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Abstract
Obesity, exceptionally prevalent in the USA, promotes the incidence and progression of numerous cancer types including 
breast cancer. Complex, interacting metabolic and immune dysregulation marks the development of both breast cancer 
and obesity. Obesity promotes chronic low-grade inflammation, particularly in white adipose tissue, which drives immune 
dysfunction marked by increased pro-inflammatory cytokine production, alternative macrophage activation, and reduced T 
cell function. Breast tissue is predominantly composed of white adipose, and developing breast cancer readily and directly 
interacts with cells and signals from adipose remodeled by obesity. This review discusses the biological mechanisms through 
which obesity promotes breast cancer, the role of obesity in breast cancer health disparities, and dietary interventions to 
mitigate the adverse effects of obesity on breast cancer. We detail the intersection of obesity and breast cancer, with an 
emphasis on the shared and unique patterns of immune dysregulation in these disease processes. We have highlighted key 
areas of breast cancer biology exacerbated by obesity, including incidence, progression, and therapeutic response. We posit 
that interception of obesity-driven breast cancer will require interventions that limit protumor signaling from obese adipose 
tissue and that consider genetic, structural, and social determinants of the obesity–breast cancer link. Finally, we detail the 
evidence for various dietary interventions to offset obesity effects in clinical and preclinical studies of breast cancer. In light 
of the strong associations between obesity and breast cancer and the rising rates of obesity in many parts of the world, the 
development of effective, safe, well-tolerated, and equitable interventions to limit the burden of obesity on breast cancer 
are urgently needed.
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1  Epidemiology and classification of breast 
cancer

In 2020, breast cancer surpassed lung cancer as the leading 
cause of global cancer incidence in women [1]. Breast cancer 
is commonly stratified into molecular subtypes identified 
by immunohistochemistry for the presence of the estrogen 

receptor (ER), progesterone receptor (PR), and human 
epidermal growth factor receptor 2 (HER2/neu) [2]. Breast 
tumors with detectable ER, PR, or both, with or without 
HER2 amplification, are defined as luminal-like tumors [3]. 
Tumors with HER2 overexpression, but not ER or PR, are 
defined as HER2 + breast cancer [4]. Triple-negative breast 
cancer (TNBC) is defined by a lack of expression of all three 
receptors [5]. About 60–90% of all breast cancers express 
the androgen receptor, although its potential as a therapeutic 
target remains controversial [6–8].

Luminal A tumors, defined by high ER and PR expression 
without HER2 amplification, is the most common molecular 
subtype of breast cancer with the best prognosis. Luminal 
B, which expresses lower levels of ER and PR and can 
have HER2 amplification, often presents at a higher tumor 
grade and has a greater risk of recurrence [9]. Both luminal 
subtypes are generally responsive to endocrine-based 
therapies, making effective treatment options more widely 
available. However, intrinsic and/or acquired therapeutic 
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resistance remains pervasive [10]. HER2 + positive breast 
cancer, accounting for about 20% of breast cancers, is often 
a more aggressive tumor subtype but generally responsive 
to HER2-targeted therapies [11].

While TNBC accounts for only 15–20% of breast cancers, 
this intrinsic subtype is particularly aggressive, more likely 
to metastasize, and due in part to the lack of targeted thera-
pies, results in worse clinical outcomes including greater 
recurrence and lower rates of overall survival [12]. Breast 
cancer, particularly TNBC, is a heterogeneous disease, hence 
transcriptomic signatures have been developed to further 
stratify these cancers. Basal-like breast cancer (BLBC) is a 
particularly aggressive subtype, defined by gene expression 
profiles resembling that of basal and myoepithelial breast 
cells [13]. While not mutually exclusive, BLBC and TNBC 
are frequently coincident, with TNBC making up 50–75% 
of BLBC tumors, and about 80% of BLBC tumors lack-
ing ER and HER2 expression [14]. Additionally, a subset 
of TNBC tumors are defined as claudin-low, characterized 
by a stem cell-like/undifferentiated phenotype, high expres-
sion of epithelial-to-mesenchymal (EMT) markers, low 
levels of genomic instability, and heightened infiltration of 
stromal and immune cells [15]. When categorized according 
to intrinsic subtype, 70% of claudin-low tumors are TNBC 
[16]. TNBC is also characterized by deficiencies in homolo-
gous recombination with the majority of BRCA1 mutation-
associated breast cancers classified as TNBC [17, 18].

2  The obesity‑breast cancer link: 
epidemiological evidence

In 2017–2018, the age-adjusted prevalence of obesity—
defined as a body mass index (BMI) of 30 kg/m2 or greater—
among US adults was 42.4% [19]. Obesity promotes inci-
dence and progression of at least 15 cancer types, including 
breast cancer in postmenopausal women [20]. Adipose tis-
sue becomes the predominant site of estrogen production 
after menopause. Hence, women with obesity have greater 
postmenopausal levels of estrogen and consequently greater 
exposure to estrogen’s protumorigenic effects [21]. Thus, 
obesity-mediated exacerbation of cancer is of pressing con-
cern. Across all breast cancer subtypes, obesity is associated 
with worse disease-free survival and overall survival [22]. 
However, the relationship between obesity and breast can-
cer is complicated by subtype and menopausal status across 
the literature. Obesity in women who are postmenopausal 
increases overall relative risk of developing breast cancer 
to 1.33, largely driven by increased rates of ER + breast 
cancers [23]. However, being obese is also associated with 
postmenopausal TNBC incidence and progression [24, 25]. 
The relationship between obesity and HER2 + breast can-
cer is still incompletely understood. Obesity is consistently 

associated with worse overall survival in patients with early 
HER2 + breast cancer, but evidence on the link between 
obesity and advanced HER2 + breast cancer is heterogene-
ous [26–28]. Genetic predictors of obesity, including several 
single nucleotide polymorphisms associated with fasting 
glucose and insulin, also correlate with breast cancer risk 
independent of family history, age, or menopausal status, 
pointing to the importance of the relationship between obe-
sity, breast cancer risk, and genetics [29, 30].

