
ORIGINAL ARTICLE

Differential effects of prenatal and postnatal expressions
of mutant human DISC1 on neurobehavioral phenotypes in
transgenic mice: evidence for neurodevelopmental origin
of major psychiatric disorders
Y Ayhan1, B Abazyan1, J Nomura1, R Kim1, B Ladenheim2, IN Krasnova2, A Sawa3,4,5, RL Margolis1,4,6,

JL Cadet2, S Mori7, MW Vogel8, CA Ross1,3,4,6,9 and MV Pletnikov1,3,4

1Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine,
Baltimore, MD, USA; 2Molecular Neuropsychiatry Branch, NIDA, NIH, DHHS, Baltimore, MD, USA; 3Department of
Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA; 4Program in Cellular and Molecular
Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA; 5Program in Molecular Psychiatry, Department
of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA; 6Department of Neurology, Johns Hopkins
University School of Medicine, Baltimore, MD, USA; 7Department of Radiology, Johns Hopkins University School of Medicine,
Baltimore, MD, USA; 8Maryland Psychiatric Research Center, University of Maryland, Baltimore, MD, USA and 9Department of
Pharmacology, Johns Hopkins University School of Medicine, Baltimore, MD, USA

Strong genetic evidence implicates mutations and polymorphisms in the gene Disrupted-
In-Schizophrenia-1 (DISC1) as risk factors for both schizophrenia and mood disorders. Recent
studies have shown that DISC1 has important functions in both brain development and adult
brain function. We have described earlier a transgenic mouse model of inducible expression of
mutant human DISC1 (hDISC1) that acts in a dominant-negative manner to induce the marked
neurobehavioral abnormalities. To gain insight into the roles of DISC1 at various stages of
neurodevelopment, we examined the effects of mutant hDISC1 expressed during (1) only
prenatal period, (2) only postnatal period, or (3) both periods. All periods of expression
similarly led to decreased levels of cortical dopamine (DA) and fewer parvalbumin-positive
neurons in the cortex. Combined prenatal and postnatal expression produced increased
aggression and enhanced response to psychostimulants in male mice along with increased
linear density of dendritic spines on neurons of the dentate gyrus of the hippocampus, and
lower levels of endogenous DISC1 and LIS1. Prenatal expression only resulted in smaller brain
volume, whereas selective postnatal expression gave rise to decreased social behavior in male
mice and depression-like responses in female mice as well as enlarged lateral ventricles and
decreased DA content in the hippocampus of female mice, and decreased level of endogenous
DISC1. Our data show that mutant hDISC1 exerts differential effects on neurobehavioral
phenotypes, depending on the stage of development at which the protein is expressed. The
multiple and diverse abnormalities detected in mutant DISC1 mice are reminiscent of findings
in major mental diseases.
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Introduction

Schizophrenia and mood disorders are believed to arise
in part from subtle defects in the development of the
cerebral cortex, hippocampus, and other forebrain
structures.1–4 Symptoms of schizophrenia generally

appear in late adolescence and early adulthood.5,6

However, some key pathogenic processes may begin
much earlier, as proposed by the neurodevelopmental
hypothesis of schizophrenia4 that postulates that both
prenatal and/or early postnatal abnormalities can con-
tribute to disease development.6–8 Genetic studies have
identified several promising candidate genes, such as
Disrupted-In Schizophrenia-1 (DISC1), neuregulin-1,
and dysbindin9–11 that have been implicated in neuro-
genesis, neuronal migration, dendrite maturation, and
synaptogenesis.10,12 However, the functions of these
candidate genes and their mutations across various
stages of neurodevelopment remain poorly understood.
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In a large Scottish family a balanced (1:11) (q42.1;
q14.3) translocation co-segregates with schizophrenia
and mood disorders (LOD scores = 4–7). On chromo-
some 1, the translocation disrupts two genes, named
DISC1 and DISC2.13,14 DISC1 or the region of the
DISC1 locus has been implicated in schizophrenia
and mood disorders in a number of subsequent
genetic analyses, indicating that DISC1 may be
relevant to major mental diseases even in individuals
who do not carry the t(1;11) translocation.15–19

The DISC1 protein consists of an N-terminal head
domain and a long helical C-terminal tail domain14

and acts as a scaffold protein, with multiple motifs
mediating binding to several proteins and facilitating
formation of protein complexes.20–23 The available
data have collectively implicated DISC1 in different
neurodevelopmental processes, some of which prob-
ably extend into adulthood.18,24–27

The effect of the translocation may result in DISC1
haploinsufficiency based on decreased expression of
full-length DISC1 transcript and the failure to detect
mutant DISC1 in lymphoblastoid cell lines derived
from the patients.28 However, the available data do
not completely rule out the production of mutant
DISC protein because lymphoblast expression may
not mirror brain expression and available antibodies
may not be sufficient to detect mutant DISC1
protein.29 If a truncated DISC1 protein is expressed
in individuals with the translocation, such a protein
may have a dominant-negative effect, leading to
altered levels and/or distribution of wild-type DISC1
and its binding partners.30–32 Either dominant-
negative or haploinsufficiency mechanisms could
similarly perturb DISC1–interacting proteins com-
plexes, resulting in loss of function of DISC1.18,33

Thus, studying effects of mutant DISC1 on neurode-
velopment can provide valuable mechanistic insights
into the pathogenesis of psychiatric disorders.

