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Pharmacogenetic tests for antipsychotic 
medications: clinical implications and 
considerations
Seenae Eum, PharmD; Adam M. Lee, PhD; Jeffrey R. Bishop, PharmD

Introduction

Antipsychotics were first introduced in the 1950s 
to treat psychotic disorders and are now also used in 
the treatment of other psychiatric conditions. Although 
antipsychotic medications often need to be used long-
term, 1-year discontinuation rates are 32% to 74%,  
which illustrates a need to improve these treatments.1,2 
Treatment discontinuation can be partially explained 
by inadequate response and intolerability. For many pa-
tients, treatment selection remains a “trial-and-error” 
process, requiring multiple medication changes and 
dose adjustments to achieve a safe and effective bal-
ance between therapeutic response and tolerability. 
The widely observed variability among patients with 
identical treatment regimens results from multiple fac-
tors that can alter both drug metabolism (pharmacoki-
netics) and drug action (pharmacodynamics). A wide 
range of clinical and demographic factors (eg, age, sex, 
ethnicity, disease severity, diet, tobacco/alcohol use, 
and concurrent medications) can influence variability 
in both therapeutic and adverse event outcomes. Ad-
ditionally, genetic variability can contribute to inherited 
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Optimizing antipsychotic pharmacotherapy is often 
challenging due to significant variability in effectiveness 
and tolerability. Genetic factors influencing pharmaco-
kinetics and pharmacodynamics may contribute to some 
of this variability. Research studies have characterized 
these pharmacogenetic relationships, and some genetic 
markers are now available as clinical tests. These ad-
vances in pharmacogenetics research and test availabil-
ity have great potential to improve clinical outcomes 
and quality of life in psychiatric patients. For clinicians 
considering using pharmacogenetics, it is important to 
understand the clinical implications and also the limi-
tations of markers included in currently available tests. 
This review focuses on pharmacokinetic and pharma-
codynamic gene variants that are currently available in 
commercial genetic testing panels. Associations of these 
variants with clinical efficacy and adverse effects, as well 
as other clinical implications, in antipsychotic pharmaco-
therapy are discussed.            
© 2016, AICH – Servier Research Group Dialogues Clin Neurosci. 2016;18:323-337.
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differences in drug action and metabolism, and there 
is a growing need to understand how to consider this 
information in clinical settings. To date, pharmacoge-
netic research related to antipsychotic treatment has 
identified numerous polymorphisms across multiple 
genes involved in both antipsychotic pharmacokinet-
ics and pharmacodynamics, culminating in the avail-
ability of commercially available pharmacogenetic tests 
within the United States and other countries.3 Some 
antipsychotic agents (eg, aripiprazole, brexpiprazole, 
iloperidone, and pimozide) have “actionable” pharma-
cogenetic language listed on their product labels, but 
guidelines of how best to interpret and apply this infor-
mation are lacking. The Clinical Pharmacogenetics Im-
plementation Consortium (CPIC) and the Dutch Phar-
macogenetics Working Group (DPWG) are working on 
guidelines for applying or interpreing pharmacogenetic 
information in clinical practice. The European Phar-
macogenetics Implementation Consortium (Eu-PIC) 
is also working to integrate pharmacogenetic informa-
tion into clinical care; however, presently no CPIC and 
Eu-PIC guidelines and only a few DPWG guidelines 
(for aripiprazole, risperidone, and haloperidol) exist for 
antipsychotic medications.4 It is therefore important to 
understand the clinical implications and limitations of 
pharmacogenes that are now accessible for clinical use. 
 Pharmacogenetic testing in psychiatry is not yet a 
standard of practice, but its utilization is increasing and 
may play a role in advancing a precision-medicine ap-
proach through optimizing antipsychotic treatment and 
dosing strategies. However, its clinical utility remains 
an ongoing area of investigation. Understanding the 

clinical implications of these tests requires clinicians 
to understand of the underlying biology of pharma-
cogenetic variants, as well as their associations with 
treatment outcomes. This review focuses on genetic 
markers relevant to antipsychotic therapy known to 
be currently available on pharmacogenetic test pan-
els. We identified clinically available pharmacogenetic 
test panels (CAPTPs) from the Genetic Test Registry5 
as well as more broadly through Internet search que-
ries for “pharmacogenetic test” or “pharmacogenomic 
test.” Testing labs or panels identifying either specific 
antipsychotic drugs or, more broadly, psychiatric con-
ditions, were examined for genes and variants therein. 
Whereas our paper elaborates more detailed informa-
tion on commercially available pharmacogenetic tests, 
the paper by Eap in this issue (p 313) has a stronger 
focus on their clinical application.

