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Abstract

Genomic selection is a proven technology in animal and plant breeding to accelerate genetic

gain, but as yet is to be fully realised in forest tree breeding. This paper examines, through

stochastic simulation, the potential benefits of genomic selection (GS) over forward selec-

tion (FS) in a typical conifer breeding program. Methods of speeding the deployment of

selected material were also considered, including top-grafting onto mature seed orchard

ortets, using additional replicates of clones in archives for crossing, and embryogenesis and

clonal propagation. Genetic gain per generation was found to increase considerably when

the size of the training population was larger (800 c.f. 3000 clones), or when the heritability

was higher (0.2 c.f. 0.5). The largest genetic gain, of 24% was achieved where large training

populations (3000 clones) and high heritability traits (0.5) were combined. The accuracy of

genomic breeding values (GEBVs) increased with the increase in the number of clones in

the training population, the heritability of the trait and the density of the SNP markers. Calcu-

lated accuracies of simulated GEBVs and genetic gain per unit of time suggested that 2000

clones in the training population is the minimum size for effective genomic selection for coni-

fers. Compared with forward selection, genomic selection with 2000 clones in the training

population, and a 60K SNP panel, an increase of 1.58 mm per year in diameter-at-breast-

height (DBH) and 2.44 kg/m3 per year for wood density can be expected. After one genera-

tion (9-years), this would be equivalent to 14.23 mm and 21.97 kg/m3 for DBH and wood

density respectively. Deploying clones of the selected individuals always resulted in higher

additional genetic gain than deploying progeny/seedlings. Deploying genetic material

selected from genomic selection with top-grafting for early coning appeared to be the best

option. Application of genomic selection to conifer breeding programs, combined with

deployment tools such as top-grafting and embryogenesis are powerful tools to speed the

delivery of genetic gain to the forest.
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Introduction

Many animal and plant breeders now use genomic selection routinely [1, 2, 3]. In forestry,

genomic selection is yet to be fully realised. The benefits of genomic selection in forestry are

potentially very large through shortening the long generation intervals, speeding the delivery

of genetic gain, and reducing the reliance on field testing [4–6]. Benefits also include the esti-

mation of both the additive genetic variance and the non-additive genetic variance [7], which

potentially gives further benefits. Partitioning the non-additive genetic variance can add to the

accuracy of breeding value estimates due to overall greater accuracy in the variance partition-

ing process. Trees also have the ability to be vegetatively propagated (cloned), so that non-

additive genetic variance can be captured by deploying copies of outstanding genotypes [8, 9].

In practice, the accuracy of genomic selection directly depends on four factors [10, 11]: 1)

the level of linkage disequilibrium between SNPs and quantitative trait loci (QTL), 2) the num-

ber of varieties/clones with phenotypes and genomic data in the training population from

which the SNP effects are estimated, 3) the heritability of the trait in question, and 4) the distri-

bution of QTL effects. The first two factors are under the control of the breeder and the other

two are not [10]. Trait heritability can be improved through experimental design and testing

strategies [12–15], although the underlying genetic control will remain the same. Linkage dis-

equilibrium is a particularly important variable when considering the prospects of genomic

selection in forest trees [4]. The level of linkage disequilibrium can be increased by reducing

the effective population size and increasing SNP marker density [4]. A large effective popula-

tion size leads to low level of linkage disequilibrium and, in turn, reduces the prediction accu-

racy in genomic selection [4, 16], however, it can also result in more recombination and a

greater genetic diversity [17], which is favourable for long-term genetic gain [18].

Genomic tools have been used in research for a number of forestry species now [7, 19–28].

Despite this, some breeding programs are still reluctant to move even to forward selection

from a backward selection strategy [29, 30]. Some practical simulations have been undertaken

to determine the opportunity that cloning has for delivering genetic gain [9]. Very few simula-

tions for the application of genomics in forestry have been published. Very few simulations

have properly considered different deployment pathways that are available to practitioners in

order to maximise the opportunity available through each of the different breeding pathways.

Clonal forestry is promising to provide quality planting material to forest growers in the

shortest time. It is defined as the commercial production and deployment of plants of field-

tested individual genotypes of forest tree species [31]. Clonal forestry is now a commercial

reality for many conifer species, such as Abies, Larix, Picea, Pinus, and Pseudotsuga [32] and

contributes approximately 5% of the total current New Zealand planting stock requirements.

The advantages of clonal forestry in radiata pine include reducing the rotation age, and effi-

ciently capturing additive and non-additive genetic gains [31, 33–35]. An ability to rapidly

multiply valuable crosses is another key advantage [33]. The disadvantages include increases in

operational cost [31] and reduction of genetic diversity [36, 37]. Clonal forestry for conifers is

achieved mostly by the propagation of cuttings [38, 39] or by somatic embryogenesis [40].

Somatic embryogenesis is the most powerful way to deliver genetic gain to the forest because

cell lines can be maintained in a juvenile state indefinitely through cryopreservation.

This paper will simulate the combination of breeding, genomics and deployment methods

in order to critically examine the potential benefits of genomic selection in a typical conifer

breeding program. Key variables tested include training population sizes, heritability and

length of breeding cycles. Genetic gains will be estimated for combinations of variables for tree

breeding and genomics approaches. Benefits from the different deployment options employed

for the different breeding approaches will be important for the realisation of genetic gain [41].