2.1  Obesity and metastatic progression of breast 
cancer

Metastasis, the dissemination and growth of primary tumor 
cells in secondary sites, is the cause of 90% of tumor-related 
deaths in patients with breast cancer, with 5-year survival 
rates at 28% for affected patients [31, 32]. Typically, meta-
static progression begins with local invasion of cancer cells 
from the primary tumor, first into the stroma surrounding the 
tumor and eventually to the neighboring normal tissue. Intra-
vasation follows, as tumor cells expand their niche by enter-
ing lymphatic vessels to access the body’s systemic circula-
tion [33]. As a distant site is reached, the cancer cells exit 
the bloodstream and proceed to adhere to the target organ. 
Metastatic outgrowth marks the final stage of metastatic 
progression, where quiescent tumor cells at distant sites are 
activated to begin proliferating [34, 35]. The mechanisms 
behind this activation are part of ongoing research.

For all subtypes of breast cancer, patients who are obese 
tend to have larger primary tumors at diagnosis and height-
ened risk of developing lymph node metastases [36]. Higher 
BMI predicts lower locoregional and distant recurrence-
free survival among women with breast cancer [37], and 
increases association with overall mortality when compared 
to breast cancer patients at an ideal weight [38]. Indeed, 
patients with breast cancer and obesity are up to 46% more 
likely to have distant metastases 10 years after diagnosis 
[39]. Metabolic syndrome, defined in part by abdominal 
obesity, in patients with early breast cancer is linked to an 
increased risk of relapse as well as poor prognosis [40]. 
There are both biological and non-biological mechanisms 
contributing to the disparate outcomes for women with obe-
sity and breast cancer, which have been expertly reviewed 
elsewhere [41].

Obesity expedites and exacerbates metastatic progression 
of breast cancer, supported by preclinical models [42–44] 
and clinical studies [39, 45]. Several leptin-mediated mech-
anisms behind this link have been established, including 
breast cancer invasion, migration, and immune regulation 
[46, 47], as well as cancer stem cell enrichment and mesen-
chymal stem cell dysregulation in the tumor microenviron-
ment [31, 48]. Preclinical models of obesity demonstrate 
that increased myeloid-derived suppressor cell (MDSC) 

608 Cancer and Metastasis Reviews (2022) 41:607–625



1 3

recruitment, collagen deposition, and changes in fibroblast 
phenotype in the lungs cooperate to create a favorable prem-
etastatic niche for breast cancer [49].

3  The obesity‑breast cancer link: molecular 
mechanisms

3.1  Obesity, adipose, and cancer interactions

Separately, obesity and cancer are complex, integrating an 
incompletely understood combination of genetics, environ-
ment, and lifestyle. Hence, the relationship between obesity 
and cancer is immensely complicated. Despite the complex-
ity, several mechanisms underlying the obesity-cancer link 
have been established. Increased white adipose tissue (WAT) 
mass is emerging as a nexus of tumor biology and meta-
bolic and inflammatory dysregulation in obesity. WAT is 
composed of mature adipocytes, preadipocytes, endothelial 
cells, fibroblasts, pericytes, and immune cells [50]. Obe-
sity also promotes hyperleptinemia, a result of dysregulated 
adipose tissue that can enhance inflammatory cytokine 
secretion [51]. In a murine model of renal cell carcinoma, 
hyperleptinemia has also been implicated in reduced efficacy 
of recombinant adenoviral/TLR agonist and anti-CTLA-4 
checkpoint inhibitor immunotherapy [52]. WAT expands 
through adipocyte hypertrophy and hyperplasia in response 

to chronic nutrient excess, shifting the body’s energy balance 
signaling network and leading to elevated systemic insulin, 
estrogen, and adipokine signaling [53]. During adipose tis-
sue expansion in the development of obesity, inflammation 
arises due to increases in immune infiltration, hypertrophic 
adipose tissue remodeling and angiogenesis, adipocyte 
necrosis, and dysregulated fatty acid flux due to heightened 
adipocyte lipolysis [54, 55]. Rapid adipocyte hypertrophy 
during adipose tissue expansion can create insufficient angi-
ogenesis to achieve proper tissue vascularization, leading 
to hypoxic regions in WAT [56]. WAT hypoxia activates 
the transcription factor hypoxia-inducible transcription 
factor 1, which prevents preadipocyte differentiation and 
initiates adipose tissue fibrosis [57]. Adipose tissue mac-
rophages engulf necrotic or damaged adipocytes to form 
distinct crown-like structures (CLS), a key feature of the 
pro-inflammatory process in adipose tissue [58]. Stressed 
adipose tissue, combined with hypoxia, promotes immune 
cell infiltration and stimulates inflammatory cytokine and 
chemokine release from resident macrophages in adipose 
tissue [59, 60] (Fig. 1). In addition to inflammatory sign-
aling, adipocytes and their precursor mesenchymal stem 
cells (MSCs) support breast cancer progression by seed-
ing the tumor microenvironment (TME) with critical sup-
portive cell populations [61]. Adipose progenitor cells are 
more abundant in obese, relative to nonobese, mice [62], 
with greater levels recruited to the TME [63] supporting 