Pharmacogenetic factors influencing 
antipsychotic pharmacokinetics

Pharmacogenetic research has traditionally focused on 
genetic markers involved in the metabolism of antipsy-
chotic medications through hepatic enzyme pathways, 
primarily by cytochrome P450 (CYP) enzymes. Genetic 
variation within drug-metabolizing enzymes may result 
in altered metabolic activity, which may affect pharma-
cokinetic parameters of antipsychotics. Among the mul-
tiple CYP enzymes in the liver, the CYP1, CYP2, and 
CYP3 families are the most relevant for the biotrans-
formation of antipsychotic drugs and were identified as 
central to many psychiatric-focused pharmacogenetic 
test panels.
 Genetic variants in metabolism enzymes often result 
in functional activity changes used to define or predict 
drug metabolizer phenotypes. Polymorphisms in drug 
metabolism genes that may affect function include sin-
gle-nucleotide polymorphisms (SNPs), as well as gene 
duplications or deletions, small insertions/deletions, or 
larger copy number variants that affect gene expres-
sion or protein conformation. The National Center for 
Biotechnology Information (NCBI) Single-Nucleotide 
Polymorphism Database (dbSNP), a public repository 
for SNP data, assigns unique reference SNP identifiers 
(rs number) for each variant. For drug-metabolizing 
enzyme genes, combinations of these polymorphisms 
are used to define alleles, which historically have a star 
“*” designation. Diplotypes (star allele combinations, 
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Selected abbreviations and acronyms
ABCB1 ATP binding cassette subfamily D member 1
AUC area under the concentration-time curve
CPATP clinically available pharmacogenetic test panel
CPIC Clinical Pharmacogenetics Implementation 
 Consortium
CYP cytochrome P450
DPWG Dutch Pharmacogenetics Working Group
DRD2 dopamine D2 receptor gene
EM extensive metabolizer
P-gp P-glycoprotein
PM poor metabolizer
SNP single-nucleotide polymorphism
TD tardive dyskinesia
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eg, CYP2D6 *1/*4) are then used for assignment of 
genetically defined metabolizer groups, which are gen-
erally classified into four main categories. “Extensive/
normal metabolizers (EMs/NMs)” display normal en-
zyme activity, characterized by usually either two nor-
mal functional alleles or one normal and one partly 
reduced–function allele. “Intermediate metabolizers 
(IMs)” display partly reduced enzyme activity, charac-
terized by one decreased-function and one no-function 
allele or one normal-function allele and a decreased- or 
no-function allele.6 “Poor metabolizers (PMs)” display 
little or no enzyme activity, characterized by two non-
functional alleles. Lastly, “rapid and ultrarapid metabo-
lizers (UMs)” display increased enzyme activity, charac-
terized by multiple copies of functional alleles or alleles 
with greater-than-normal activity. The allele combina-
tions for the classification of IMs are gene-specific. The 
following section reviews some of the clinically relevant 
aspects of pharmacogenetics related to antipsychotic 
drug metabolism (Table I).

CYP2D6

CYP2D6 is an important hepatic enzyme that serves as 
the primary metabolic pathway for many antipsychotics 
(Table II).4,7,8-19 CYP2D6 activity greatly affects the bio-
transformation of its substrates; therefore, increases or 

decreases in CYP2D6 function influence pharmacoki-
netics and potentially impact dose-related outcomes.17 
 More than 1400 variants have been identified in CY-
P2D6 to date.20 CYP2D6*1, *2, *33, and *35 are classi-
fied as active alleles. CYP2D6 alleles *9, *10, *17, *29, 
*36, and *41 cause decreased enzyme activity as a result 
of decreased gene expression (*9, *41) or altered pro-
tein conformation (*10, *17, *36).18,19 The most common 
inactive allele in European populations, CYP2D6*4, 
has been identified with frequencies ranging from 0% 
in East Asian to 19% in white European populations. 
Other loss-of-function alleles include CYP2D6*3, *5-
8, *11-16, *19-21, *38, *40, and *42. The CYP2D6 PM 
phenotype has been observed in approximately 7% to 
10% of whites, 6% of Asians, and 3% to 8% of African-
Americans.21 One unique structural characteristic of 
CYP2D6 is the presence of duplications or deletions of 
the whole gene. Deletion of the CYP2D6 gene results 
in the aforementioned *5 allele, whereas duplication of 
the gene results in an UM phenotype (*2XN), provided 
that functional versions of CYP2D6 are duplicated. The 
frequency of the UM phenotype was found to be 0% to 
2% in East Asian, 1% to 10% in white, and up to 29% 
in some Eastern African populations.22,23

 Fifteen currently approved antipsychotics are major 
or minor substrates of CYP2D6, with seven medications 
mentioning the effects of metabolizer status on pharma-
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Table I.  Common pharmacokinetic gene variants included in clinical testing panels for antipsychotic therapy. *Designation for allele; CYP, cytochrome 
P450; EM, extensive metabolizer; NM, normal metabolizer; IM, intermediate metabolizer; PM, poor metabolizer; UM, ultrarapid metabolizer

Gene Alleles commonly tested Enzyme activity Predicted phenotype

CYP2D6

*1, *2, *2A, *35 Active EM/NM: (1) Two active alleles
   (2) One active and one partially active allele
IM: (1) One active and one inactive allele
 (2) One inactive and one partially active allele
 (3) Two partially active alleles
PM: Two inactive alleles
UM: Three or more active alleles (active allele duplication)

*9, *10, *17, *29 *36, *41 Partially active

*3, *4, *5, *6, *7, *8, *11, *12, 
*14, *15

Inactive

Gene duplications

CYP1A2

*1A Active

Not uniformly/globally established
*1E, *1J, *1K, *4, *6, *7, *8, *11, 

*15, *16
Partially active or 

inactive

*1F Higher inducibility

CYP3A4
*1 Active

Not uniformly/globally established

*13, *15A, *17, *22 Inactive

CYP3A5
*1 Active

Not uniformly/globally established

*3 Inactive
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Drug
Metabolism 

pathway
PGx information included in  

FDA label?
CPIC  

guideline?
DPWG guideline?