Genomic selection in conifer breeding and deployment
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We will simulate the genetic gain from deployment using embryogenesis from cryopreserved

cell lines [40, 42, 43] and seed production, with the option of speeding seed production by top-

grafting [44]. These simulations will, for the first time, clearly show the expected genetic gain

per year for forest companies to strategically evaluate the opportunity that genomics offers for

forest productivity.

Materials and methods

Assumptions and structures—Conifer breeding cycle timelines

We consider two primary conifer breeding approaches; forward selection with clonal testing

(FS; Fig 1) and forward selection with genomics (GS, Fig 2). With FS, there are six steps per

breeding cycle: 1) crossing parents and generating seeds in a crossing orchard (3 years), 2)

sowing seed and preparing stool plants for cuttings (2 years), 3) progeny and field testing, with

installation of a clonal crossing archive at the same time (9 years), and 4) scale up the selected

individuals with sufficient cones for crossing (3 years). Therefore, the forward selection pro-

cess has a generation interval of 17 years. Using a genomic selection strategy (GS), progeny

field testing is not required. Selection candidates can be ranked based on genomic breeding

values (GEBVs) that can be estimated when seedlings are only six months old. The selected

trees are kept in a seed orchard for further 5.5 years before crossing can occur. Overall, genera-

tion interval can be reduced to 9 years with genomic selection (Fig 2).

One time-saving option for shorter breeding cycle relevant to the FS approach, is the estab-

lishment of a clonal archive (CA) at the time of progeny testing, where ramets of each clone

under progeny testing are also kept in an archive for crossing on a site known to promote

Fig 1. Example of conifer breeding cycle for conventional forward selection with a generation interval of 17 years.

https://doi.org/10.1371/journal.pone.0208232.g001
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good coning. Clones are therefore available with cones for crossing right after selection is

made. With this clonal archive option, step 4 is not needed (Fig 1) and the generation interval

is reduced to 14 years. This option of forward selection is called forward selection with a clonal

archive (FSCA). Top-grafting can also be used to graft juvenile scions of selected individuals

onto the top of mature rootstock in order to accelerate coning [45, 46]. This top-grafting pro-

cess is assumed to reduce the age of coning from 5 years to 3 years and, in turn, reduces the

generation interval to 7 years. This option is relevant only to GS and is therefore called geno-

mic selection with top grafting (GSTG).

Assumptions and structures—Deployment pathways

Two deployment pathways were simulated to ensure the best selections reach the forest:

deploying progeny or deploying clones (Fig 3). The first option is to generate seeds by crossing

the selected trees, establishing individual plants as stool beds (mother plants) from which cut-

tings are taken and then deploying rooted cuttings into the forest with the following steps:

graft the selected trees (three years)! cross and generate seeds (three years)! either i) sow

seeds or ii) use embryogenesis to generate trees for planting (one additional year)! stool

plants (one year)! deployment in the forest. It therefore takes eight years from selection to

deployment in the forest for FS. For the forward selection with clonal archive (FSCA) and

genomic selection (GS and GSTG) pathways, traditional grafting is not needed, so that only

five years from selection to deployment in the forest are required.

The second option is to deploy clones of selected trees, where immature seeds (embryos) of

all progeny are collected during step 1 of the breeding cycle as described in Figs 1 and 2.

Somatic embryogenesis is then used to generate plants which are subsequently established as

stool beds to produce cuttings. (We have assumed all genotypes are able to go through this

Fig 2. Example of conifer breeding cycle for genomic selection with a generation interval of 9 years.

https://doi.org/10.1371/journal.pone.0208232.g002
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Fig 3. Two deployment options: Deployment of progeny or clones of the selected trees.

https://doi.org/10.1371/journal.pone.0208232.g003
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process). Tissue of all the genotypes tested in the field are preserved in liquid nitrogen

(-120˚C) while the trees are grown and can be assessed. Once selections are made from field

tests, phenotypes or GEBVs, the preserved cell lines of the selected trees are thawed and cut-

tings are prepared via stool beds in the nursery, for large-scale clonal deployment. Generating

and deploying cuttings to the forest takes one year.

There are eight combinations for deployment between the four breeding and selection

schemes (FS, GS, FSCA, GSTG) and two generic deployment options (via seed or clones).

Table 1 summarizes these selection combinations, their generation intervals, numbers of years

needed from crossing the parents to selection and from selection to deployment in the forest.

Simulation

Population structure. Three steps were used to simulate a population for conducting for-

ward selection or genomic selection and implemented using the QMSim software [47] based

on a forward-in-time process [48]. The objective of these steps was to create initial linkage dis-

equilibrium and establish mutation-drift equilibrium.

The first step created a base population that was named “Historical Generations”. This step

consisted of running 500 generations with 300 female parents and 300 male parents. Random

mating was used to undertake a random union of gametes. No selections were made in this

step. This step had a constant population size of 1000. The second step, called “Extended Gen-

erations”, consisted of 10 generations with 100 female and 100 male parents. This step had a

constant population size of 500.