Fig. 1  The impact of obesity 
on the tumor microenviron-
ment. White adipose tissue from 
an obese host is composed of 
hypertrophied adipocytes, some 
of which become necrotic and 
induce formation of crown-
like structures. Adipose tissue 
inflammation is furthered by 
M1-like and metabolically 
activated macrophages. Tumors 
developing adjacent to obese 
adipose tissue receive numerous 
inflammatory and metabolic 
signals from adipose and are 
marked by immunosuppressed 
tumor microenvironment with 
ineffective tumor-infiltrating 
lymphocytes and immunosup-
pressive M2-like macrophage 
polarization. Adipose tissue 
further contributes to the tumor 
microenvironment via recruit-
ment and transdifferentiation 
of cancer-associated fibroblasts 
from mesenchymal stem cells, 
and adipocyte-derived fibro-
blasts from adipocytes
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breast cancer growth and angiogenesis in vivo [64]. Cancer 
cells actively reprogram tumor-adjacent adipocyte matrix 
proteins and the inflammatory secretome, promoting the 
formation of cancer-associated adipocytes [65]. Cancer-
associated adipocytes release free fatty acids into the TME 
[66], increase interstitial stiffness in breast adipose tissue 
[67], and enhance secretion of cytokines such as interleukin 
(IL)-6, interleukin (IL)-8, monocyte chemoattractant pro-
tein (MCP)-1, and tumor necrosis factor-alpha (TNFα), that 
promote inflammation [68]. In addition to supporting tumor 
cell migration, invasion [69, 70], and resistance to therapy 
[71, 72], cancer-associated adipocytes can transdifferentiate 
into adipocyte-derived fibroblasts in response to cues from 
the tumor. Adipocyte-derived fibroblasts, along with matrix 
metalloproteinases, modify extracellular matrix proteins to 
promote inflammation and tumor invasion [73–76]. Cancer-
associated fibroblasts, which can arise from a variety of cell 
types including adipose-derived fibroblasts, are also key 
regulators of tumor development, metastatic progression, 
and therapy resistance [77].

In addition to modulation of adipocytes and other cells 
typically resident in adipose tissue, adipose-adjacent tumors 
actively recruit stromal cells, including MSCs, from else-
where in the body, and reprogram their function through 
bidirectional communication with tumor cells to support 
metastatic progression [78]. Cancer cells induce lipolysis 
in adipocytes, releasing free fatty acids that are utilized by 
tumors for proliferation and migration [79] and stored within 
lipid droplets [66]. This transfer of fatty acids, stimulated 
by cytokines, sustains WAT inflammation [80] and occurs 
at a greater rate in breast cancer cells co-cultured with adi-
pocytes from donors with obesity versus adipocytes from 
nonobese donors [79]. As breast tissue is composed of 
90% WAT [81], and the human mammary epithelium is in 
permanent interaction with mammary adipose tissue [82], 
understanding the impact of excess WAT is imperative to 
resolving the relationship between obesity and breast cancer.

3.2  WAT and adipokines

Elevated levels of endogenous sex hormones are associated 
with obesity and are correlated with a risk of breast cancer 
in postmenopausal women [83]. After menopause, estro-
gen production via activity of the key enzyme aromatase 
becomes noncyclical and occurs mainly in adipose tissue, 
exacerbating estrogen production in women with obesity 
[84]. Obesity not only elevates estrogen production in post-
menopausal women, but also increases its bioavailability 
through reductions in sex-hormone binding globulin [85, 
86]. Increased levels of pro-inflammatory cytokines, such 
as tumor necrosis factor-α (TNFα) and interleukin (IL)-6, 
further promote estrogen synthesis by inducing aromatase 
expression [87, 88].

WAT is a major endocrine organ, secreting hormones and 
growth factors, in addition to enzymes and metabolites. The 
WAT secretome is an important mediator of tumor exacerba-
tion by obesity [81]. Adipokines, secreted by WAT, consti-
tute a class of biologically active polypeptides with a broad 
range of endocrine, metabolic, and inflammatory functions 
[89]. Given the extensive interaction between adipocytes and 
tumor cells in the breast TME, adipokines play a critical role 
in the proliferative and invasive capacities of breast cancer 
[90]. While there are several adipokines (reviewed in [91]), 
two prominent examples are examined below.

Leptin, the polypeptide hormone primarily produced by 
adipocytes, is both synthesized and systemically circulates 
in proportion to adipose tissue mass [92]. Leptin levels are 
higher in patients with breast cancer compared to patients 
who are healthy, particularly in women who are overweight 
or obese [93]. Further, increased leptin associates with breast 
cancer risk at a standardized mean difference of 0.96 in a 
meta-analysis of 46 studies of over 13,500 women [94]. Lep-
tin impacts breast cancer biology through a myriad of mech-
anisms that result in increased tumor volume and metastasis 
in preclinical and clinical models of breast cancer, including 
TNBC [33, 95]. Through activation of the PI3K/Akt path-
way, leptin disrupts breast tissue epithelial polarity and pro-
motes premalignant lesions [96]. High production of reactive 
oxygen species in TNBC is associated with lower antioxi-
dant status to favor growth, survival, and inflammation in 
the presence of leptin [97]. In a patient-derived xenograft 
model of TNBC, leptin produced by obesity-altered adipose 
stem cells drove a prometastatic phenotype via upregulation 
of EMT-associated genes [31]. Increased leptin signaling in 
diet-induced obese mice results in tumoral cancer stem cell 
enrichment and mediates cell viability, migration, and inva-
sion in triple-negative mammary tumor cells [48].

TNFα is a cytokine expressed in subcutaneous (and to 
a lower extent, visceral) adipose tissue [98] and preadipo-
cytes [99]. In healthy breast tissue, TNFα contributes to 
cell proliferation and morphogenic branching [100]. As a 
key pro-inflammatory cytokine, TNFα is also expressed in 
monocytes and macrophages, and TNFα levels in adipose 
tissue rise 2.5-fold in individuals with obesity and have a 
strong positive correlation with hyperinsulinemia (r = 0.82) 
[101, 102]. TNFα promotes leptin secretion from adipocytes 
[103] and contributes to decreases in the anti-inflammatory 
adipokine adiponectin [104]. By inducing expression of 
aromatase and IL-6 in adipose tissue, TNFα also promotes 
estrogen synthesis [105]. TNFα promotes TNBC migration 
[106] and induces EMT in breast cancer stem cells while 
promoting a claudin-low phenotype [107] implicating this 
adipokine’s role in metastatic progression. Additionally, 
TNFα is linked to TNBC resistance to chemotherapy [108] 
and BLBC resistance to immune checkpoint inhibitors 
in vitro [109].
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Thus, obesity dysregulates both endocrine and metabolic 
functions of WAT by promoting pro-inflammatory trans-
formation, which is characterized by stromal remodeling, 
hypoxia, and altered immune profile. While significant 
progress has been made in understanding the relationships 
between these complex and intertwined processes, the rela-
tive contributions of each of these to the pathophysiology of 
obesity remains to be determined.