Percent 
change in 

AUC for poor 
metabolizers

Atypical antipsychotics (second-generation [SGA])

Aripiprazole
CYP2D6

YES 
(PM: half of usual dose)

NO
YES 

(PM: reduce maximum 
dose to 10 mg/day)

↑76.9%8

CYP3A4 NO NO NO N/A

Asenapine

CYP1A2 NO NO NO N/A

UGT1A4 NO NO NO N/A

CYP2D6 NO NO NO N/A

CYP3A4 NO NO NO N/A

Brexpiprazole
CYP2D6

YES
(PM: half of usual dose)

NO NO ↑47%8

CYP3A4 NO NO NO N/A

Cariprazine

CYP3A4 NO NO NO N/A

CYP2D6
YES 

(PM: no clinically relevant effects)
NO NO NS8

Clozapine

CYP1A2 NO NO NO N/A

CYP2D6
YES 

(PM: dose reduction may be neces-
sary)

NO
YES 

(No dose recommenda-
tions)

↓16.8%9

CYP3A4 NO NO NO N/A

Iloperidone
CYP2D6

YES 
(PM: half of usual dose)

NO NO ↑57.5%8

CYP3A4 NO NO NO N/A

Lurasidone CYP3A4 NO NO NO N/A

Olanzapine

CYP1A2 NO NO NO N/A

CYP2D6 NO NO
YES 

(No dose 
recommendations)

↓24.6%10

Quetiapine
CYP3A4 NO NO NO N/A

CYP3A5 NO NO NO ↑66.6%11

Risperidone
CYP2D6

YES 
(PM: the PKs of active moiety are 

similar to EM)
NO

YES 
(PM: select alternative 
drug or be extra alert)

↑641%8

CYP3A4 NO NO NO N/A

Ziprasidone
CYP3A4 NO NO NO N/A

CYP1A2 NO NO NO N/A

Typical antipsychotics (first-generation [FGA])

Chlorproma-
zine

CYP2D6 NO NO NO ↑65%12

CYP1A2 NO NO NO N/A

CYP3A4 NO NO NO N/A

Fluphenazine CYP2D6 NO NO NO N/A
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cokinetic parameters in the product labeling (Table II). 
The drug-labeling language referencing the relevance 
of metabolizer status for antipsychotics is broad, rang-
ing from general comments to specific implications on 
dosing, particularly for newer medications. Aripiprazole, 
brexpiprazole, iloperidone, and pimozide labeling all 
mention specific dose adjustments for known CYP2D6 
PMs (see Table II). DPWG guidelines also recommend 
dose changes for aripiprazole, risperidone, and haloperi-
dol in CYP2D6 PMs,4 but no CPIC guidelines, at the time 
of writing, exist for antipsychotics. 
 CYP2D6 metabolizer status strongly influences the 
metabolism of antipsychotics, leading to changes in 
pharmacokinetic parameters, including overall expo-
sure as defined by the area under the concentration-
time curve (AUC), half-life, clearance, and steady-state 

concentration. Pharmacokinetic effects of CYP2D6 
metabolizer phenotypes are described in Table II. Of 
note, the magnitude of influence is different in each 
medication that is a CYP2D6 substrate, with AUC in-
creases ranging from 47% to 641% for the PMs. Half-
life displayed an approximate twofold increase in 
PMs for aripiprazole, iloperidone, pimozide, and thio-
ridazine, and a sevenfold increase for risperidone (see  
Figure 1).8-10,15,16

 Many researchers have also investigated the rela-
tionship between CYP2D6 genotype and plasma con-
centration of antipsychotic agents and found concen-
tration levels to be 1.1-4.5 times higher for PMs than 
for EMs for aripiprazole, risperidone, haloperidol, per-
phenazine, and thioridazine.17 Interestingly, the prod-
uct labeling for clozapine indicates that dose reduction 
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Drug
Metabolism 

pathway
PGx information included in  

FDA label?
CPIC  

guideline?
DPWG guideline?

Percent 
change in 

AUC for poor 
metabolizers

Haloperidol

CYP2D6 NO NO
YES* 

(PM: use half of usual dose 
or select alternative drug)

N/A

CYP1A2 NO NO NO N/A

CYP3A4 NO NO NO N/A

Loxapine

CYP1A2 NO NO NO N/A

CYP2D6 NO NO NO N/A

CYP3A4 NO NO NO N/A

Perphenazine CYP2D6
YES

(PM: will metabolize more slowly)
NO NO

↑190%-
311%13,14

Pimozide

CYP1A2 NO NO NO N/A

CYP2D6

YES
(PM: maximum dose of 0.05 mg/kg/
day for children and 4 mg/day for 

adults)

NO NO ↑153%15

CYP3A4 NO NO NO N/A

Thioridazine
CYP2D6 NO NO NO ↑348%16

CYP2C19 NO NO NO N/A

Thiothixene CYP1A2 NO NO NO N/A

Trifluopera-
zine

CYP1A2 NO NO NO N/A

Table II.  Drug metabolism pathways, labeling, and guideline information, and drug exposure (AUC) implications of pharmacogenetic information 
in antipsychotic medications. Bold font, major metabolism pathway; *Recommendation is based on haloperidol plasma levels studies.4,17 
Percent Change in AUC: 

 
   AUC, area under the concentration-time curve; CPIC, Clinical Pharmacogenetics Implementation Consortium; DPWG, Royal Dutch As-

sociation for the Advancement of Pharmacy-Pharmacogenetics Working Group; EM, extensive metabolizer; FDA, US Food and Drug 
Administration; N/A, not available; NS, nonsignificant; PGx, pharmacogenetic; PK, pharmacokinetic; PM, poor metabolizer