Although abnormal neurodevelopment during
pregnancy has been linked to schizophrenia and
related psychiatric conditions,5,7,34 the functions of
DISC1 during prenatal and postnatal periods remain
poorly understood. One study has compared early
postnatal vs adult effects of inducible expression of a
C-terminus fragment of DISC1 and found that tran-
sient expression of this fragment on postnatal day
(PND) 7 but not during adulthood produced the
distinct morphological and behavioral abnormalities
in adult mice.35 This report was the first to indicate
that the neurobehavioral effects of perturbation of
DISC1 functions may be time dependent. However,
only the effects of transient postnatal expression have
been evaluated, and the possible prenatal contribu-
tion of mutant DISC1 remains unanswered. Thus,
using our mouse model of inducible expression of
mutant human DISC1 (hDISC1), we compared the
effects of mutant hDISC1 during prenatal, postnatal,
or both prenatal and postnatal periods. We evaluated
behavioral, pharmacological, biochemical, and mor-
phological alterations in mice in a set of tests relevant
to schizophrenia and mood disorders.

Our results show that distinct effects of mutant
hDISC1 are dependent on when during neurodeve-
lopment the protein is expressed, consistent with
multiple functions of normal DISC1. Given the
potential etiologic role of DISC1 in major mental
illness, these findings have implications for a better
understanding of the relationship between abnormal
neurodevelopmental and mental diseases such as
schizophrenia and mood disorders.

Materials and methods

Generation of experimental groups

Our mouse model of inducible expression of mutant
hDISC1 is based on the Tet-off system (Figure 1a) as has
been described earlier.31 Double-transgenic mice ex-
pressed mutant hDISC1 as early as embryonic day 15
(E15), with a gradual decline in expression toward
adulthood (Figures 1b and c). This study was conducted
using line 1001, which has a high level of expression of
the mutant protein.31 We retained the original mixed
background (B6; SJL; CBA) of this line to evaluate how
different periods of expression of mutant hDISC1 would
affect the neurobehavioral abnormalities described
earlier in these mice. Expression of mutant hDISC1
was regulated by Dox-containing food (200 mg kg�1 of
Dox, Bio-Serv, Frenchtown, NJ, USA). Approximately
5–7 days were sufficient for shutting down or restoring
expression of mutant hDISC1 by adding or withdrawing
Dox food, respectively (Figure 1d). To study how the
neurobehavioral effects of mutant hDISC1 are depen-
dent on the time when expression takes place, we
generated four experimental groups of mice with the
same genetic make-up but different periods of expres-
sion: (1) mice with combined postnatal and prenatal
expression (the PreþPost group); (2) mice with prenatal
expression only (the Pre group); (3) mice with postnatal
expression only (the Post group); and (4) mice that did
not express mutant hDISC1 (the NO group) (Figure 1e).
Mice of the PreþPost group (prenatal and postnatal
expression) were conceived, raised, and maintained
throughout the entire life on regular food to provide
continuous expression of mutant hDISC1. Mice of the
Pre group (prenatal expression only) were conceived
and raised on regular food until embryonic day 17
(E17). At E17, we started giving pregnant mice Dox-
containing food that was continuously provided to the
offspring after birth and until they were killed. Mice of
the Post group (postnatal expression only) were
conceived by parents on Dox food that was continu-
ously provided to pregnant dams until embryonic day
12 (E12). At E12, Dox food was switched to regular food,
and dams and their offspring were maintained on
regular food until they were killed. Mice of the NO
group (no expression) were conceived, raised, and
maintained throughout the life on Dox food. For all
groups, pups were weaned on PND 21, genotyped, and
housed in sex-matched groups of five in standard
mouse cages in accordance with Johns Hopkins
University Animal Care and Use Committee guidelines.

Prenatal and postnatal effects of mutant DISC1
Y Ayhan et al

294

Molecular Psychiatry



Western blot assays
For western blot assays, mice were euthanized at E15,
PND 7, 21, or as adults on completion of behavioral
tests (B7–9 months of age) to evaluate expression of
mutant hDISC1 protein. Brains were quickly removed
and frontal cortex was isolated on ice-cold phosphate-
buffered saline and frozen on dry ice and kept at
�80 1C until used. These samples were assayed for
expression of mutant hDISC1, endogenous mouse
DISC1, LIS1, and NDEL1 as described earlier.31

Membranes were probed with anti-myc antibody
(1:1000) to assess expression of mutant hDISC1 tagged
with myc,31 anti-mouse DISC1 antibody for endogen-
ous DISC1 (1:500),31 anti-LIS1 antibody (1:1000), or
anti-NDEL1 (1:1000) for overnight at 4 1C. Antibodies
used were monoclonal to myc (Santa Cruz Biotech-
nology Inc., CA, USA), monoclonal to LIS1 (Sigma, St
Louis, MO, USA), rabbit polyclonal to NDEL1
(Abcam, UK) followed by corresponding peroxidase-
conjugated goat anti-mouse (1:1000, Kierkegaard
Perry Labs) or sheep anti-rabbit (1:2500, GE Health-
care) secondary antibodies. The optical density of
protein bands on each digitized image was normal-

ized to the optical density of the loading control
(glyceraldehyde-3-phosphate dehydrogenase, Cell
Signaling Inc., USA, 1:10 000) and then normalized
to the optical density of sample from control animals
(internal reference control). Normalized values were
used for analyses.