After “Extended Generations”, ten “Recent Discrete Generations” were simulated in the

third step, by selecting 32 female parents and 32 male parents from the last generation. A cir-

cular mating design was implemented and each parent was crossed twice. Fifteen offspring

were generated in each family and each offspring had 4 ramets. These parameters used in the

recent generations mimicked more closely to a conifer breeding program such as the Elite

Population in P. radiata [29]. Selections were made based on BLUP EBVs, estimated using

Henderson’s mixed linear model equations [49] and implemented using ASREML-R [50].

Two quantitative traits with low heritability (h2 = 0.2) and with high heritability (h2 = 0.5)

were simulated. Both traits had additive genetic variance of 300 based on similar genetic vari-

ances for diameter-at-breast-height (mm) and wood density (kg/m3), respectively. Three-hun-

dred and fifty bi-allelic QTLs were assumed to control the traits. The true breeding value of an

individual was calculated as the sum of the individual QTL additive effects. Non-additive

Table 1. Four selection schemes in breeding population, their combinations with two deployment options, generation interval, numbers of years needed from cross-

ing parents to selection and from selection to deployment in the forest.

Selection in breeding

population

Material of selected trees to

deploy

Deployment

abbreviation§
Generation

interval

Years from crossing to

selection

Years from selection to

deployment

FS Progeny FSs 17 14 8

FS Clone FSc 17 14 1

FSCA Progeny FSCAs 14 14 5

FSCA Clone FSCAc 14 14 1

GS Progeny GSs 9 9 5

GS Clone GSc 9 7 1

GSTG Progeny GSTGs 7 7 5

GSTG Clone GSTGc 7 7 1

§ Subscription s denotes deploying progeny (seedlings) of the selected individuals and subscription c denotes deploying clones from tissue culture.

https://doi.org/10.1371/journal.pone.0208232.t001
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genetic effects between ramets of the same genotype were sampled from a normal distribution

with mean of zero and 15% additive genetic variance. Phenotypes were simulated as the sum

of the true breeding value, non-additive genetic effects and random residuals.

Groups of 800, 1000, 2000 or 3000 randomly selected clones from generations 4 to 8 (in the

“Recent Discrete Generations”) were used as the training population. All individuals in gener-

ation 10 were used as the prediction population. The prediction equations of SNPs or SNP

effects were estimated in the training population. We then tested the power of the prediction

equations of SNPs estimated from the training population to predict performance on the pre-

diction population.

Simulation of the conifer genome. In this study, one 150 cM chromosome and five SNP

panels of 600, 1,200, 2,500, 4,900 and 8,000 SNP markers randomly distributed on the chromo-

some were simulated. This was equivalent to a SNP density of 7,000, 14,000, 30,000, 60,000

and 90,000 SNPs at the whole genome level (Table 2). The markers were neutral in their effects

on the traits. Initial minor allele frequencies of these markers were larger than 0.10. The three

hundred and fifty modelled bi-allelic QTLs were randomly distributed. Additive allelic effects

of QTLs were randomly sampled from a gamma distribution with a shape parameter of 0.50

and a scale parameter of 26. Markers and QTLs were simulated to have a recurrent mutation

rate of 10−5 in the Historical Generations and the Extended Generations but no mutations in

markers or QTLs were simulated in the Recent Generations.

Simulation of training and prediction populations. Four training population with a size

of 800, 1000, 2000 or 3000 clones were randomly chosen from the Recent Generations set

(generations 4 to 8) to reflect conifer breeding populations under selection. The prediction

population were composed of 960 clones from the 10th generation.

Genetic evaluation

The EBVs of individual clones were used as input parameters for deriving individual-clone

GEBVs, estimated using linear individual tree mixed models [51]:

y ¼ μþ Zaaþ Zdd þ e ð1Þ

where y is a vector of trait phenotypes, μ is the overall mean, a is a vector of additive genetic

effects, d is a vector of non-additive genetic effects, e is a vector of random residuals. Za and Zd

are incidence matrices relating the additive and non-additive genetic effects to phenotype. It

was assumed that varðaÞ ¼ As2
a; varðdÞ ¼ Ds2

d , varðeÞ ¼ Is2
e and varðyÞ ¼ ZaAZ

0

aþ

ZdDZ
0

d þ Is2
e , where A is the additive genetic relationship matrix, D is the non-additive genetic

relationship matrix and I is the identity matrix, s2
a is the additive genetic variance, s2

d is the

non-additive genetic variance and s2
e is the residual variance [51].

Table 2. Five SNP panels were simulated with 600, 1,200, 2,500, 4,900 and 8,000 SNPs in one chromosome, which was equvalent to 7K, 14K, 30K, 60K and 90K

SNPs.