AUC in PM – AUC in EM
AUC in EM

x100
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may be necessary in CYP2D6 PMs. However, studies 
have shown no differences in clozapine AUC, half-life, 
and dose-corrected plasma concentration between CY-
P2D6 PMs and EMs,17 suggesting that patients treated 
with clozapine would not benefit from CYP2D6 phar-
macogenetic testing.
 There are important considerations related to 
pharmacokinetic implications of drug metabolism 
pharmacogenetics. Firstly, some antipsychotics have 
active metabolites (eg, aripiprazole, risperidone) and, 
therefore, the disposition of both parent drug and ac-
tive metabolite(s) may need to be taken into account 
when considering clinical implications. For example, ris-
peridone is metabolized to an equally active metabolite 
(9-hydroxy-risperidone) by CYP2D6. Risperidone ap-
pears to be metabolized to the active metabolite much 
slower in PMs than in EMs; thus, whereas the AUC of 
the parent drug was 169 ng.h/mL in PMs and 22.8 ng.h/
mL in EMs, the AUC of its active metabolite was, re-
spectively, 57.5 ng.h/mL and 139 ngh/mL.8 Therefore, 
when considering its total active moiety (risperidone + 
9-hydroxy-risperidone), the increase in AUC was only 
30%, compared with a 641% increase when considering 
the risperidone parent drug only (Table II). Given the 
complexity, DPWG guidelines recommend the use of 
alternative drugs or that extra caution be exercised for 
use of risperidone in patients who are PMs.4 A second 
consideration is that the impact of altered metabolizer 
status needs to be assessed on a drug-by-drug basis, as 

secondary drug metabolism pathways may impact the 
magnitude of effect of PM status. 
 Associations between CYP2D6 polymorphisms and 
clinical efficacy or safety have yielded conflicting re-
sults. Most clinical studies failed to show a significant 
relationship between CYP2D6 genotype and symp-
tom response.24-26 Numerous study limitations present 
challenges in interpreting these outcomes (limitations 
include nonprospective study design, small numbers 
of patients, heterogeneous methods of phenotype as-
signment, heterogeneous population groups across the 
studies, and confounding factors, such as interaction 
with concomitant drugs). On the other hand, some stud-
ies have demonstrated associations with adverse effects, 
especially extrapyramidal symptoms.26,27 When confined 
to prospective studies, a meta-analysis found a signifi-
cant association between tardive dyskinesia (TD) and 
CYP2D6 polymorphisms.26 
 It is premature to unequivocally conclude that 
CYP2D6 pharmacogenetic testing is highly predictive 
of clinical response in patients taking antipsychotics. 
However, well-established links between CYP2D6 PM 
status and pharmacokinetic parameters in some anti-
psychotic agents indicate that this information may be 
helpful for dosing and titration decisions.

CYP1A2

CYP1A2 represents another important enzyme respon-
sible for the biotransformation of some antipsychotics 
(Table II). Many pharmacogenetic testing laboratories 
now offer tests for CYP1A2 polymorphisms, although 
pharmacogenetic information regarding CYP1A2 re-
mains absent from product labels and guideline state-
ments for antipsychotic medications.
 Compared with genes encoding other CYP enzymes 
(eg, CYP2D6), the effects of CYP1A2 genetic polymor-
phisms on enzyme activity are not as well understood. Ad-
ditionally, there is currently no universally accepted meth-
od for defining CYP1A2 metabolizer groups by genotype. 
Commercial pharmacogenetic testing companies estimate 
CYP1A2 metabolizer status based on general effects that 
single-nucleotide variants have on expression or activity. 
CYP1A2 activity can be strongly influenced by environ-
mental factors (tobacco and diet), which makes under-
standing the effect of CYP1A2 genotype more difficult.28

 The most commonly tested variants in CAPTPs are 
CYP1A2*1F, *1K, *4, *5, *6, *7, *8, *11, *15, and *16. 
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Some of these variants increase gene function by induc-
tion of expression (CYP1A2*1F), and others decrease 
(CYP1A2*1K, *4, *7, *8, *11, *15, and *16) or abolish 
(CYP1A2*6) enzyme activity.29

 The clinical utility of CYP1A2 genotypes is unclear. 
One rather unique consideration for the interpretation 
of CYP1A2 pharmacogenetics is the significant impact 
of smoking on enzyme activity. Smoking rates in patients 
with psychosis are twice that of the general population.30 
The hydrocarbons in cigarette smoke are responsible 
for the induction of CYP1A2 in the body, increasing the 
clearance of substrates such as olanzapine, clozapine, 
chlorpromazine, and haloperidol up to 1.6-fold.31 In fact, 
smoking status has a more profound effect on clozapine 
metabolism than any known and currently tested CY-
P1A2 genetic variant (CYP1A2*1C and CYP1A2*1F).32,33 
Thus, parsing the environmental and genetic effects on 
CYP1A2 metabolism is difficult, and conflicting studies 
highlight the complexity and uncertainties of interpreting 
antipsychotic-CYP1A2 relationships.34-38

CYP3A subfamily

The CYP3A subfamily includes CYP3A4, CYP3A5, CY-
P3A7, and CYP3A43. These enzymes are involved in the 
metabolism of approximately 37% of 200 top-selling pre-
scription drugs,39 and many antipsychotics are substrates 
for the CYP3A4 enzyme (Table II).7 CYP3A4 and CY-
P3A5 have some overlap in substrate metabolism and 
are the most prevalent CYP3A enzymes in adults, and 
thus genetic variation influencing their activity may play 
a role in antipsychotic pharmacokinetics. 
 CYP3A5 is located at chromosome 7q22.1 and con-
tains 13 coding exons, with over 2000 variants reported to 
date.20 Although CYP3A4 and CYP3A5 enzyme activ-
ity is highly variable across the general population, most 
CYP3A4 alleles identified are either very rare or have 
minimal effects on CYP3A4 activity.40 CYP3A4 alleles 
tested for on currently available commercial pharmaco-
genetic panels include *1, *13, *15A, and *22. Although 
some structural or general enzyme activity changes have 
been ascribed to these variants,41 uniformly accepted me-
tabolizer groupings for CYP3A4 are lacking. 
 CYP3A5 arguably has more defined data on the ef-
fects of genetic variants on enzyme expression or func-
tion. The most common loss-of-function allele in white 
populations, CYP3A5*3, has been identified with fre-
quencies ranging from 94% in Europeans to 18% in Af-

rican populations. Other loss-of-function alleles include 
CYP3A5*6 and *7. CYP3A5*2 is considered to be a 
reduced-function allele.42 Currently available pharma-
cogenetic tests assay *1 and *3 for CYP3A5.
 Presently, there are no established guidelines or 
product labeling recommendations that address CY-
P3A pharmacogenetics related to antipsychotics. Al-
though some evidence exists that decreased-function 
alleles increase exposure to some antipsychotics,11,43 
other studies have not found such effects,44,45 making 
recommendations related to clinical utility premature 
at the present time.