Behavioral tests
Behavioral tests were performed in mice of 3–7
months of age. The interval between different behav-
ioral tests was 1 week. The tests were performed in
the following order: social interaction test; forced
swim test (FST); tail suspension test (TST); and drug-
induced activity.

Dyadic male–male interaction in the unfamiliar open
field. Our earlier study showed altered social
interaction patterns and increased aggression in
male mice expressing mutant hDISC1.31 Therefore,
we evaluated how the temporal pattern of mutant
hDISC1 expression would affect this phenotype.
Male–male interaction was analyzed using the
protocol described by Rodriguiz et al.36 Briefly, male
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Figure 1 Inducible expression of mutant hDISC1. (a) The scheme of the Tet-off system used to generate transgenic mice.
(b, c) Expression of mutant hDISC1 in the cortex at embryonic day 15 (E15, PND 7 (p7), PND 21 (p21), and adulthood (adult)
in double-transgenic mutant DISC1 mice (mutant) or single transgenic tTA mice (control). Mutant hDISC1 was visualized
with anti-myc antibody (1:1000) and detected as a 64 kDa band. Anti-glyceraldehyde-3-phosphate dehydrogenase antibody
(1:10000) was used as loading control. (d) Regulation of expression with Dox food. Adding Dox food to or withdrawing it
from mouse diet resulted in shutting down or restoring, respectively, expression of mutant hDISC1 within 5–7 days; day
0—the positive control sample before adding (expression) or before withdrawing (no expression) Dox food. (e) The
experimental groups used in the study. The PreþPost group had no exposure to the Dox food and expressed mutant hDISC1
during prenatal and postnatal periods; the Pre group was given Dox after E17 and expressed mutant hDISC1 during the
prenatal period only; the Post group was given Dox until E12 and expressed mutant hDISC1 during the postnatal period only;
the NO group was given Dox food all the time and had no expression of mutant hDISC1 throughout the entire life. GAPDH,
glyceraldehyde-3-phosphate dehydrogenase.
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mice were housed individually for 4 days to increase
social motivation before testing. On the day of testing,
one unfamiliar control mouse was paired with a
mutant mouse in an activity chamber (San Diego
Instruments Inc., San Diego, CA, USA). The chambers
were cleaned prior and between each test with MB-10
solution and wiped dry. Mice were simultaneously
placed on opposite sides of a cage that was divided
into two sections by a solid cardboard partition. After
5 min acclimatization, the partition was removed
and the animals were allowed to freely interact for
10 min. All mouse behaviors were videotaped and
subsequently scored for sniffing, following, paws on
head, attacks, bites, and tail rattling. Each control
male mouse was used only once for paring with each
mutant hDISC1 mouse.

FST and TST. FST was performed in a large plastic
cylinder filled with water as described earlier.37 The
mouse’s behaviors in the water tank were videotaped
for 15 min daily for 2 consecutive days. Latency to
floating and total immobility during the last 5 min on
each day were scored.38 TSTwas performed in the test
chamber (Med Associates, IN, USA). The mouse was
suspended by its tail with the hook connected to the
movement sensors. The mouse’s behaviors were
scored for 6 min and the latency to immobility and
time of total immobility during the last4 min of testing
were analyzed.

Drug-induced locomotion. Drug-induced activity in
the open field was assessed over a 60 min period
using activity chambers with infrared beams (San
Diego Instruments Inc.) as described earlier.31 First,
animals were habituated to the chambers for 30 min,
and MK-801 (Sigma-Aldrich, UK) or D-amphetamine
(Sigma-Aldrich) was administered intraperitoneally
in a dose of 0.3 or 1.0 mg kg�1, respectively. Horizontal
and vertical activities, stereotypic activities, and time
spent in the center or along the walls (thigmotaxis) of
the chamber were automatically recorded.

High-performance liquid chromatography with
electrochemical detection

On completion of behavioral experiments, animals
were quickly euthanized by cervical dislocation and
their brains were isolated and dissected into olfactory
bulbs, frontal cortex, hippocampus, striatum, and
cerebellum. Tissue content of norepinephrine, dopa-
mine (DA), and its metabolites, 3,4-dihydroxy-
phenylacetic acid (DOPAC), homovalinic acid, and
5-hydroxytriptamine and its metabolite 5-hydroxyin-
doleacetic acid were assayed in the brain regions of
male (n = 5) and female (n = 5) mice. Concentrations of
monoamines were measured by high-performance
liquid chromatography with electrochemical detec-
tion.39 Monoamine peaks were identified by retention
times. Data are expressed as ratios of values in
each group in relation to the averaged values in the
NO group.