Panel SNPs simulated SNPs included in deriving GEBV Equivalent at whole genome level (assuming 12 chromosomes)

7K 600 576 6,912

14K 1,200 1,168 14,016

30K 2,500 2,358 28,296

60K 4,900 4,766 57,192

90K 8,000 7,149 85,788

https://doi.org/10.1371/journal.pone.0208232.t002
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GEBV estimation

The allele substitution effect for each SNP was computed using Gensel [52], in which a

Bayesian method called BayesC [53, 54] was used for estimating marker effects. BayesC fitted

a statistical model assuming a known fraction of SNPs as having zero effects, which in the

current analysis was set to be π = 0.95. Additive SNP effects were fitted to every SNP in the

model:

yi ¼ μþ
Xk

j ¼ 1
Xijaj þ e ð2Þ

where yi is a vector of EBVs estimated from trait phenotypes and pedigree data, Xij is the inci-

dence matrix related to copy number of a given allele of individual i at SNP j, aj is a vector of

additive effects of SNP j, and e is a vector of random residuals. The priors for aj were a mixture

of normal distributions as described by Habier et al. [54]. The priors of all SNP effects have a

common variance, which had a scaled inverse chi-square prior with parameters va = 4.2 and

scale S2
a: S

2
a is a univariate student’s t-distribution, t (0,va, S2

a). The effect of a SNP fitted with

probability (1-π) comes from a mixture of multivariate student’s t-distributions, t (0, va, IS2
a).

The prior for the residual effects is normally distributed with mean zero and variance

s2
e (based on an arbitrary allocation as an initial value). Gibbs sampling was used to sample the

posterior distribution of model parameters. SNP effects were estimated by the mean of the

sampled values. The total number of Markov Chain Monte Carlo iterations used for estimating

posterior means of marker effects and variances was 40,000. The EBV of a simulated trait was

used as response variable and the accuracy of the EBV was used as weighting factor. The

weight for the ith individual clone was estimated according to Garrick et al. [55] as

wi ¼
1� h2

h2

cþ
1� r2i
r2i

, where h2 is the heritability, c is the part of the genetic variance not explained by

SNPs, and ri is the accuracy of the EBV of the ith clone.

GEBVs (ĝ ) were predicted as the linear combination of the SNP substitution effects as

ĝ ¼ X0â ð3Þ

where X is the matrix of SNP genotypes for each individual clone in the prediction population

and â is the vector of estimated SNP effects. The accuracy of the GEBVs was estimated as the

correlation between the GEBVs and the true simulated breeding value.

Linkage disequilibrium

The underlying assumption of genomic selection is that haplotypes at some loci are in linkage

disequilibrium with QTL alleles that affect the traits that are subject to selection. Linkage dis-

equilibrium was created through the Historical Generations and Extended Generations to

mimic level of linkage disequilibrium of a conifer population, based on knowledge of the radi-

ata pine breeding population. Linkage disequilibrium at the beginning of the Recent Genera-

tions was measured as R2, the squared correlation coefficient between pairs of loci:

R2 ¼
D2

PAPaPBPb
ð4Þ

where D is the deviation of the observed frequency of a haplotype from the expected with

D ¼ PAB � PAPB; ð5Þ

where PAB, Pa, PA, PB and Pb are observed frequencies of haplotypes AB and of alleles A, a, B, b,

Genomic selection in conifer breeding and deployment
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respectively. R2 is a more informative measure of LD as it measure the overall departure from

complete independence between pairwise combinations of polymorphisms [56].

This simulation assumed that the conifer genome has low level of linkage disequilibrium

and that linkage disequilibrium rapidly decayed within 1 centimorgan. The average LD was

0.17, 0.20, 0.22, 0.22 and 0.24 for 7K, 14K, 30K, 60K and 90K SNP panels, respectively. Fig 4

shows that the linkage disequilibrium (R2) rapidly decays with increasing distance between

closely located SNPs in the 7K SNP panel.

Benefit of genomic selection over forward selection

Genetic gain in breeding population. In the simulated breeding population, nine clones

were selected from 960 clones in the prediction population, which was equivalent to a selection

proportion of 1%. Genetic gain was given as the average true breeding value of the selected

clones, representing the increase above the population mean of zero. Genetic gain per genera-

tion and per year was compared among selections based on their EBVs and GEBVs. Additional

genetic gain from selection methods of FSCA, GS and GSTG over FS was calculated in the

same manner.

Genetic gain in deployment. Genetic gain from deployment was estimated as the total

genetic gain from a plantation of 8 rotations in a hectare of forest. It was assumed that one

rotation started immediately after the previous rotation had finished. Each rotation was

assumed to be 25 years. The first rotation was assumed to start at the same time that the breed-

ing cycle was started in the breeding population, either for GS or FS. At the start of a new rota-

tion, it was assumed that any deployment could only use the genetic material available from

the latest breeding cycle. Genetic merit was the average true breeding value of individual trees

Fig 4. Plot of the squared correlations of allele frequencies (R2) versus distance in cM between closely located SNPs in a panel

with 7K SNPs across 150 cM linkage map.

https://doi.org/10.1371/journal.pone.0208232.g004
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selected to be used as parents in the breeding population. The increment of genetic merit in

each breeding cycle was assumed to be constant. Genetic merit in breeding cycle i was calcu-

lated as g(bi − 1), where g was the average true breeding value of selected parents and bi was ith
breeding cycle. The genetic merit of ith rotation was the genetic merit of genetic material that

was ready for deployment of the latest breeding cycle. The total genetic gain from a deploy-

ment for 8 rotations was calculated as the summation of the average genetic merit of genetic

material deployed in 8 rotations. Fig 5 shows an example of how the total genetic gain in the

deployment of progeny was calculated for forward selection (FSs) and for genomic selection

(GSs). For instance, the genetic gain in rotation 3 for FSs (2gf) indicates that genetic material

from the latest breeding cycle (breeding cycle 2) was deployed. The total genetic gain from a

deployment for 8 rotations was estimated as 37gf for FSs and 72gg for GSs. Additional genetic

gain from deployment options of FSCA, GS and GSTG over FS was calculated for two deploy-

ment options, deployed as progeny and as clones.