3.3  Obesity and immune function

Protumor dysregulation of the prevalence and proportion 
of various immune cells in the obese TME and surrounding 
adipose tissue promotes angiogenesis, tumor growth, meta-
static spread, and immune evasion culminating in adverse 
outcomes for patients with obesity and breast cancer [51, 
110].

Adipose tissue remodeling that occurs with weight gain 
promotes recruitment of adipose tissue macrophages in 
both subcutaneous and visceral depots [111, 112]. Classi-
cally activated (M1-like) macrophages are more abundant 
in obese adipose tissue and form the characteristic CLS, 
named after their formation of a ring-like network of mac-
rophages surrounding necrotic, hypertrophied, and dying 
adipocytes in breast adipose, and other WAT [58, 92, 112]. 
These macrophages disrupt adipocyte signaling, increase 
reactive oxygen species production, and promote secretion 
of pro-inflammatory cytokines [58, 113]. The infiltration of 
macrophages and the accompanying inflammation of breast 
adipose tissue of patients who are obese increases the risk 
of mammary carcinogenesis [114, 115].

In women who are obese, the breast adipose tissue pro-
duces CCL2 (also named MCP-1) and IL-1β to recruit mac-
rophages and secrete CXCL12, resulting in increased CLS 
formation [116, 117]. The presence of CLS and inflamma-
tory mediators in breast adipose tissue of women who are 
obese is associated with aberrant intracellular signaling and 
cellular dysfunction [84]. High densities of CLS are also 
independently associated with an increased risk of breast 
cancer, in addition to their negative impact on recurrence 
and survival [118–120].

Obesity-related drivers of immunological aging are char-
acterized in part by premature thymic involution [121]. Lipid 
accumulation occurring with obesity can transform thymic 
fibroblasts into adipocytes, leading to reduced activity of 
the thymus [122]. This creates a reduction in the abundance, 
proliferation, and diversity of T cells, the essential players 
of cell-mediated immune response and adaptive defense 
against diseases like cancer [122, 123]. Gamma delta (γδ) 
T cells, defined by their γ and δ T cell receptors instead of 
the canonical α and β T cell receptors, have an increased 
pro-inflammatory population in adipose tissue from obese 
versus nonobese mice [124]. Obesity is also associated with 

higher pro-inflammatory CD4 +  Th1 cells relative to static 
levels of anti-inflammatory  Th2 cells and regulatory T cells 
 (Tregs) in adipose tissue [125]. However, due to aberrant 
insulin signaling,  Tregs associated with obesity exacerbate 
adipose inflammation through alterations in cytokine pro-
duction [126].

Obesity-related M1-like macrophages upregulate 
expression of programmed death-ligand 1 (PD-L1; an 
immune checkpoint protein) in TNBC, partially through 
enhanced secretion of IL-6 [127]. Classified by expression 
of the classical dendritic marker CD11c, these M1-polarized 
macrophages contribute to an immunosuppressive micro-
environment by promoting T cell exhaustion [128]. While 
the breast TME comprises several types of immune cells, 
macrophages are the most abundant. Tumor-associated mac-
rophages make up over 50% of TME macrophages [129] and 
are associated with aggressive features of TNBC tumors, 
including recurrence and metastases [130]. Leptin also acti-
vates IL-8 production in tumor-associated macrophages, 
driving tumor progression [131]. Metabolically activated 
macrophages are a pro-inflammatory population of mac-
rophages unique to obesity and distinct from M1-like mac-
rophages [132, 133]. Mammary adipose tissue macrophages 
from preclinical models of obesity produce inflammatory 
cytokines, induce a stem-like phenotype in breast cancer 
cells, and promote TNBC growth [132].

In adipose tissue, lower  Treg abundance, coupled with 
an increase in CD8 + T cells, creates an obesity-specific 
immune profile that promotes macrophage recruitment, 
inflammatory cytokine production, and consequently, can 
contribute to tumor progression [134, 135]. The increased 
leptin signaling characteristic of obesity increases PD-1 
expression in T cells, resulting in T cell exhaustion and 
contributing to heightened inflammation [136, 137]. This 
immune dysfunction, however, correlates with greater 
response to PD-1/PD-L1 treatment in patients who are 
obese, including improvements in CD8 + /CD4 + ratios, 
metastatic burden and overall survival [136, 138–141]. This 
relationship is not universal, as reduced anti-PD-1 therapy 
efficacy occurs in patients with renal cell carcinoma who are 
obese [142]. The impact of obesity on checkpoint blockade 
inhibitor response remains unclear in TNBC.

Leptin receptors are highly expressed in activated T cells, 
impacting their sensitivity to nutrient availability [143]. Lep-
tin plays an important role in the increased T cell dysfunc-
tion and PD-1 expression seen with obesity [136]. Indeed, 
leptin-STAT3 signaling in CD8 + effector T cell metabolism 
promotes fatty acid ß-oxidation while inhibiting glycolysis 
in a model of TNBC in high fat diet (HFD)-fed mice [144]. 
TNBC tumors from patients who are obese have higher 
expression of leptin, CXCR4, and CCR9 (receptors of 
CXCL12 and CCL25, respectively), which negatively cor-
relate with CD8 + T cell infiltration, as compared to tumors 
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from patients who are not obese [44]. FasL + granulocytic 
MDSC are increased with obesity via leptin signaling, caus-
ing CD8 + T cell apoptosis and resistance to immunotherapy 
[145].

Natural killer (NK) cells, type 1 innate lymphoid cells 
that have a large role in tumor response, fall into two dis-
tinct categorizations of CD56 expression.  CD56dim NK cells 
represent an activated phenotype and produce perforin and 
granzyme for cytotoxic functionality, while  CD56bright NK 
cells serve a more regulatory role [146]. NK cell populations 
are reduced both in number and activity in obesity, with 
a coincident decrease in the cytotoxic  CD56dim population 
and increase in the regulatory  CD56bright population [147, 
148]. Like T lymphocytes, NK cells also express the leptin 
receptor [149]. Chronic exposure to the elevated leptin lev-
els associated with obesity alter post-receptor signaling in 
these cells, lowering JAK2 phosphorylation and decreasing 
production of interferon-γ [149, 150].