ABCB1

The P-glycoprotein (P-gp) drug transporter, encoded 
by ABCB1, is a transmembrane transporter located 
throughout the body, including intestine, liver, and the 
blood-brain barrier.46 P-gp may affect drug absorption 
and distribution of substrates.47,48 Many antipsychotics, 
such as aripiprazole, olanzapine, risperidone, and pali-
peridone, are substrates of P-gp48; therefore, it may play 
a significant role in their disposition. 
 Among the over 12 000 variants identified in the 
ABCB1 gene region,20 three SNPs (rs1128503 [1236C>T], 
rs2032582 [2677G>T], and rs1045642 [3435C>T]) are the 
most commonly studied variants, and results are incon-
clusive regarding SNP-phenotype associations. Some 
studies suggested that the phenotype of these silent 
polymorphisms may result from protein folding and sta-
bility rather than from changes in gene expression, and 
the effect of the structural alterations is expected to be 
more substrate-specific.49,50 In this regard, true relation-
ships between ABCB1 genotype and pharmacokinetics 
of antipsychotic agents, as well as clinical outcomes, are 
unclear. Moreover, the high overlap in specificity of sub-
strates for P-gp with CYP3A4 makes understanding the 
effect of the P-gp genotype more difficult.51 Preliminary 
evidence suggests that patients who have the rare allele 
of those three polymorphisms may have better symptom 
response outcomes, higher risks of adverse events (olan-
zapine, risperidone), and higher plasma levels or AUCs 
of antipsychotic agents (olanzapine, risperidone, and clo-
zapine). However, as results across studies are mixed, the 
clinical utility of examining these variants is still uncer-
tain.48 A few pharmacogenetic testing laboratories now 
offer ABCB1-polymorphism testing of those three com-
mon SNPs for some other medical conditions, includ-
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ing epilepsy, cardiovascular diseases, and inflammatory 
bowel disease, and also with regard to antidepressant 
treatment. But to date there are no established guide-
lines or product labels that provide recommendations for 
ABCB1 pharmacogenetics related to antipsychotic use.

Pharmacodynamic genes and  
antipsychotic response

In addition to drug metabolizing enzymes and drug 
transporters, pharmacogenetic research has also fo-
cused on genes encoding therapeutic targets of an-
tipsychotic pharmacotherapies, with an emphasis on 
dopamine and serotonin neurotransmitter systems 
thought to be dysregulated in psychotic disorders.52,53 

Some of these markers are now included in CAPTPs 
(Table III),54-60 although they have yet to be included in 
drug labels or guidelines. Variants in pharmacodynamic 
genes have been important for understanding under-
lying mechanisms related to both disease presenta-
tion and treatment response. Some pharmacodynamic 
gene variants may be related to clinical response or 
tolerability to antipsychotic drugs and have also been 
investigated for relationships with disease risk, disease 
phenotypes, and risk for other nonpsychiatric condi-
tions. The following sections review genes and variants 
associated with antipsychotic treatment outcomes and 
for which clinical tests are currently available. Putative 
mechanisms, summaries of association data, and other 
considerations will be discussed.
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Gene
Variant 

description
Variant 

classification

Frequency 1000 genomes populations
Association data

AFR AMR EAS EUR SAS All

COMT
c.472 G>A, V158M 

rs4680
missense

0.28     
A

0.38     
A

0.28     
A

0.50     
A

0.44     
A

0.37     
A

Homozygous Met allele
increased clinical response

[OR=1.37, 95% CI: 1.02-1.85]81

DRD2/
ANKK1

c.2137G>A, E713K 
Taq1A; rs1800497

missense
0.33    

A
0.39    

A
0.41    

A
0.19    

A
0.31    

A
0.33    

A

Taq1A_A2 allele
increased risk of tardive dyskinesia

[OR=1.30, 95% CI: 1.09-1.55]57,58

DRD2
c.-486_-485 insC               

-141C ins/del      
rs1799732

5’-US pro-
moter region

0.57    
C 

Del

0.16    
C 

Del

0.14    
C 

Del

0.08    
C 

Del

0.13    
C 

Del

0.24    
C  

Del

-141 Del_C
decreased treatment response
[OR=0.65, 95% CI: 0.43-0.97]56

DRD3
c.25A>G, S9G      

rs6280
missense

0.82   
G

0.43   
G

0.31   
G

0.34   
G

0.42   
G

0.49   
G

Gly allele
increased risk of tardive dyskinesia

[OR=1.17, 95%CI: 1.01-1.37]72

HTR2A
c.102C>T, S34S       

rs6313
synonymous

0.39    
T

0.35    
T

0.59     
T

0.44     
T

0.42     
T

0.44     
T

C allele
increased risk of tardive dyskinesia

[OR=1.64, 95%CI: 1.17-2.23]86

HTR2C
-759 C>T    

rs3813929
5’-US pro-

moter region
0.01     

T
0.12     

T
0.15     

T
0.16     

T
0.28     

T
0.13     

T

C allele                                                                                     
increased risk of weight gain                                                                
[OR: 2.70; 95%CI: 1.46-5.01]100

Table III.  Common pharmacodynamic gene variants included in clinical testing panels for antipsychotic treatment response. 1000 genomes super-
populations are as follows: African (AFR; n=661), Mixed American (AMR; n=347), East Asian (EAS; n=504), European (EUR; n=503), and 
South Asian (SAS; n=489). Association data for each variant is summarized from the most recently published meta-analysis. US, upstream