Histopathological and immunohistochemical assays
On completion of behavioral experiments, mice were
deeply anesthetized with Euthasol (Diamond Animal
Health Inc., Des Moines, IA, USA) and perfused with
ice-cold phosphate-buffered saline (pH = 7.4) fol-
lowed by 4% paraformaldehyde in 0.1 M phosphate
buffer. Brains were removed, postfixed for 4 h,
cryoprotected in 30% sucrose in phosphate-buffered
saline, and slowly frozen at �20 1C in 2-butane and
stored at �80 1C. Brains were sagittally cut in 40 mm
sections and stored in the cryoprotection medium at
�20 1C until staining. Some sections were stained
with cresyl violet for stereological assessment. To
evaluate expression of interneuronal markers, brain
sections were stained with mouse anti-parvalbumin
(PV) (Abcam, MA, USA) (1:100) or rabbit anti-
calretinin (CR) antibodies (Abcam) (1:100). Reagents
from the ABC kit were used for the blocking solution
and the secondary antibody according to manufac-
turer’s recommendations. PV- or CR-positive cells
throughout the cortex were counted by an observer
blinded to the experimental group with a bright field
light microscope. The fronto-temporal cortex was
defined as the area starting from the rhinal fissure
and continuing through the motor cortex. The
temporo-parietal region was defined as the cortical
area between somato-sensorial cortices. The parieto-
occipital area was defined as the region beginning
at the parietal association areas and included the
posterior parts of the cortex (plates 110–122 from
Franklin and Keith’s mouse brain atlas).40 Sections
from the same levels were used (n = 4–5 mice per
group; five adjacent sections per mouse).40 Numbers
of cells were averaged across all sections for each
mouse for the selected area and were used for
statistical analyses. Images were captured by Olym-
pus microscope with a Nikon digital camera (DX M
1200) and processed with Nikon ACT-1 software.

Magnetic resonance imaging
On completion of behavioral tests, live mice anesthe-
tized by isoflurane were imaged with a 9.4 T nuclear
magnetic resonance scanner (Bruker Biospin, Bill-
erica, MA, USA). Fast-spin echo sequence was used
for T2 weighted imaging with following parameters:
TR = 4.7 s and effective TE = 22.4 ms, echo train
length = 4. Multiple slice 2D images were acquired
with in-plane imaging matrix 192 168 and field of
view 20�20 mm2. Slice thickness were 0.4 mm with-
out gap between slices. Slice number was 60, covering
the whole brain. The imaging resolution was
0.1�0.12�0.4 mm3. With six signal averaging, the
scanning time was 40 min as described earlier.31

Volumetric measurements
Approximately 15–18 sections were systematically
(for example, every 4th) selected from a random start
to cover the entire region in question. We used one
half of each brain for this assay as described earlier.41

The measurements were performed using an Olym-
pus microscope with a computer driven X,Y,Z-stage
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controller (ASI, Eugene, OR, USA). The total volume
of the neocortex was estimated with Cavalieri point
counting using the software Stereologer (SPA, Alex-
andria, VA, USA). The volume of each point was
optimized to maximize the efficiency of the process
while maintaining the co-efficient of error at 0.1
or less.41

Golgi staining-based analysis
A modified, rapid Golgi staining was performed
according to the manufacturer’s protocol (FD Neuro-
Technologies, Germantown, MD, USA). On comple-
tion of Golgi–Cox staining procedure, we evaluated
the linear spine density on secondary and tertiary
branches of basilar dendrites of pyramidal neurons in
the temporo-parietal cortex, pyramidal neurons of the
CA1 region, and granule cells of the dentate gyrus
of the hippocampus and Purkinje cells of the cere-
bellum. A trained investigator blinded to the group’s
status performed neurons selection and tracing.
Pyramidal neurons were identified by their specific
triangular shape of the soma and their apical exten-
sions toward pial surface. An Olympus microscope
was used to trace each neuron using Neurozoom (San
Diego, CA, USA). For spine density measurement, one
terminal dendrite from the second and third order tip
of each selected neuron was used to count spines
using a 100� objective. Five neurons per section and
five sections per mouse (four mice per group) were
used to count the linear spine density. The results are
presented as adjusted values relative to the NO group.
Images of Golgi staining were captured by Olympus
microscope with a Nikon digital camera (DX M 1200)
and processed with Nikon ACT-1 software.

Statistical analysis
The effects of mutant hDISC1 on mouse behaviors,
regional monoamine levels, and neuroanatomical
measures were evaluated with a mixed model
ANOVA with the group, sex, and time of testing (if
applicable) as independent variables. Significant
effects were explored further with lower levels
ANOVAs and/or post hoc comparisons. P < 0.05 was
used for the significance level.

Results

Regulation of mutant hDISC1 expression
As expected, expression of mutant hDISC1 was
present in the PreþPost and Post groups and was
absent in the Pre and NO groups when assessed at
PND 120 (Supplementary Figure 1).

The behavioral effects of prenatal mutant hDISC1
expression

Social interactions. We have reported earlier
abnormal social behaviors in male mutant hDISC1
mice.31 Here, we found that male mice of the
PreþPost group and Post groups spent significantly
less time in non-aggressive social interaction with

their partners compared with the NO group, all
Ps < 0.05 (planned t-test). No differences in non-
aggressive social interaction were found between the
Pre and NO groups (Figure 2a). Male mice of the
PreþPost group showed significantly more
aggressive attacks than animals of the NO group,
P < 0.05. No significant differences in aggression were
found between other groups (Figure 2b).

FST and TST. FST and TST are widely used to
evaluate depression-like behaviors in rodents.42,43

Earlier studies have reported aberrant responses in
other DISC1 mouse models in these tests,35,37,44,45

which is consistent with the human data on
association between DISC1 polymorphism and
depression-related abnormalities.46–48 Thus, we
evaluated these behaviors in this study. Female mice
of the PreþPost group spent significantly more time
in immobility compared with female mice of the NO
group during the last 4 min in TST, F(3, 35) = 4.212,
P = 0.012; PreþPost vs NO, P < 0.05, whereas there
were no differences in this measure between other
groups (Figure 2c). In FST, female mice of the Post
group spent significantly more time in immobility
compared with mice of the NO group during the last
5 min on the second day of testing, F(3, 18) = 4.993,
P = 0.01, Post vs NO, P < 0.05. No differences in FST
were found between female mice of other groups
(Figure 2d). In addition, expression of mutant hDISC1
had no effects on these behaviors in male mice of
either group (data not shown).