MDSCs are an emerging mechanistic link between obe-
sity and cancer [151]. Inflammatory signaling pathways 
promote the activation and downstream immunosuppressive 
function of MDSCs, driving their accumulation and activity 
in tumors as well as adipose tissue [151, 152]. Character-
ized by their expression of the cell surface markers Gr1 and 
Cd11b, MDSC populations accumulate threefold in adipose 
tissue of HFD-fed mice compared to their lean counterparts 
after 12 weeks on diet [153]. Increased levels of circulating 
leptin and exogenous lipids both drive immunosuppressive 
MDSC accumulation in adipose tissue and the TME, all of 
which work together to promote tumor growth [154–156]. 
Obesity, in part through crosstalk with leptin and availability 
of lipids in the TME, increases the presence of MDSCs and 
their PD-L1 expression to enhance tumor progression [154].

Advances in our understanding of the dynamic and com-
plex relationships of the TME, including immune cells, has 
led to novel therapeutic strategies [157]. The chronically 
activated immune response characteristic of obesity can det-
rimentally impact therapeutic efficacy [136, 142]. However, 
as TNBC, relative to other breast cancer subtypes, gener-
ally has higher levels of tumor-infiltrating lymphocytes [158] 
and increased expression of immune checkpoint molecules, 
immunotherapy has become a promising avenue for PD-1/
PD-L1 blockade treatments [159, 160]. An active area of 
research involves combining immunotherapies with other 
treatment modalities, including radiation, targeted therapies 
such as CDK4/6 inhibitors and PARP inhibitors, and can-
cer vaccines, to further improve their efficacy [161–164]. 
Another intriguing line of work in the immunotherapy field 
involves the interactions between obesity, immunotherapy 
response and several cancers [165].

Chronic inflammatory signaling in obesity limits immune 
responses to numerous diseases, including cancer. Rather 
than a uniform depression of function, obesity promotes 

altered function in a host of immune cells characterized by 
chronic systemic inflammation and limited antitumor immu-
nity. Thus, ongoing work to delineate how obesity mediates 
disruption of antitumor immunity, and to identify interven-
tions to mitigate this is of considerable importance.

4  The obesity‑breast cancer link: health 
disparities

4.1  Obesity biases in breast cancer care

Due to the absence of targeted therapies, chemotherapy 
remains the standard of care for TNBC. As many as 40% 
of patients who are obese receive substantially lower 
doses relative to patients who are not obese due to dose 
calculation that does not incorporate body weight [166, 
167]. Compared to patients who are not obese, patients 
with breast cancer who are also obese are more likely to 
have their doses capped at an arbitrary body surface area, 
even in the absence of toxicity expected at full intended 
doses [168, 169]. This phenomenon was shown to mediate 
the relationship between obesity and lower breast cancer-
specific survival in a large observational cohort study 
[170]. However, even when dosing accounts for body 
weight, systemic chemotherapy is less effective in patients 
who are obese with breast cancer [41]. Tumor-associated 
adipocytes can induce multidrug resistance in breast cancer 
by upregulating a transport-associated protein that mediates 
doxorubicin efflux, a mechanism amplified by obesity [171]. 
In a murine model of TNBC, doxorubicin treatment is less 
effective in HFD-fed mice compared to control-fed mice 
due to changes in free fatty acid availability in mammary 
adipose tissue [172, 173].

Despite the improvements in our understanding of the 
complexity of factors contributing to obesity, coupled with 
its increasingly high prevalence, individuals with obesity 
continue to experience stigma and biased treatment in the 
healthcare setting [174, 175]. This is compounded by the 
lack of clinical intervention data in patients with cancer and 
obesity, with obesity status reported in only 5.3% of clinical 
trials of obesity-related cancers, including postmenopausal 
breast cancer [176].

4.2  Obesity and breast cancer health disparities

Despite a relatively similar incidence of breast cancer 
among non-Hispanic White (NHW) and non-Hispanic 
Black (NHB) women, NHB women are ~ 40% more likely 
to die of breast cancer [177, 178] and have an overall 
5-year breast cancer survival rate of 78.9% (compared 
to 88.6% among NHW women) [179]. While there have 
been substantial advances in breast cancer screening 
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and treatment, resulting in an overall reduction in breast 
cancer mortality, declines are largely attributed to 
improvements among NHW women; the 2018-to-2019 
change in the age-adjusted death rate was 19.2 vs. 18.8 
per 100,000 among NHW women but unchanged among 
NHB women [180].

The etiology of racial disparities in breast cancer mortal-
ity are multifactorial and include contributing factors from 
social determinants of health and access to tumor biology 
and comorbidities. Obesity is an important consideration 
given the known association with risk, recurrence, and mor-
tality across age categories and tumor characteristics [181]. 
Profound obesity-related disparities exist in the USA, where 
the prevalence rates of both obesity (49.6%) and severe obe-
sity (BMI ≥ 40 kg/m2) (3.8%) among adults are most pro-
nounced among NHB adults compared with other race and 
ethnic groups [19]. Notably, the obesity disparity is largely 
driven by NHB women; the 2017–2018 National Health and 
Nutrition Examination Survey showed that the prevalence 
of obesity among NHB women was 56.9% compared to 
39.8% among NHW women [19]. Given the role of obesity 
in most aspects of cancer diagnosis, treatment, and progres-
sion [182], we posit that obesity could be a causal contribu-
tor to racial disparities in breast cancer outcomes, as further 
described below.