Results

Accuracy of GEBVs

The accuracy of GEBVs increased with the increase in the number of individuals in the train-

ing population, heritability of the trait of interest, and the density of SNP markers (Table 3).

The accuracy of GEBVs increased from 0.21 to 0.51 for a trait with low heritability and from

0.67 to 0.75 for a trait with high heritability, when the training population size increased from

800 to 3000. The accuracy of GEBVs in genomic selection was close to the accuracy of FS for

both traits with either low or high heritabilities when the training population size was 3000.

The accuracy of GEBVs increased from 0.28 to 0.45 for a trait with low heritability and from

Fig 5. Diagram of calculating total genetic gain from deployment of progeny of the selected individuals for 8

rotations for forward selection (FSs) and genomic selection (GSs). Ri is the start of i rotation with 25 years long, Bi is

the time when selection is made in breeding cycle i, Di is the time when genetic material is available for deployment in

breeding cycle i, which is 5 years after selection in breeding cycle i. gf and gg are the genetic gain per generation from

FSs and GSs, respectively.

https://doi.org/10.1371/journal.pone.0208232.g005
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0.51 to 0.70 for a trait with high heritability, when the SNP density increased from 7K to 90K

across the simulated chromosome (Table 4). The accuracy of the GEBVs for a trait with a low

heritability was much lower than that for a trait with a high heritability for SNPs panels with

various numbers of SNPs.

Genetic gain in the breeding population

Genetic gain was used to evaluate the efficiency of genomic selection when compared with for-

ward selection using phenotypic data and field testing. Genetic gain per generation increased

from 4.22% to 16.02% for a trait with low heritability and 18.90% to 24.20% for a trait with

high heritability when the number of clones used in the training population increased from

800 to 3000 (Table 5). For a trait with low heritability, the genetic gain per generation from GS

was always lower than that from FS across all training population sizes examined. For traits

with a high heritability, genetic gain from GS was higher than that from FS when the training

population size was 2000 or more. Additional genetic gain was observed in traits with higher

heritability.

Table 3. Accuracies of GEBVs using a 60K SNP panel and a different number of individuals (800, 1,000, 2,000

and 3,000) in the training population for low (h2 = 0.2) and high (h2 = 0.5) heritability traits, compared with the

accuracy of equivalent EBVs.

No. of individuals in the training population h2 = 0.2 h2 = 0.5

GEBV EBV GEBV EBV

800 0.21 0.52 0.67 0.75

1000 0.43 0.52 0.69 0.75

2000 0.44 0.52 0.73 0.75

3000 0.51 0.52 0.75 0.75

https://doi.org/10.1371/journal.pone.0208232.t003

Table 4. Accuracies of GEBVs for different numbers of makers in different sizes of SNP panel: 7K, 14K, 30K, 60K

or 90K SNPs used in the prediction population for low (h2 = 0.2) and high (h2 = 0.5) heritabilities, compared with

the accuracy of equivalent EBVs. Marker effects were estimated using 1,000 clones in the training population.

SNP density h2 = 0.2 h2 = 0.5

GEBV EBV GEBV EBV

7K 0.28 0.52 0.51 0.75

14K 0.37 0.52 0.58 0.75

30K 0.40 0.52 0.60 0.75

60K 0.43 0.52 0.69 0.75

90K 0.45 0.52 0.70 0.75

https://doi.org/10.1371/journal.pone.0208232.t004

Table 5. Genetic gain per generation obtained in the prediction population from GS with 60K SNP panel for dif-

ferent training population sizes (800, 1,000, 2,000 and 3,000 clones) for traits with low (h2 = 0.2) and high

(h2 = 0.5) heritabilities in the breeding population, compared with genetic gains obtained from FS.

Training population h2 = 0.2 h2 = 0.5

size GS FS GS FS

800 4.22 19.13 18.90 21.30

1000 10.47 19.13 19.21 21.30

2000 14.23 19.13 21.97 21.30

3000 16.02 19.13 24.20 21.30

https://doi.org/10.1371/journal.pone.0208232.t005
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Table 6 shows the simulated genetic gain expected in the breeding population per year from

FSCA, GS and GSTG relative to the genetic gain achieved from FS. The largest genetic gain

was obtained from GSTG. Genetic gain per unit of time in FS was 1.13 for trait with a low heri-

tability and 1.25 for trait with a high heritability. The use of a clonal archive in FS (FSCA)

increased gains/year by 21–22%. Genetic gain also increased with the increase of the size of the

training population. For the low heritability, when the training population size was 1000,

yearly genetic gain from GS was similar to that from forward selection (FS) but lower than the

gain from forward selection with a clonal archive (FSCA). When the training population was

2000–3000 clones, genomic selection (GS) led to 40–58% more genetic gain/year than FS.