The effects of MK-801 and D-ampheta-
mine. Amphetamines and N-methyl-D-aspartic acid
antagonists can produce psychosis-like behaviors in
humans and increase locomotor activity in rodents.49–51

These compounds have also been used to analyze
dopaminergic and glutamatergic neurotransmission
in various models of schizophrenia.52–54 We therefore
evaluated the effects of MK-801, a non-competitive
N-methyl-D-aspartic acid antagonist, and D-ampheta-
mine, an indirect DA agonist, on locomotor activity of
mutant hDISC1 mice. The relatively low doses were
selected to better identify potential difference
in response to stimulants.55,56 MK-801 injections
(0.3 mg kg�1, intraperitoneally) resulted in signifi-
cantly greater total locomotor activity in male mice
of the PreþPost group compared with that in male
mice of three other groups (the group effect,
F(3352) = 3.723, P = 0.021; PreþPost vs NO and
PreþPost vs Post, all Ps < 0.05) (Figures 2e and f).
No differences in MK-801-induced activity were seen
between the groups of female mice (data not shown).
Administration of D-amphetamine (1 mg kg�1,
intraperitoneally) significantly increased locomotor
activity in male mice of the PreþPost group
compared with the other groups (the group by time
interaction, F(33, 418) = 1.872, P = 0.03) (Figure 2g).
Total locomotor activity for the first 15 min post
injection was significantly greater in the PreþPost
group than the Pre or NO group (the group effect for
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the first 15 min, F(3, 38) = 5.170, P = 0.04; PreþPost vs
NO and PreþPost vs Pre, all Ps < 0.05). (Figure 2h).
Similar to the results with MK-801, no significant
differences in amphetamine-induced activity were
found between the groups of female mice (data not
shown). No significant differences in other measures
in this test were found (data not shown).

Tissue content of monoamines and their metabolites
Alterations in monoamine neurotransmission have
been associated with schizophrenia and mood dis-
orders.54,57 There are no available data for possible
monoamines perturbations associated with expres-
sion of mutant hDISC1 in mice. Thus, we evaluated
the tissue content of norepinephrine, DA, 5-hydro-
xytriptamine and their metabolites, DOPAC, and
5-hydroxyindoleacetic acid in mutant hDISC1 mice.
Compared with the values of male mice of the NO

group, there was a significant decline in levels of DA
and DOPAC in frontal cortex of male mice of all other
groups, (Figure 3a) (the main group effect, H = 9.81,
P = 0.02, and F(3, 16) = 3.65, P = 0.035 for DA and
DOPAC, respectively). Post hoc comparisons showed
the significant differences in DA content between the
NO group and each of the other groups, all Ps < 0.05.
There were significant differences in DOPAC content
between the PreþPost vs NO groups and the Post
vs NO groups, all Ps < 0.05 (Figure 3a). No significant
differences were found among the groups in
5-hydroxyindoleacetic acid/5-hydroxytriptamine,
DOPAC/DA, or homovalinic acidþDOPAC/DA ratios
in cortical samples (Figure 3b). For female mice, we
found a significant decrease in DA content in the
hippocampus of the Post group compared to NO or
Pre groups (Figure 3c), F(3, 713) = 13.15, P = 0.035;
Post vs NO and Post vs Pre, all Ps < 0.05. No other
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significant alterations in content of monoamines or
their metabolites were found in the brain regions
assayed (Figure 3d; Supplementary Figure 2).

Expression of markers of g-aminobutyric acid (GABA)-
ergic neurons
Reduced PV immunoreactivity has been found in
postmortem schizophrenia samples, suggesting a role
for altered GABA-ergic signaling in schizophrenia.58,59

Expression of another calcium-binding protein, CR,
on the other hand, does not seem to be consistently
reduced in schizophrenia.60 Earlier studies with other
mutant hDISC1 transgenic mice have shown a reduc-
tion in the numbers of PV-positive neurons in the
cortex.37,45 We evaluated numbers of PV and CR
positively stained (þ ) cells in the frontal, parietal,
and occipital areas of the cortex (Figures 4a–h).
Numbers of cortical PVþ cells were significantly
reduced in all DISC1 expressing groups compared
with the NO group (the group effect for total cortex,
H = 25.357, df = 3, P < 0.001, the Pre vs NO, the Post vs
NO, and the PreþPost vs NO group, all Ps < 0.05; for
Ftcx –F(3157) = 7.65, P < 0.001, the Pre vs NO, the Post
vs NO, and the PreþPost vs NO group, all Ps < 0.05;
Tpcx H = 10.22, P = 0.02 the PreþPost vs NO group,

P < 0.05; Pocx �H = 11.894, P = 0.008, the Post vs NO
and the PreþPost vs NO group, all Ps < 0.05) (Figure
4i). Numbers of CRþ cells were not significantly
changed although there was a trend to a decrease in
numbers of CRþ cells in the frontal cortex (the main
effect for total cortex F(3, 40) = 1.120, P = 0.352; Ftcx
�F(3, 47) = 2.367, P = 0.08; Tpcx �F(3, 48) = 2.150,
P = 0.1; Pocx �F(3, 45) = 0.328, P = 0.8) (Figure 4j).