One factor in racial disparities in breast cancer 
mortality is differences in the presentation and prevalence 
of aggressive tumor subtypes. Specifically, adiposity 
increases the risk of postmenopausal ER + breast 
cancer and premenopausal ER-/TNBC [183]. It is well-
established that NHB women compared to NHW women 
have a higher incidence of ER-/TNBC [184]. The Carolina 
Breast Cancer Study showed that BLBC occurs at a higher 
prevalence in premenopausal African American (AA) 
women (39%) compared to postmenopausal AA women 
(14%) and non-AA women (16%) [185]. BLBC, which 
progresses more quickly and has greater TP53 mutations 
compared to the luminal A subtype, are more prevalent in 
NHB women and have an unfavorable prognosis. Indeed, 
AA women are more likely to carry a TP53 mutation 
compared to White women [186].

While there is a higher prevalence of premenopausal 
TNBC in NHB compared to NHW women, luminal subtypes 
remain the most prevalent tumors among NHB women, 
accounting for approximately 75% of all breast cancer diag-
noses [178]. After adjusting for age, NHB women with lumi-
nal A breast cancer have a 2.43 times higher rate of breast 
cancer mortality than their NHW counterparts [187]. Given 
that luminal A breast cancer — compared to TNBC — has 
better treatment options, insights are needed to understand 
drivers of such robust disparities in this relatively easier-to-
treat subtype.

One potential mechanism of poor outcomes among 
NHB women with luminal A subtypes is obesity-related 
differences in DNA methylation that are associated with 
several clinical and histopathological features of breast 
cancer and clinical outcomes [188]. In a study that examined 
the association between obesity and DNA methylation in 
NHB and NHW women diagnosed with breast cancer, 
the authors detected interactions with ER status (PSMB1, 
QSOX1, and PHF1) and race (TOMM20) among the top 
20 obesity-associated CpG cites. Additionally, differential 
methylation at the CpG sites of TOMM20, PSMB1, 
and QSOX1 was associated with all-cause mortality, 
suggesting that obesity-related dysregulation may, in 
part, drive mortality differences [189]. Other obesity-
related mechanisms may be relevant to differential tumor 
progression leading to racial disparities in outcomes, 
including local adipose tissue inflammation [190], diversity 
of the gut microbiome [191], and immune parameters, each 
of which can affect therapeutic effectiveness [192].

While there are several biological links between obesity 
and racial differences in breast cancer outcomes, biology 
alone cannot explain the persistent disparities across age and 
subtypes of breast cancer. Evidence suggests that obesity-
related screening biases lead to delayed diagnoses, ultimately 
increasing cancer mortality in patients who are obese [182]. 
Acute and late treatment complications are more often seen 
among women who are obese, and—largely due to dosing 
uncertainty—there remains concern of treatment efficacy 
in women who are obese [193]. Notably, Black women, 
compared to their White counterparts, are more likely to be 
diagnosed at a later stage and less likely to receive stage-
appropriate treatment [177]. The confluence of race and 
obesity-related biases may profoundly affect prognostic 
disparities. In addition to potential obesity-related race 
differences at the point of care, the inclusion of systemic 
inequities is essential to understand obesity-related drivers 
of breast cancer disparities. Collin and colleagues recently 
reported a 1.6-fold increase in breast cancer mortality 
among women residing in a redlined Atlanta neighborhood 
defined using present-day Housing Mortgage Disclosure 
Act data as odds of denial of a mortgage application for 
a residence inside the census tract compared with those 
outside of the census tract. While only 20% of NHW 
women diagnosed with breast cancer between 2010 and 
2014 lived in a redlined census tract, 80% of NHB women 
diagnosed during the same time frame lived in redlined 
areas [194]. Redlining is an important driver of the built 
(e.g., food deserts, green space, walkability) and lived (e.g., 
environmental toxicants) environments, which profoundly 
affect adiposity. Additional research is desperately needed to 
explore the role of structural mechanisms in obesity-related 
breast cancer disparities.
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5  Dietary interventions to intercept 
obesity‑mediated exacerbation of breast 
cancer

Obesity can lead to reduced efficacy of existing breast 
cancer therapeutics and increase treatment resistance 
[30, 195]. Patients with obesity experience greater risk 
of recurrence following several different endocrine thera-
pies [196–199], and a patient’s BMI at diagnosis correlates 
with breast cancer recurrence across multiple subtypes 
[200]. Side effects during and after treatment, including 
lymphedema, also disproportionately impact women with 
obesity [201]. Patients with obesity also face greater risk 
of complications resulting from mastectomies, both with 
and without breast reconstruction surgery [202]. Cancer 
cell sensitivity to nutrient restriction, as well as their dif-
fering requirements for specific metabolites, constitute 
emergent hallmarks of cancer-targeted therapies [203]. 
Dietary interventions pose an inexpensive and effective 
way to manipulate availability of key nutrients for tumors 
and hence improve the effect of existing therapies, activate 
antitumor response mechanisms, and introduce tumor-spe-
cific toxicities [204]. Table 1 indicates some common die-
tary interventions used in clinical and preclinical studies.

5.1  Chronic calorie restriction

Chronic caloric restriction (CR), typically defined as ≥ 
10% reduction in caloric intake in humans and ≥ 20% 
reduction in rodents without malnutrition or the restric-
tion of water, is an established mechanism for extension of 
lifespan and healthspan in clinical and preclinical models 
[205, 206, 222]. CR partially reverts some of the meta-
bolic consequences of obesity in clinical trials [223, 224]. 
Postmenopausal women with an increased risk of breast 
cancer show improved hormonal (bioavailable estradiol, 
testosterone, and insulin) and adipocytokine (relative 
adiponectin/leptin, C-reactive protein) markers of breast 
cancer in serum and breast tissue with weight loss of more 
than 10% [225]. A meta-analysis of 59 preclinical studies 
concluded that calorie restriction is preventive of cancer 
development [226]. Indeed, CR reduces the incidence 
of several types of tumors in rodent and rhesus monkey 
models [226, 227]. CR prior to tumor induction slows 
primary tumor growth and reduces metastatic burden in 
a preclinical model of TNBC, and 30% CR imposed at 
the time of tumor induction in this same model syner-
gized with radiation treatment to further suppress tumor 
growth [228–230]. A 30% CR dietary regimen also miti-
gates chemotherapy-induced inflammation and enhances 