Accelerating coning in genomic selection with top-grafting (GSTG) led to 33%, 80% and 103%

additional genetic gain/year over FS for training population sizes of 1000, 2000 and 3000,

respectively. For the highly heritable trait, GS resulted in 68–115% additional genetic gain/year

and 116–177% more for training population sizes of 800–3000, compared with forward selec-

tion (FS).

Genetic gain in deployment

Deploying clones through somatic embryogenesis after FS (FSc) led to 8.11% additional

genetic gain over deploying progeny (seedlings) of the selected individuals (FSs) (Fig 6). Use of

a clonal archive in combination with forward selection led to considerably higher genetic gain

in deployment than forward selection alone. Additional genetic gain available from deploying

progeny of the selected individuals through a clonal archive (FSCAs) was 21.62%. Deploying

individuals via a clonal archive followed by clonal propagation (FSCAc) provided an additional

24.32% compared with FSs.

Compared with the baseline of deploying progeny of the selected individuals from FS (FSs),

the additional genetic gains obtained from deploying genetic material selected from GS

increased with increasing heritability and training population size (Table 7). Deploying genetic

material selected with GS was always superior to deploying genetic material selected from FS

except where the training population had 800 individuals and the heritability was low (0.2).

Increasing the training population size always increased the additional benefit obtained from

deploying genetic material selected from GS over FS. Deploying genetic material selected from

GS was inferior to deploying material selected from FS when the heritability was low and the

training population size was 800. This suggested that a bigger training population size was

needed for a trait with low heritability.

Table 6. Genetic gain per year obtained in the breeding population from genomic selection with (GSTG) or without (GS) top grafting and from forward selection

with (FSCA) and without (FS) clonal archive for traits with low (h2 = 0.2) or high (h2 = 0.5) heritabilities for various training population sizes of 800, 1,000, 2,000

and 3,000. GEBVs were estimated using a 60K SNP panel.

Heritability Training population size Genetic gain/year Benefit over FS

FS FSCA GS GSTG FSCA GS GSTG

h2 = 0.2 800 1.13 1.37 0.47 0.60 21% -58% -47%

1000 1.13 1.37 1.16 1.50 21% 3% 33%

2000 1.13 1.37 1.58 2.03 21% 40% 80%

3000 1.13 1.37 1.78 2.29 21% 58% 103%

h2 = 0.5 800 1.25 1.52 2.10 2.7 22% 68% 116%

1000 1.25 1.52 2.13 2.74 22% 70% 119%

2000 1.25 1.52 2.44 3.14 22% 95% 151%

3000 1.25 1.52 2.69 3.46 22% 115% 177%

https://doi.org/10.1371/journal.pone.0208232.t006
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With genomic selection (GS and GSTG), deploying clones was always superior to deploying

progeny (seedlings) of the selected individuals (Table 7). The additional genetic gain obtained

from deploying clones of the selected individuals (GSc) was 1–4% and 4–6% higher than that

from deploying progeny of the selected individuals (GSs) for a trait with low heritability and

for a trait with high heritability, respectively. The additional genetic gain obtained from

deploying clones of the individuals selected from GSTG (GSTGc) was 3–10% and 9–12%

higher than that from deploying progeny of the individuals selected from GSTG (GSTGs) for a

trait with low heritability and high heritability, respectively.

When comparing genetic gains obtained from deploying genetic material selected from GS,

the use of top-grafting to accelerate coning remarkably increased genetic gains from deploy-

ment (Table 7). Deploying progeny selected from GSTGs led to 12–47% and 50–65% higher

additional genetic gain than deploying progeny selected from GSs for a trait with low heritabil-

ity and high heritability, respectively. Deploying clones selected from GSTGs led to 14–53%

and 56–71% higher additional genetic gain than deploying clones selected from GSs for a trait

with low heritability and high heritability, respectively.

Discussion

The objective of this study was to simulate the effectiveness of genomic selection over tradi-

tional selection using phenotypes and pedigree information in conifer species. There are

Fig 6. Additional genetic gain per year from FSCA when deployed as seedlings (FSCAs), or clones (FSCAc), when

compared with deployment of selected individuals from FS via seedlings (FSs).

https://doi.org/10.1371/journal.pone.0208232.g006

Table 7. Additional genetic gains (percentage) across 8 rotations obtained from deploying genetic material selected from GS over a baseline of deploying progeny

of the selected individuals from FS (FSs) for different deployment options: Deploying progeny (seedlings) of the individuals selected from GS (GSs), deploying

clones of the individuals selected from GS (GSc), deploying progeny of the individuals selected through GSTG (GSTGs) or deploying clones of the individuals

selected through GSTG (GSTGc).