Volumetric assays

Magnetic resonance imaging analyses. Lateral
ventricle enlargement is one the most consistent
abnormalities of the brain of patients with
schizophrenia.5,61,62 Earlier studies with DISC1
mouse models, including our model, have found
enlarged ventricles in adult mice.31,44,45 Thus, we
evaluated the effects of prenatal and postnatal
expressions of mutant hDISC1 on brain and
ventricle volumes (Figures 5a–d). We did not find
significant effects of gender on both measures,
(F(3, 24) = 1.687, P > 0.05 for lateral ventricles, and
F(3, 24) = 1.145; P > 0.05 for brain volume
(Supplementary Figure 3). Thus, we combined the
data for male and female mice for all subsequent
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analyses. Lateral ventricles were significantly larger
in the PreþPost or Post groups than in the Pre or the
NO groups, F(3, 24) = 3.903, P = 0.01; all Ps < 0.05
(Figure 5e). Total brain volume was significantly
smaller in the Pre compared with the Post or NO
groups, F(3, 24) = 7.07, P = 0.001; the Pre vs Post group
and the Pre vs NO group, all Ps < 0.05 (Figure 5f).

Stereological analyses. Decreased volumes of cortex
and other brain regions have been observed in schizo-
phrenia10,63,64 and DISC1 has been directly implicated
in cortical development.30 Thus, we assessed the
effects of prenatal vs postnatal expression of mutant
hDISC1 on cortical volumes. We found smaller
cortical volumes in the PreþPost and Post groups
compared to the NO group, F(3, 21) = 4.260, P = 0.017;
PreþPost vs NO and Post vs NO group, Ps < 0.05.
(Figure 5g).

Dendritic spine density
Alterations in dendritic spine density have been
shown in several psychiatric disorders.65–67 In addi-

tion, there are reports of decreased spine density
in hippocampal granule cells in the DISC1 mouse
model.68 We evaluated the linear density of dendritic
spines on granule cells of the dentate gyrus of the
hippocampus, pyramidal neurons of the CA1 region
of the hippocampus, pyramidal neurons of the
temporo-parietal cortex, and the Purkinje cells of the
cerebellum as an internal control area that does not
express mutant hDISC1.31 We found a significant
increase in the linear spine density on dendrites of
hippocampal granule cells in the PreþPost group
compared with all other groups, F(3, 14) = 7.244,
P = 0.04; all Ps < 0.05 (Figure 5h). In addition, the
linear spine density on dendrites of pyramidal
cortical neurons was significantly greater in the Pre
group than in the NO group, F(3, 13) = 4.32, P = 0.026;
post hoc test, P < 0.05 (Figures 5h and i–l).

Expression of DISC1–interacting proteins
Mutant hDISC1 has been proposed to exert its effects
through dominant-negative mechanisms.30,32 We have
found earlier that expression of mutant hDISC1 was
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associated with decreased protein levels of endogen-
ous mouse DISC1 and LIS1.31 Here, we evaluated
levels of endogenous DISC1, LIS1, and NDEL1 in
mice that expressed mutant hDISC1 during prenatal
or postnatal periods. Expression of endogenous
DISC1 and its interacting proteins was assayed at
PND 7 in cortical samples, the time point when we
earlier detected decreased expression of these pro-
teins.31 We found a significant decrease in protein
levels of LIS1 in the PreþPost group compared with
the NO group, H = 9.502, df = 3, P = 0.023 (Figures 6b
and d). In addition, there was a significant decline in
level of endogenous mouse DISC1 in the PreþPost
and Post groups compared with the NO group, F(3,
12) = 4.089, P = 0.032, all Ps < 0.05 (Figures 6a and e).
No sex-related differences in expression of mutant,
endogenous mouse DISC1 or LIS1 were found
(Supplementary Figure 4). No significant differences

in protein levels of NDEL1 were detected between
groups (data not shown).

Discussion

We have analyzed the phenotypic effects of expres-
sion of mutant hDISC1 during different stages of
mouse development. The main findings of the study
are summarized in Table 1.

The primary conclusion of our study is that the
effects of mutant hDISC1 are qualitatively and
quantitatively different, depending on when
during neurodevelopment the protein is expressed.
Certain phenotypic changes were present regardless
of the time point of expression of mutant hDISC1,
including fewer PV-positive cells in the cortex and
decreased cortical levels of DA. The most profound
phenotypic effects were detected after combined