Dopamine system: DRD2

All currently approved antipsychotics have varying de-
grees of antagonistic action at dopamine D2 receptors 
in the brain. Dopamine receptor genes have therefore 
received much attention as strong candidates in anti-
psychotic pharmacogenetic association studies. The D2 
receptor is expressed in the brain,61 and D2 antagonism 
by antipsychotics in the mesolimbic dopamine pathway 
is thought to be responsible for the reduction in posi-
tive symptoms of schizophrenia, and antagonism in the 
nigrostriatal pathway is related to movement disorder 
side effects. 
 Over over 4000 variants in DRD2 have been iden-
tified20; however, at present only two: the Taq1A poly-
morphism (rs1800497) and -141 Ins/Del (c.-486_-485in-
sC; rs1799732) are available on CAPTPs. It is important 
to be aware that DRD2 has also been associated with 
several nonpharmacogenetic phenotypes, including risk 
for attention-deficit/hyperactivity disorder (ADHD), 
alcohol dependence, schizophrenia, Tourette syndrome, 
and others.62-65

 Taq1A nomenclature is derived from the restric-
tion endonuclease enzyme originally used to identify 
this SNP. The “A1” allele of Taq1A—now known to be 
located 10 kb downstream of DRD2 within the coding 
region of the ankyrin repeat and kinase domain–con-
taining 1 (ANKK1) gene (c.2137G>A, Glu713Lys)—is 
associated with D2 expression and reduced striatal re-
ceptor density.66-68 The A1 allele is in linkage disequilib-
rium with two other DRD2 intronic variants (rs2283265 
and rs1076560), which influence DRD2 splicing.69 As-
sociations between the Taq1A_A1 allele and increased 
symptom response have been reported, but meta-
analysis of this relationship showed no significant as-
sociation.57 With respect to side effects, meta-analyses 
indicate an approximately 30% increase in the odds of 
developing TD in Taq1A_A2 allele carriers (predomi-
nantly first-generation antipsychotics).55,56 Additionally, 
studies have also shown correlations between other 
side effects, including hyperprolactinemia and weight 
gain, and Taq1A genotype.70-72

 The DRD2 -141 Ins/Del polymorphism is located 
in the promoter region approximately 485 nucleotides 
upstream of the coding start site and consists of a dele-
tion or insertion of a cytosine base. The -141 Del_C al-
lele is correlated with altered D2 expression58,73 and de-
creased antipsychotic treatment response.74-76 Though 

conflicting results exist, meta-analysis suggests that -141 
Del_C carriers are approximately 35% less likely to 
respond than insertion homozygotes.57 There are other 
DRD2 variants, (A-241G [c.-585A>G; rs1799978]; Ser-
311Cys [c.932 C>G; rs1801028]; and Taq1B [-882 G>A; 
rs1079597]) that have been examined, with mixed re-
sults, in association studies, but they are not currently 
available as clinical tests.52,53

Dopamine system: DRD3

In addition to the dopamine D2 receptors, antipsychot-
ics show similar affinity for the dopamine D3 receptor. 
D3-receptor expression increases in the striatum after 
antipsychotic treatment,77-79 suggesting that the gene 
encoding the D3 receptor (DRD3) may be important 
for pharmacogenetic investigation. Over 4000 DRD3 
variants have been identified.20 Pharmacogenetic re-
search related to antipsychotic treatment has focused 
on a missense variant that results in a serine-to-glycine 
amino acid substitution (Ser9Gly, c.25A>G, rs6280). 
Multiple studies have investigated the relationship 
between the Ser9Gly polymorphism and antipsychotic 
response; however, they have produced conflicting re-
sults, with a meta-analysis observing a nonsignificant 
trend between the Ser9 allele and decreased antipsy-
chotic response (odds ratio=0.82; 95% confidence in-
terval, 0.65-1.04).80 Additionally, multiple studies have 
reported a significant association between Ser9Gly 
and TD52; however, three separate meta-analyses pro-
vide inconsistent findings with only a modest to non-
existent effect for the Gly9 allele with increased TD 
risk.58,81,82

Dopamine system: COMT

Catechol-O-methyltransferase (COMT) is a key en-
zyme for dopamine clearance and metabolic termina-
tion of dopamine activity and has been investigated in 
antipsychotic association studies. 
 Over 1900 variants have been identified in COMT.20 
Most studies have focused on a common missense 
variant, Val158Met (c.472 G>A, rs4680), which is now 
included on some CAPTPs. The Met allele confers 
thermoinstability of the COMT enzyme, decreasing do-
pamine catabolism, and thereby increasing dopamine 
in areas of the brain, such as the prefrontal cortex.83 
Correlations have been observed between the Met al-
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lele and increased clinical response to antipsychotics, 
greater improvement in negative symptoms, and cog-
nitive function.84-89 Conflicting results exist, but two re-
cently published meta-analyses confirmed significant 
associations between homozygous Met allele carriers 
and a 37% increase in the odds of clinical response, 
which may be driven by effects on positive symptoms 
and atypical antipsychotic treatment.54,90 Early studies 
suggested that the Met allele may be protective against 
TD; however, meta-analyses have presented conflicting 
or nonsignificant results.55,91

 
Serotonin system genes

Second-generation or “atypical” antipsychotics (SGAs) 
have higher affinities for serotonin 2A receptors (5-
HT2A) than for D2 receptors, a pharmacodynamic char-
acteristic thought to have implications for both the ef-
ficacy and tolerability profiles of these medications.92,93 
As a result, many pharmacogenetic studies have investi-
gated genes governing or influencing serotonin transmis-
sion. Of the serotonin receptors, the 5-HT2A and 5-HT2C 
subtypes have been the primary targets of investigations 
into antipsychotic response and tolerability and are now 
included on some clinically available test panels.