Heritability Training population size GSs GSc GSTGs GSTGc GSc vs GSs GSTGc vs GSTGs GSTGs vs GSs GSTGc vs GSc

h2 = 0.2 800 -57 -56 -45 -42 1 3 12 14

1000 7 9 38 43 2 5 31 34

2000 45 49 87 95 4 8 42 46

3000 63 67 110 120 4 10 47 53

h2 = 0.5 800 73 77 123 133 4 10 50 56

1000 76 80 127 136 4 9 51 56

2000 101 106 159 170 5 11 58 64

3000 121 127 186 198 6 12 65 71

https://doi.org/10.1371/journal.pone.0208232.t007
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several key components to achieve this: increasing the accuracy of estimated breeding values,

shortening the generation interval of the breeding population and shortening the time frame

from the point of selection to deployment in the forest. The accuracy of genomic breeding val-

ues increased with the training population size and the number of markers included in devel-

oping genomic breeding values. These accuracies were in the range of those achieved in

genomic selection in the literature. The accuracy of GEBVs for growth and wood density was

0.30–0.83 in loblolly pine (Pinus taeda L.) [57]; 0.52–0.69 for growth and 0.71–0.79 for wood

density in white spruce (Picea glauca) [58, 59] and; 0.42–0.65 for wood quality traits and

0.63–0.76 for growth in black spruce (Picea mariana) [17]. The simulated accuracy achieved

from genomic selection was lower or equivalent to that achieved in forward selection (Tables 3

and 4), which reflected the population size and the number of markers used in most genomic

selection projects in conifers [17, 57–59].

While this study focussed on increasing accuracies with increasing marker densities, there

are other considerations when designing genomic breeding programmes. This includes

designing the genotyping tools to be tailored to the population and traits. In this study higher

marker density and higher heritabilities gave higher accuracies of estimated breeding values.

Other genomic selection simulations have shown that increasing marker density will better

describe the genetics of traits when compared with traditional genetic analysis, for example the

recent simulation by [60]. High marker density is the most effective where the heritability is

low and where the effective population size is larger. Although this trend is the same for higher

heritability traits, marker density is not as important. Of course, this is largely intuitive, but an

important point that has not been covered in this study.

The heritability of a trait is an important as it effects the efficiency of genomic selection

over traditional selection [10]. It has been assumed that genomic selection is more beneficial

where traits have a low heritability [5, 11]. The current results do not support this assumption,

as higher additional genetic gain from genomic selection was observed with higher heritabili-

ties over forward selection both in breeding and deployment pathways. It is possible that

where heritability is low, more markers or a bigger training population is needed in order to

obtain reliable accuracy of GEBVs. Two quantitative traits with h2 = 0.2 and h2 = 0.5 were sim-

ulated. These two traits were representative of the growth trait diameter-at-breast-height

(DBH) and wood density. Extrapolating from the current simulation under forward selection,

and single-trait selection, we can expect an increase of 1.13 mm per year for DBH and 1.25 kg/

m3 per year for wood density. Over a 17-year breeding cycle, the expected increases would be

19.13 mm for DBH and 21.3 kg/m3 for wood density. With genomic selection, using 2000 indi-

viduals in the training population and 60K SNPs for developing GEBVs, we can expect an

increase of 1.58 mm per year in DBH and 2.44 kg/m3 per year for wood density. After one gen-

eration (9-years), this would be equivalent to 14.23 mm for DBH and 21.97 kg/m3 for wood

density.

This simulation is a generic study for evaluating the efficiency of genomic selection in coni-

fer breeding, assuming very simple situations, such as simulating a single chromosome, no

missing phenotypic and genomic data, and discrete recent generations. In reality, wood den-

sity has a high heritability and is expensive to measure. It has not been normal, historically, for

example to assess wood density for all individuals in a trial. The level of linkage disequilibrium

(LD) in a genome is also a key factor that affects the accuracy of genomic selection. This simu-

lation therefore attempted to mimic linkage disequilibrium in conifers using knowledge from

radiata pine. Low levels of LD and a rapid decay of LD have been observed in conifer genomes.

LD decays about 50% from r2�0.5 to r2�0.25 over 2000 base pair segments in Pinus taeda [61]

and from r2�0.25 to r2�0.10 over 2000 base pair segments in Pseudotsuga mensiesii [62]. The

average LD in this simulation was 0.17 to 0.24 for 600 SNPs to 8000 SNPs over one

Genomic selection in conifer breeding and deployment

PLOS ONE | https://doi.org/10.1371/journal.pone.0208232 December 10, 2018 14 / 21

https://doi.org/10.1371/journal.pone.0208232


chromosome, which was equivalent to a density of 7K to 90K on the whole radiata pine

genome, as a model genome. Chromosome length used in this study was 150cM based on data

from previous molecular genetics studies at Scion, which implied 1800 cM in length for the

whole radiata pine genome. The possible number of base pairs is over 20 Gb in conifers and 25

Gb in radiata pine [63]. However, due to the low recombination rate in conifers [64], a genetic

linkage map might not be larger than other species that have a smaller number of base pairs

[65]. However, the genome length used in this simulation is still short compared with genome

lengths in some other species. For example, the genome length is 2730 cM in humans [66] and

2300 cM for cattle [67].

Juvenility is generally defined as the period during which a plant cannot be induced to pro-

duce cones [68, 69]. Some species of conifers initiate coning only a year or so after being estab-

lished through grafting or rooted cuttings in a nursery, for example, 10–12 months for Pinus
mugo [70]. Pinus species such as P. banksiana Lamb., P. virginiana Mill., and P. contorta
Dougl. var. contorta begin coning within 3–5 years of germination [71]. In most forest tree

species, the time from seed germination to the onset of coning is about 10 years whereas, in

some species, coning does not begin until 25–35 or more years after germination, such as

Fagus sylvatica L. and Picea abies (L.) Karst [72]. Research has been initiated to develop accel-

erated breeding techniques to reduce the number of years between selection and crossing [73].