radiation response by downregulating insulin-like growth 
factor (IGF)-1 receptor signaling, reducing metastatic 
tumor burden and improving overall survival in preclinical 
models of TNBC [207, 231]. These results were replicated 
with preclinical models of estrogen-responsive breast can-
cer, utilizing the fasting-mimicking diet (described below) 
and endocrine-based therapies [232]. Some of the meta-
bolic protective effects of CR are mediated through peri-
ods of fasting, which arise when animals rapidly consume 
their daily calories and then fast for the remainder of each 
day [221]. However, this effect has not been examined in 
cancer models. Although CR is not nearly as well char-
acterized in clinical studies as it is in preclinical models 
[233], human trials show promise in replicating the molec-
ular and metabolic changes established in rodents [234]. 
Limited adherence to CR and unsafe weight loss, how-
ever, particularly in patients with advanced stage cancer, 
are of major concern for the success of this intervention 
[235, 236]. Larger clinical trials that incorporate dietary 
components, patient follow-up, and standardized treatment 
protocols are needed to more accurately assess the impact 
of CR on breast and other cancers [237].

5.2  Time‑restricted feeding

Time-restricted feeding (TRF), the practice of restricting 
time of calorie intake, rather than calories consumed, to 
an 8-–12-h window aligning with the circadian rhythm, is 
an emerging dietary pattern rapidly gaining scientific and 
cultural popularity [238]. As components of the circadian 
clock interact with nutrient-sensing pathways, inconsistent 
eating patterns and overeating can disrupt circadian regu-
lation of endocrine and nutrient metabolism [239, 240]. 
By reducing evening energy intake and refraining from 
consuming food throughout the night, the TRF fasting 
regimen aligns meal times with the ideal postprandial hor-
monal response [241]. In a mouse model of postmenopau-
sal obesity, TRF reduced body weight, improved glucose 
tolerance and insulin resistance, and reduced accumulation 
of fat in the liver [215]. These findings were corroborated 
by an 8-week clinical trial of time-restricted eating in par-
ticipants who were overweight and obese, where a 10-h 
eating window resulted in clinically meaningful reductions 
in weight and improved fasting blood glucose [216].

There is growing evidence that circadian rhythm plays an 
important role in cancer pathogenesis, with chronic disruptions 
increasing breast cancer metastasis [242, 243]. Preclinical 
models of breast cancer demonstrate promising effects, with 
mice fed a high fat diet restricted to 12-h intervals having tumor 
burden reduced to that of control-fed mice [244].
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5.3  Fasting

In clinical research, fasting in humans is defined as signif-
icant-to-total reprieve of caloric intake for several hours to 
days [208]. Due to greater feasibility and improved adher-
ence compared to CR, periodic fasting (PF) and short-term 
fasting (STF), maintained for periods of 48–72 h in rodents 
and 2–5 days in humans, may provide an effective compro-
mise [235]. The synergistic effect of PF in combination with 
cancer treatment seen in preclinical studies [245] may be 
due to its effect on blood glucose levels, which are reduced 
more profoundly in preclinical models of PF relative to CR 
[246]. Engaging in STF induces a differential stress response 
between cancer cells and healthy cells, prioritizing cellular 
maintenance and repair in healthy cells, and exposing a vul-
nerability in cancer cells due to their inability to suppress 
growth-promoting pathways [246, 247]. The differential 
stress response provides a mechanism by which fasting can 
promote efficacy and tolerance of chemotherapy and radia-
tion treatments [245, 246, 248, 249]. Additionally, fasting 
promotes stem cell self-renewal as well as regeneration of 
the blood, nervous system, muscle, and liver [235, 250]. 
In vitro data indicates TNBC sensitization to chemotherapy 
treatment with 24-h fasting [209]. Two clinical pilot stud-
ies with HER2-negative breast cancer patients demonstrate 
STF as a feasible, tolerated intervention in both trials and 
a reduction in the hematological toxicity of chemotherapy 
treatment in one trial [248, 251].

5.4  Fasting‑mimicking diet

The fasting-mimicking diet (FMD) is generally very low 
in proteins and carbohydrates, enriched in unsaturated 
fats and micronutrients, and maintained for a period of 
days in a cyclical fashion. It is an alternative regimen to 
a water-only fast with similar changes in stress resistance 
and blood glucose but greater tolerability and adherence 
[208, 250]. A combination regimen of FMD and endo-
crine-based therapies reduces IGF-1 receptor signaling, 
abates chemotherapy-induced inflammation, and enhances 
tumor response to radiation in preclinical models of estro-
gen-responsive breast cancer [232]. In vitro models of 
TNBC responded to a FMD, including reduced circulat-
ing glucose and IGF-1, with enhanced tumor immuno-
genicity and improved response to chemotherapy [210]. A 
clinical trial with 131 patients with HER2-negative breast 
cancer demonstrated that a FMD adhered to for 3 days 
prior to chemotherapy administration remained safe, effec-
tive, and lowered DNA damage in T cells as one metric of 
enhanced sensitivity to chemotherapeutic response [211]. 
Preclinical work has demonstrated the FMD to be effec-
tive against TNBC progression in combination with PI3K/
AKT/mTOR inhibitors by potentiating kinase inhibitor 

response and reducing hyperglycemia, often a treatment-
induced side effect [212]. Promising results from a clini-
cal trial in which a majority of participants had breast 
cancer show that the FMD increases total and activated 
intratumor CD8 + T cells while decreasing circulating 
populations of immunosuppressive cells [252]. However, 
the impact of FMD on long-term patient survival, or its 
efficacy in patients with breast cancer and obesity, has not 
been demonstrated.

5.5  Intermittent energy restriction

Intermittent energy restriction (IER) is a broadly-encom-
passing term that applies to recurring patterns of fasting, 
either rhythmic or arhythmic, in which calorie restriction 
is achieved by reduction in overall eating periods rather 
than meal sizes [253]. The periodicity of IER, as opposed 
to chronic CR, has greater adherence potential while main-
taining comparable reductions in body weight in patients 
who are overweight or obese [213, 254, 255]. Reported 
benefits of IER include improved glucose regulation and 
stress resistance as well as reduced inflammation [256]. 
IER protects against in vivo tumor development in a spon-
taneous model of mammary carcinogenesis [257].