Serotonin system: HTR2A

The serotonin 2A receptor, encoded by HTR2A, is the 
most extensively studied serotonin-receptor target of 
SGAs. Currently, two polymorphisms of HTR2A are 
represented on commercially available pharmacogenetic 
test platforms. The first, T102C (c.102C>T, S34S; rs6313), 
has shown weak associations with SGA response, with the 
T allele resulting in a modest (36%) increase in the odds 
of response.94 Additionally, studies have also suggested 
a relationship between the 102C allele and a modestly 
increased TD risk.59 The functional consequence of this 
synonymous polymorphism remains unknown, but the 
C allele has been associated with lower HTR2A expres-
sion resulting either from suspected epigenetic mecha-
nisms95 or due to a second polymorphism in tight linkage 
disequilibrium. The G allele of this linked SNP, A-1438G 
(rs6311), is associated with decreased promoter activ-
ity,96,97 as well as with antipsychotic response; however, 
results are inconsistent.98 Other SNPs in HTR2A includ-
ing His452Tyr (c.1354C>T, H452Y; rs6314) and c.614-
2211 G>A (rs7997012) have also been correlated with 

antipsychotic treatment response and side effects,94,99-103 
but with inconsistent results and uncertain clinical impli-
cations.59,104

Serotonin system: HTR2C

The serotonin 2C receptor, encoded by HTR2C, has also 
been extensively studied because of its critical involve-
ment in mediating the effect of antipsychotics on weight 
gain, negative symptoms, and possibly cognitive func-
tion.105 Although there are other nonsynonymous SNPs 
potentially relevant to treatment outcomes that reside in 
HTR2C,106 the variant that appears on some CAPTPs is 
-759 T/C (rs3813929), which has been extensively investi-
gated for associations with antipsychotic-induced weight 
gain. It is well known that the 5-HT2C receptor is involved 
in regulation of food intake, and 5-HT2C antagonists cause 
increases in food intake and weight gain.105 In regard to 
the C-759T polymorphism, the C allele has been consis-
tently associated with a 240% to 270% increased odds in 
the risk of weight gain when meta-analyses examine find-
ings across multiple studies.60,107 Studies indicate that the 
C-759T polymorphism may affect transcription factor 
binding, with the T allele associated with greater expres-
sion and less weight gain.108,109 Knockout rodent studies 
indicate that an absence of 5-HT2C receptors is related 
to greater feeding activity and adipose disposition.110 
Antipsychotics with the greatest affinities for 5-HT2C 
receptors (ie, clozapine and olanzapine) are also associ-
ated with the greatest weight gain, a risk that seems to be 
modestly lower in persons carrying the higher-expressing 
form of the gene. Owing to the strength and replicability 
of this association, the C-759T polymorphism has been 
informative for understanding one mechanistic piece un-
derlying antipsychotic weight gain. Although it appears 
on some CAPTPs, the clinical utility of this SNP requires 
further study. Specifically, whether selecting antipsychot-
ic therapy based on this SNP results in a more favorable 
weight gain profile than usual care is not known.
 
Other development and regulatory system genes

Despite the evidence for the relationships between 
specific variants within dopamine and serotonin genes, 
antipsychotic treatment response, and tolerability, there 
may arguably be other pharmacodynamics genes that 
contribute to these outcomes. This evident need has led 
to numerous investigations in other genes that influ-

332



Genetic markers for antipsychotic pharmacotherapy - Eum et al Dialogues in Clinical Neuroscience - Vol 18 . No. 3 . 2016

ence neuronal function, neurotransmitter signaling, and 
neurotransmitter disposition. Currently, these genes are 
not included in clinically available pharmacogenetic 
tests and thus not included for detailed discussion in 
this review. Nonetheless, genetic variations in BDNF, 
GRM3, HSPG2, HTR1A, LEP, LEPR, MC4R, MTH-
FR, SULT4A1, and ZNF804A  (and others) have shown 
some promising associations with aspects of antipsy-
chotic symptom improvement and side effects.52,53,98

Clinical implementation of  
pharmacogenetics in psychiatry

Progress in the field of antipsychotic pharmacogenet-
ics has been substantial over the past 20 years, result-
ing in the identification of numerous associations be-
tween antipsychotic drug efficacy and tolerability with 
various genetic markers in both pharmacokinetic and 
pharmacodynamic pathways. This has led to excitement 
about using this knowledge in the clinic where there 
is a dire need to improve treatment outcomes. Com-
mercial pharmacogenetic testing companies have now 
made this technology accessible by selectively including 
genetic variants into antipsychotic-related genetic test-
ing panels. However, decisions about which variants to 
include in commercial panels are made by the testing 
companies. Although the selection of variants is often 
based on an evaluation of scientific literature, there are 
currently no standards to guide this process. 
 Governmental agencies such as the US Food and 
Drug Administration (FDA) and the European Medi-
cines Agency (EMA) now emphasize that drug manu-
facturers should include pharmacogenetic information 
in product labeling when appropriate. Additionally, 
groups including CPIC, DPWG, and Eu-PIC have 
worked to establish guidelines about how to use avail-
able genetic information to guide treatment. Currently, 
DPWG guidelines provide actionable recommenda-
tions for aripiprazole, risperidone, and haloperidol (see 
Table II).4 CPIC and Eu-PIC have not yet published 
pharmacogenetic recommendations for antipsychotics. 
Moreover, clinical validity and utility of these phar-
macogenetic testing panels are not well evaluated for 
antipsychotics. Clinical use thus remains limited by the 
knowledge gap between laboratory and translational 
research and clinical practice. In order to decrease this 
gap, additional work is in progress to determine how 
and when testing might be useful, as well as whether 