The current study showed that top-grafting has the potential to effectively reduce generation

interval of conifers and potentially increase genetic gain per unit of time. Examples of using

top-grafting as a tool to accelerate coning for conifers include P. taeda L., where generation

interval can be shortened to a minimum of three years and breeding cycle to five years

[74–76].

The onset of sexual reproduction will no doubt be a major barrier to shortening the genera-

tion interval even further than simulated in this study. The current study assumed that genera-

tion interval can be reduced by two years. The time reduced through the use of top-grafting

might be different for different conifer species. Coning can, however, be accelerated in conifers

using a number of methods which could also be considered. Coning can be accelerated

through wide spacing, fertilization and irrigation, the development of full tree crowns and

rapid early growth are promoted so that trees reach coning size as soon as possible [77]. Gib-

berellins, plant hormones that accelerate growth and induce or promote coning of plants, have

also been used to accelerate coning in conifers. Gibberellins were used to induce coning from

4–5 years to 3 months for Arizona cypress (Cupressus arizonica Greene), from 20–25 years to

12 years for Norway spruce (Picea abies (L.) Karst), from 10–20 years to 6 years for Douglas-fir

(Pseudotsuga menziesii, (Mirb.) Franco) from 20–30 years to 3 years for western hemlock

(Tsuga heterophylla (Raf.) Sarg.) [78]. Coning of jack pine (Pinus banksiana Lamb) can be

induced from 5–10 years in naturally regenerated stands under open-grown conditions to 12

months under near optimum growing conditions in the greenhouse and nursery [79, 80].

Time to coning was effectively reduced by application of top-grafting and gibberellins in scots

pine (Pinus sylvestris (L.)) [81]. Early-coning in conifers can be also achieved through transfor-

mation of the gene Coning Locus T (FT), an important coning regulator, which causes plants

to cone at a very young age when the plants are quite small [82–84].

One impediment that prevents somatic embryogenesis to be applied commercially in clonal

forestry for most of conifers is its high costs [85]. This problem has been largely solved for

some conifer species, for example radiata pine. It has been become a reliable and cost-effective

commercial clonal forestry development and delivery system in radiata pine [31]. About four

million of radiata pine clonal plants generated through embryogenesis have been deployed

annually in New Zealand and this number is expected to be expanded substantially. Produc-

tion costs for somatic embryogenesis clonal forestry is about two times of that for control-
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pollinated seedlings with a 100% of successful rate per cross (Carson, personal communica-

tion, 2018). With the development of this technology, production costs will be reduced in the

future for most of conifer species. Fluidic systems are also under development that increase

yield of somatic embryos, which should further increase the competitiveness of clonal systems

[86].

Therefore, somatic embryogenesis was simulated as a pathway to deploy genetic gain to the

forest. There are likely to be at least two ways of using somatic embryogenesis in conifer breed-

ing programmes, outlined in Fig 3. One pathway is described in this study, where immature

seeds of every individual to be tested in the breeding programme are collected, cell lines devel-

oped and then used to generate plants for testing or genomic evaluation while also being cryo-

preserved in liquid nitrogen. Once a selection is made, embryos of the selected individuals can

be grown for propagation and deployment. A second pathway is to use somatic embryogenesis

when deploying progeny of the selected individuals. Immature embryos are collected after

crossing selected parents and replicated through tissue culture for mass propagation via stool-

beds. The time frame from selection to deployment for this option in the current study is

equivalent to that for rooting of cuttings. The advantage of this somatic embryogenesis deploy-

ment option is that a very large number of copies of a clone can be generated.

Due to the high cost of genotyping, other studies have often only genotyped part of a train-

ing population using a high SNP density assay. The remainder of the population is genotyped

using a low SNP density assay. Imputation is often used to ‘fill in the blanks’ through SNP asso-

ciations, and predict genotypes to the levels of a high SNP density assay [87]. We have not con-

sidered this strategy here. A possible next step in the simulation would be to consider a more

complicated situation of high- and low-density SNP assays with imputation to determine the

validity of this approach in conifers. Only two scenarios—low and high heritability traits—

were considered. Investigation of more heritability options and multiple traits will be benefi-

cial in informing conifer breeding programs how to best optimise the implementation of GS

in their populations.

Conclusions

The accuracy of GEBVs increased with the increase in the number of individuals in the train-

ing population, heritability of the interested trait and the density of SNP markers. Accuracy of

GEBVs and genetic gain per unit of time for the trait with lower heritability was a key factor

determining the minimum training population size, suggesting that 2000 clones in the training

population is the minimum size for effective genomic selection for conifers. Deploying clones

of the selected individuals always resulted in higher additional genetic gain than deploying

progeny. Deploying genetic material selected from genomic selection with top-grafting for

early coning resulted in 12–71% additional genetic gain in the deployment than genomic selec-

tion without an early coning option. Application of genomic selection to conifer breeding pro-

grams, combined with deployment options such as top-grafting and somatic embryogenesis

are powerful tools to speed the delivery of genetic gain to the forest.
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