5.6  Ketogenic diet

The ketogenic diet, composed of high fat, moderate 
protein, and very low carbohydrates, acquired its name in 
pursuit of ketogenesis: utilizing fatty acids, metabolized 
as the ketone bodies β-hydroxybutyrate and acetone, 
rather than glucose for energy [217]. The mechanistic 
basis for a ketogenic diet reducing breast cancer incidence 
and overall disease burden lies within decreased insulin 
signaling and overall reduced inflammation seen with 
prolonged nutritional ketosis [258]. Although some data 
exists demonstrating the feasibility of a ketogenic diet 
intervention during radiotherapy treatment for patients 
with breast cancer, such as boasting reductions in body 
weight and fat mass [259], there is little evidence that a 
ketogenic diet reduces tumor burden in patients with breast 
cancer. After 12 weeks of the ketogenic diet, quality of life 
and physical activity scores were not improved in a study 
of 80 patients with breast cancer undergoing chemotherapy 
[260]. However, in vitro and in vivo supplementation with 
the ketone body β-hydroxybutyrate increases tumor growth 
in breast cancer models, presumably by providing fuel for 
oxidative mitochondrial metabolism [261, 262]. However, 
β-hydroxybutyrate has no effect on TNBC proliferation 
or response to treatment via chemotherapy or radiation 
in vitro [263].
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5.7  Mediterranean diet

Growing evidence suggests that the consumption of a 
Mediterranean dietary pattern has a protective effect 
against many chronic diseases and cancers including breast 
cancer [264]. The key characteristics of a Mediterranean 
diet include high consumption of fruits and vegetables 
such as green leafy vegetables, legumes, nuts, and cereals; 
moderate intake of fish and other meats; and low intake of 
sweets and eggs [219]. The majority of studies examining 
the protective effect of Mediterranean diet on cancer 
progression are largely observational studies followed 
by randomized clinical trials [265, 266]. Overall, high 
adherence to a Mediterranean dietary pattern is associated 
with decreased risk of cancer mortality [267] and risk of 
developing breast cancer [268]. While epidemiological 
studies suggest an inverse relationship between adherence 
to a Mediterranean dietary pattern and breast cancer 
risk, the evidence regarding breast cancer subtype is 
limited [265, 269]. The results of one systematic review 
suggest an inverse association between a Mediterranean 
diet pattern and breast cancer risk in postmenopausal 
women, and particularly postmenopausal TNBC; however, 
results are mixed [265]. Olive oil, the main dietary fat in 
Mediterranean diet, has anticancer effects in experimental 
studies. For example, a high extra virgin olive oil diet in 
a rodent model of mammary carcinogenesis increases 
tumor latency and decreases tumor volume, multiplicity, 
and incidence [270]. Additionally, olive oil consumption 
is associated with a lower odds of developing breast 
cancer [271]. Furthermore, polyunsaturated fatty acids 
present in a Mediterranean dietary pattern, particularly 
omega-3 fatty acids and specifically docosahexaenoic acid 
(DHA) and eicosapentaenoic (EPA), have antiproliferative 
effects in preclinical models of TNBC [272]. Indeed, 
supplementation with EPA + DHA ethyl esters reduces 
mammary tumor growth in obese postmenopausal 
(ovariectomized) mice [220].

5.8  Dietary considerations

Reducing calorie intake, through fasting or calorie 
restriction, prior to chemotherapy treatment reduces side 
effects commonly associated with chemotherapy [273] and 
may thereby improve quality of life for patients [251, 274, 
275]. However, due to heightened risk of adverse effects 
associated with weight loss and alterations to inflammatory 
response that can occur with calorie restriction, widespread 
clinical intervention remains challenging [247]. Additionally, 
adherence to chronic CR has proven challenging for humans, 
with sustainability dropping off after ~ 20  weeks for 
participants who are not obese [276]. A long-term dietary 
intervention study of participants who were overweight or 

obese showed adherence drops of 38% for alternate-day 
fasting and 29% for CR over 1 year [254]. As food intake is 
neurologically regulated, several mechanisms are in place 
to drive food consumption during periods of deprivation, 
causing psychological stress and negatively impacting mood 
if restriction is too severe or extends for too long [253, 
277]. Physiological changes concurrent with obesity, such 
as increases in orexigenic acetyl-CoA binding protein and 
disruption of leptin- and ghrelin-mediated appetite signaling 
cues, provide further barriers for adherence to restrictive 
diets [278, 279].

One solution to achieve the benefits of dietary restriction 
without encountering barriers to adherence or disturbing 
energy balance are calorie restriction mimetics (CRMs). 
The main objective of CRMs is to induce autophagy, which 
protects against cellular stress and damage, mobilizes 
energy reserves, and removes intracellular waste or debris 
[280]. By optimizing energy and redox metabolism, 
activating this endogenous mechanism may help cells 
avoid malignant transformation [281] or improve antitumor 
immunity through autophagy induction [282].

6  Conclusion

Obesity promotion of the incidence and progression of 
numerous cancers, including breast cancer, poses a significant 
public health hazard. Delineation of the mechanisms through 
which obesity drives cancer progression or immune evasion 
is critical for the development of interventions to effectively 
disrupt obesity-driven cancer with minimum toxicity. Dietary 
interventions remain of considerable interest due to their 
co-targeting of metabolic disruptions. Breaking the obesity-
breast cancer link will require interventions that limit the 
protumor effects of obesity-associated adipose dysregulation 
and that consider other biological and genetic mediators and 
structural determinants of health disparities. Moreover, given 
high and rising rates of obesity in many parts of the world, 
emphasis should be placed on the development of safe and 
effective interventions that are acceptable and accessible to 
all women to reduce the burden of obesity on breast cancer.
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