statistics are given in

Table 1.

The crystal used for the data collection belonged to space group

P21, with unit-cell parameters a = 32.88, b = 54.94, c = 57.71 Å,

� = 91.89� and two molecules per asymmetric unit. The Matthews

coefficient (Kantardjieff & Rupp, 2003) was calculated to be

1.78 Å3 Da�1, with a solvent content of 31.18% and a probability of

0.7 of being the most likely solution for the given resolution (Table 2).

The data set was processed with iMOSFLM (Battye et al., 2011) and

scaled with SCALA (Evans, 2006) within the CCP4 software suite

(Winn et al., 2011). The Rmeas of the scaled data was found to be

relatively high (14.1%), likely owing to the inherent anisotropy of the

data.

A self-rotation function was calculated with MOLREP (Vagin &

Teplyakov, 2010) and analysed, showing no evidence of a second

molecule. We also generated a native Patterson map with the CCP4

program PEAKMAX and found a peak at position x = 0, y = 0.0565,

z = 0.5 with 40.2% intensity of the origin peak, indicating a second

molecule related to the first molecule by pseudo-translation.

Since no known structures with sequence similarity are available,

the TraN structure cannot be solved by molecular-replacement

methods. Therefore, we are currently pursuing the structure solution

of TraN by conventional heavy-atom-derivative methods. In parallel,

we are in the process of expressing a selenomethionine derivative of

TraN for crystallization and single-wavelength anomalous dispersion/

multiple-wavelength anomalous dispersion (SAD/MAD) experi-

ments. The native data presented here will be used in the refinement

of a preliminary model obtained from these efforts.

This work was supported by the Austrian Science Fund (FWF)

project Nos. P19794-B12 and F4604. Staff support during data

collection on the X06DA beamline at the SLS synchrotron is grate-
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Table 2
Results of the Matthews coefficient calculation.

Values were calculated for a molecular weight of 14 600 Da.

No. of molecules in
asymmetric unit

Matthews
coefficient
(Å3 Da�1)

Solvent
content
(%)

Probability (N)
for given resolution
(1.8 Å)

Probability (N)
overall

1 3.57 65.55 0.30 0.73
2 1.78 31.10 0.70 0.27

Table 1
Data-collection and processing statistics for the scaled data.

Values in parentheses are for the highest resolution shell.

Beamline X06DA [PXIII], SLS, Villigen,
Switzerland

Space group P21

Detector MAR CCD
Unit-cell parameters (Å, �) a = 32.88, b = 54.94, c = 57.71,

� = 91.89
Wavelength (Å) 0.9794
Resolution range (Å) 28.967–1.8 (1.9–1.8)
Rmeas† (%) 14.1 (61.6)
hI/�(I)i 8.8 (3.7)
No. of molecules in asymmetric unit 2
Matthews coefficient (Å3 Da�1) 1.78
Solvent content (%) 31.18
Measured reflections 69059 (10004)
Unique reflections 19191 (2804)
Multiplicity 3.6 (3.6)
Completeness (%) 100.0 (100.0)

† Rmeas =
P

hklfNðhklÞ=½NðhklÞ � 1�g1=2 P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ.
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