NOPre+Post PostPre

* *

Lateral ventricle

*

Brain volume

* *

Cortical volume

6

8

10

0

2

4m
m

3 400

600

0

200
m

m
3

0.6

0.8

1

1.2

0

0.2

0.4

ad
ju

st
ed

 v
o

lu
m

e

Pre+Post* *

Spine Density

Post

ad
ju

st
ed

 d
en

ss
it

y

Pre

NO

1.2

1.4

0.2

0.4

0.6

0.8

1

0

Pre+Post NoPostPre Pre+Post NoPostPre Pre+Post NoPostPre

Dg CrblmCxCa1

Pre+Post

Pre

Post

NO

Figure 5 Morphometric analyses of the effects of mutant hDISC1. (a–d) Representative magnetic resonance imaging coronal
images for the PreþPost (a), Pre (b), Post (c), and NO (d) groups. The boundaries of the brain and the lateral ventricles are
outlined. (e) The significantly increased volumes of the lateral ventricles in the PreþPost and the Post group compared to
the NO group, n = 8 mice per group, *denotes P < 0.05 vs the NO group. (f) The significantly decreased total brain volumes in
the Pre group compared to the Post or the NO groups, n = 8 mice per group, *denotes P < 0.05 vs the Post or NO groups.
(g) The significantly decreased cortical volumes in the PreþPost and Post groups compared to the NO group, n = 8 mice per
group, *denotes P < 0.05 vs the NO group. (h) A quantitative analyses of the linear spine density on dendrites of granule cells
of the dentate gyrus (Dg), CA1area (Ca1) of the hippocampus, pyramidal neurons of the temporal cortical area (Cx), and the
Purkinje cells of the cerebellum (Crblm); *denotes P < 0.05 vs the other groups; #denotes P < 0.05 vs the NO group; n = 10–20
neurons per mouse, four mice per group; representative images of dendritic spines from the PreþPost (i), Pre (j) and Post (k),
and NO (l) groups, scale bar, 10mm.

Prenatal and postnatal effects of mutant DISC1
Y Ayhan et al

301

Molecular Psychiatry



prenatal and postnatal expression. Specifically, we
observed elevated aggression, depression-like re-
sponses in female mice, increased responses
to stimulants in male mice, and increase density of
dendritic spines on neurons of the dentate gyrus of
the hippocampus, and decreased levels of endogen-
ous DISC1 and LIS1. Prenatal expression only led to
decreased total brain volume, whereas selective
postnatal expression of the protein produced attenu-
ated social behavior in male mice, depression-like
responses in female mice, enlarged lateral ventricles,
decreased DA content in the hippocampus in female
mice, and lower protein levels of endogenous

DISC1. As mutant hDISC1 seems to perturb functions
of endogenous mouse DISC1 through dominant-
negative effects, our results indicate that DISC1 may
have multiple functions that vary during neurodeve-
lopment.

This study has significantly extended the pheno-
typic features of our model by adding new assays
on behaviors, neurochemistry, and morphology to
evaluate the time-dependent effects of mutant
hDISC1. Consistent with our earlier report, some
of the behavioral effects of mutant hDISC1 were
gender specific. Our model is currently the only one
to report the gender-specific effects of mutant
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Table 1 Prenatal and postnatal effects of mutant hDISC1

Significant changes vs the NO group (no expression) Pre- and postnatal
expression, the
PreþPost group

Prenatal
expression only,

the Pre group

Postnatal
expression only,
the Post group

Decreased non-aggressive social interaction þ � þ
Increased aggressive behavior þ � �
Increased immobility in FST � � þ
Increased immobility in TST þ � �
Increased sensitivity to psychostimulants þ � �
Decreased content of DA in the frontal cortex of male mice þ þ þ
Decreased content of DA in the hippocampus of female mice � � þ
Fewer PV-positive cells þ þ þ
Increased volumes of the lateral ventricles þ � þ
Decreased total volume of the brain � þ �
Decreased total volume of the cortex þ � þ
Increased linear spine density in granule cells of the dentate
gyrus of the hippocampus

þ � �

Increased linear spine density in pyramidal neurons of the cortex � þ �

Abbreviations: DA, dopamine; FST, forced swim test; hDISC1, human Disrupted-In-Schizophrenia-1; PV, parvalbumin; TST,
tail suspension test.
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hDISC1.31,35,37,45,69 The reasons for these observed
differences remain obscure as we found no significant
gender-related alterations in the brain morphology or
expression of mutant hDISC1, endogenous DISC1, or
LIS1 in transgenic mice. Although our results might
look congruent with gender-related associations
between polymorphisms in DISC1 and disease
frequency or cognitive functions,15,70,71 this issue
awaits further experimental clarifications and repli-
cations.

The effects of expression of mutant hDISC1 on
levels of monoamines and their metabolites are
consistent with the behavioral and pharmacologic
abnormalities in transgenic mice. For example,
combined prenatal and postnatal expression of mu-
tant hDISC1 decreased levels of DA in frontal cortex
of male mice, which could contribute to the increased
responses to D-amphetamine and MK-801 observed in
male mice of the PreþPost group.51 The enhanced
pharmacologic effects in transgenic mice may indi-
cate the alterations in dopaminergic and glutamater-
gic systems consistent with findings in patients.72–74

Reduced levels of DA and to some extent 5-hydro-
xytriptamine metabolite, 5-hydroxyindoleacetic acid
(for example, Figure 3), in the hippocampus of female
mice with selective postnatal expression of the
protein would seem to be in line with depression-
like responses in this group of mice. The results seem
to be consistent with a role of DISC1 in mood
disorders where monoamine alterations in the cortex
and hippocampus have been shown to contribute to
the pathophysiology of affective states.75–77 However,
it should be pointed out that tissue content assays do
not provide direct assessment of functional changes
in monoamine neurotransmission, and additional
investigations based on in vivo microdialysis and/or
receptor expression and distribution will be necessary
to shed more light on perturbations in monoamines in
DISC1 female mice.