pharmacogenetics-guided dosing or drug selection 
strategies are better than usual care. 
 Currently, testing laboratories report the results 
with varying degrees of interpretation, decision sup-
port, and even therapeutic recommendations. However, 
it is challenging to integrate pharmacogenetic testing 
data into clinical records because of the complexity and 
heterogeneity of the information. In order to address 
this issue, a number of groups, including the Institute of 
Medicine Roundtable on Translating Genomic-Based 
Research for Health and CPIC have worked to stan-
dardize the terminology of pharmacogenetic testing. 
In spite of this, standardized terms and languages are 
still lacking; thus, each clinician still needs to navigate 
the testing results and enter them into medical records 
without standardized guides for this process. 
 Another important consideration affecting the clini-
cal utility of antipsychotic-related pharmacogenetics has 
to do with the differences in genomic coverage across 
pharmacogenetic testing methodologies. Initially, phar-
macogenetic testing was conducted by the single-gene 
approach. Multigene panels, analyzing multiple genes or 
genetic variants in a single assay, have now become avail-
able and are offered by numerous clinical laboratories.3 
Testing multiple pharmacogenetic variants relevant to a 
specific treatment or therapeutic area in a single assay 
is more cost-effective and can provide valuable preemp-
tive pharmacogenetic information (applicable to medi-
cations that patients potentially receive during their life-
time).111 Furthermore, technologies for genetic detection 
and discovery continue to rapidly advance and decrease 
in cost, leading to the availability of whole exome and 
genome sequencing methodology in clinical genetics 
laboratories. These technological advancements have al-
lowed for a more comprehensive genomic coverage, but 
create challenges for the integration of this information 
into electronic medical records and in how to translate 
large amounts of genomic data into clinically relevant 
and actionable information required for drug and dosing 
selection in antipsychotic treatment. 

Conclusions

There is a great need to improve treatment and dosing 
selection for patients with psychotic disorders, and im-
proving the precision of our treatments, in part through 
pharmacogenetic testing, has great potential to offer a 
more personalized approach to treatment decisions in 
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clinical psychiatry. Genetic variations in specific drug 
metabolism markers may be helpful for dosing and 
titration approaches because of their impact on phar-
macokinetics; however, product-labeling language re-
lating to specific gene variants varies across different 
antipsychotic medications. Genetic variants related to 
antipsychotic pharmacodynamics are now included in 
CAPTPs, although they remain absent from drug labels 
or guidelines. The clinical application of antipsychotic 
pharmacogenetics is in its early stages but seems to be 
one promising approach to help us improve antipsy-
chotic pharmacotherapy. More research is needed on 
using test information prospectively, although some in-

formation obtained retrospectively may help in charac-
terizing patterns of tolerability or response for a given 
patient. We can begin to provide valuable information 
that is needed for the development and implementation 
of pharmacogenetic guidelines necessary for common 
clinical utility in antipsychotic use through: (i) increased 
genomics education relevant for clinicians; (ii) develop-
ment of efficient infrastructure between research and 
clinical practice; and (iii) advancing current prediction 
algorithms to include both comprehensive genomic in-
formation and pertinent clinical variables.  o 
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Pruebas farmacogenéticas para medicamentos 
antipsicóticos: repercusiones clínicas y 
consideraciones

Con frecuencia constituye un desafío optimizar la far-
macoterapia antipsicótica debido a la significativa va-
riabilidad en la eficacia y tolerabilidad. Los factores 
genéticos que influyen en la farmacocinética y farma-
codinámica pueden contribuir en parte a esta variabi-
lidad. Los estudios de investigación han caracterizado 
estas relaciones farmacogenéticas y actualmente existen 
algunos marcadores genéticos como pruebas clínicas. 
Estos avances en la investigación farmacogenética y la 
disponibilidad de pruebas tienen un gran potencial para 
mejorar los resultados clínicos y la calidad de vida en 
los pacientes psiquiátricos. Para los clínicos que conside-
ren el empleo de la farmacogenética es importante que 
tengan en cuenta las consecuencias clínicas y también 
las limitaciones de los marcadores con las pruebas dis-
ponibles en la actualidad. Esta revisión se focaliza en la 
farmacocinética y la farmacodinámica de las variantes 
génicas que están actualmente disponibles en paneles 
comerciales de pruebas genéticas. Se discuten las asocia-
ciones de estas variantes con la eficacia clínica y los efec-
tos adversos, como también otras repercusiones clínicas 
en la farmacoterapia antipsicótica.  

Tests pharmacogénétiques pour traitements 
antipsychotiques : considérations et implications 
cliniques 

La variabilité significative de l’efficacité et de la tolé-
rance des traitements antipsychotiques rend leur opti-
misation souvent difficile. Cette variabilité peut être 
due en partie à des facteurs génétiques influant sur 
la pharmacocinétique et la pharmacodynamique. Des 
études scientifiques ont caractérisé ces relations phar-
macogénétiques, et certains marqueurs génétiques sont 
maintenant disponibles sous forme de tests cliniques. 
Ces avancées (recherche pharmacogénétique et dispo-
nibilité des tests) peuvent améliorer considérablement 
les résultats cliniques et la qualité de vie des patients 
psychiatriques. Les médecins s’intéressant à la pharma-
cogénétique doivent comprendre les implications cli-
niques et les limites des marqueurs des tests actuelle-
ment disponibles. Cet article s’intéresse principalement 
à la pharmacocinétique et à la pharmacodynamique des 
variants géniques proposés aujourd’hui dans les diffé-
rents tests génétiques commercialisés. Nous analysons 
dans la pharmacothérapie antipsychotique la relation 
de ces variants avec l’efficacité clinique et les effets in-
désirables, ainsi que d’autres implications cliniques.
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