PV and CR are markers for inhibitory interneur-
ons.58 PV immunoreactivity is reduced in the cortex
and hippocampus of schizophrenic brains.58,60,78,79

Lower expression of PV is suggested to alter func-
tional properties of cortical interneurons, leading to
dysfunctional activity of cortical pyramidal neurons
postulated to contribute schizophrenia pathogen-
esis.59,80 We found that both prenatal and postnatal
expression of mutant hDISC1 decreased numbers of
PV-positive cells throughout the cortex, consistent
with earlier studies of other DISC1 mouse models.37,45

Despite the similar outcome, mutant hDISC1 could
differently affect maturation of this population of
neurons across neurodevelopment. It is conceivable
that prenatal expression of mutant hDISC1 may
predominantly disrupt migration interneurons
whereas postnatal expression would probably affect
final stages of their differentiation.81,82 Although a
decrease in numbers of CR-positive cells in fronto-
temporal cortex was not significant, one cannot
completely rule out that mutant DISC1 might
produce a more general deficit in GABA-ergic cells.

Of note, it has been shown that LIS1 heterozygous
mice also show a decrease in GABA-ergic markers,
including CR.82

Prenatal and postnatal expressions of mutant
hDISC1 differentially affected volumes of the brain
and lateral ventricles. We found that mice with
prenatal expression of mutant DISC1 had signifi-
cantly decreased total brain volumes compared with
animals with postnatal expression or mice that did
not express mutant DISC1 at all. Reduced brain
volumes in the Pre group appear consistent with
earlier reported decreased neuronal proliferation
because of DISC1 knockdown.83 One can speculate
that mutant hDISC1, acting through dominant-
negative mechanisms, could affect proliferation of
neuronal progenitor cells, leading to smaller brain
volumes as detected in adult mice.

In contrast, though postnatal expression did not
change brain volumes, it was likely responsible for
enlargement of the lateral ventricles. The effects of
postnatal expression on the lateral ventricles may
be in line with the hypothesis that the ventricular
pathology in schizophrenia is related to gradual
postnatal changes.84–86 Intriguingly, if postnatal ex-
pression of mutant DISC1 is confirmed to be sufficient
to produce enlargement of the lateral ventricles and
given that this pathological feature is a consistent
one in schizophrenia, this endophenotype could be a
promising biological marker for testing novel com-
pounds in developing and adult animals.

We found that combined prenatal and postnatal
expression of mutant hDISC1 led to increased spine
density in the dentate gyrus of the hippocampus and
selective prenatal expression of the protein was
associated with increased spine density in the
temporo-parietal cortex. On the one hand, our find-
ings seem discordant with human postmortem reports
about decreased linear spine density in frontal cortex,
auditory cortex, and subiculum,66,67,87 and the results
reported for a different DISC1 mouse model.68 On the
other hand, the data presented here are in line with
that the effects of DISC1 knockdown that has
produced increased spine density, dendritic branch-
ing, arborization, and migration rates in newborn
neurons in the dentate gyrus of the adult hippocam-
pus.88,89 As we did not discriminate immature vs
mature spines in this study, one cannot rule out the
possibility that increased linear density of protru-
sions assessed may be related to immature spines that
might not function properly. Future studies can
address this possibility.

Consistent with the possible etiological roles of
DISC1 in schizophrenia and mood disorders and
similar to the effects reported for other DISC1 models,
our transgenic mice exhibited the behavioral altera-
tions reminiscent of aspects of both schizophrenia
and mood disorders. The variable multiple effects of
variants and mutations of the DISC1 gene have been
proposed to be dependent on the time of expression,
interactions with other genes and/or environmental
factors.5,90 In this context, our findings are in line
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with diverse clinical manifestations of the transloca-
tion mutation in the Scottish family and support the
role of DISC1 as a ‘hub’ protein with pleiotropic
effects at different points across neurodevelopment
and in the pathophysiology of different major mental
disorders.5,18,21,91

One of the possible mechanisms whereby mutant
DISC1 could affect neurodevelopment in our mice is
altering functioning of endogenous mouse DISC1 and
its interacting partners. Our earlier study has shown
that mutant hDISC1 can bind to endogenous mouse
DISC1, producing a reduction in protein levels of
endogenous mouse DISC1 and LIS1.31 This study
confirms and extends those data by showing that
temporal expression of mutant DISC1 largely parallels
expression of endogenous mouse DISC1,92,93 provid-
ing additional evidence that the observed abnormal-
ities in our mice may be due to dominant-negative
effects of mutant hDISC1. Thus, even if the transloca-
tion carriers in the Scottish family do not express the
truncated protein, the model of inducible expression
of mutant hDISC1 could advance our understanding
of altered functions of DISC1 in patients.

This study is limited in comparing the effects of
prenatal and postnatal expressions of mutant hDISC1.
Future research can generate new experimental
groups of mice with expression of mutant hDISC1
across different stages of postnatal life with a more
precise correspondence to such periods as early vs
late postnatal development, sexual maturation, adult-
hood, and aging. This line of research can be readily
pursued with our model, which allows for regulating
when and for how long the protein is expressed.

In conclusion, our results show that the differential
neurobehavioral effects of mutant hDISC1 depend
on when across neurodevelopment expression of
the protein occurs. These data are consistent with
the notion that DISC1 has different functions across
various stages of neurodevelopment and adulthood,
which can partially explain diverse DISC1-associated
pathological manifestations, and potentially provide a
model for aspects of major mental diseases.
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