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PURPOSE. Cone photoreceptor cells can be noninvasively imaged in the living human eye by
using nonconfocal adaptive optics scanning ophthalmoscopy split detection. Existing metrics,
such as cone density and spacing, are based on simplifying cone photoreceptors to single
points. The purposes of this study were to introduce a computer-aided approach for
segmentation of cone photoreceptors, to apply this technique to create a normal database of
cone diameters, and to demonstrate its use in the context of existing metrics.

METHODS. Cone photoreceptor segmentation is achieved through a circularly constrained
active contour model (CCACM). Circular templates and image gradients attract active
contours toward cone photoreceptor boundaries. Automated segmentation from in vivo
human subject data was compared to ground truth established by manual segmentation. Cone
diameters computed from curated data (automated segmentation followed by manual removal
of errors) were compared with histology and published data.

RESULTS. Overall, there was good agreement between automated and manual segmentations
and between diameter measurements (n ¼ 5191 cones) and published histologic data across
retinal eccentricities ranging from 1.35 to 6.35 mm (temporal). Interestingly, cone diameter
was correlated to both cone density and cone spacing (negatively and positively, respectively;
P < 0.01 for both). Application of the proposed automated segmentation to images from a
patient with late-onset retinal degeneration revealed the presence of enlarged cones above
individual reticular pseudodrusen (average 23.0% increase, P < 0.05).

CONCLUSIONS. CCACM can accurately segment cone photoreceptors on split detection images
across a range of eccentricities. Metrics derived from this automated segmentation of adaptive
optics retinal images can provide new insights into retinal diseases.

Keywords: nonconfocal split detection, cell segmentation, active contour model, normal
database, reticular pseudodrusen

Noninvasive imaging of cone photoreceptor mosaics in the
living human eye has been enabled by various adaptive

optics (AO) ophthalmoscopy modalities.1–3 Quantitative assess-
ment of the mosaic through metrics on AO retinal images, such
as cone density and spacing, has shown potential for clinical
application2,4 with substantial efforts already realized toward
assembling normative databases.5–12 To overcome the tedious
task of manually identifying cones and to remove the variability
of human graders, various automated algorithms have been
developed for two types of AO modalities: confocal13–16 and
nonconfocal17–19 AO scanning light ophthalmoscopy (AOSLO).
However, most quantitative metrics have been based on
representing each cone as a point.9 In this work, we focused
on using region-based descriptors of cone photoreceptors (i.e.,
representing cones as a cloud of points as opposed to a single
point such as the centroid) as seen by nonconfocal split
detection AO,11 starting with cone diameter. Enlargement of
cone photoreceptors has been reported in various diseas-
es.12,20,21 However, when performed manually, this process is
several-fold more time intensive than identification of cone

centers. Therefore, we present a novel algorithm that builds
upon our previous work20,22 enabling automated segmentation
of cone photoreceptors, and demonstrate its potential value for
clinical application.

Cell segmentation is an active area of research in digital
pathology and microscopy.23 Active contour models
(ACMs)24,25 are of particular interest here because of their
subpixel accuracy as well as robustness to image noise.26–30

ACM is a propagation process of deformable and closed
contours that is controlled by image forces pulling them to
stop at object boundaries.24,25 If the contour has an
explicit mathematical representation, such as a spline,
ACM is also called ‘‘snake’’24; if it is implicitly embedded
into a high-dimensional function and the actual contour is
the zero isosurface of the function, then it is also called
‘‘level set.’’25 Level sets are often exploited in cell
segmentation because they are superior to snakes in
handing touching cells.26–29 Cell shape priors from a set
of manually marked cell contours are often embedded into
level-set framework to constrain level-set propagation only
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near the shape boundary, which can prevent cell over-
segmentation due to weak cell boundaries that fail to stop
contour propagation.27,30 However, directly applying these
approaches to segment cone photoreceptors is challenging
given the anisotropic boundary consisting of dark and
bright shading on two opposite sides and little to no
contrast on orthogonal sides (Fig. 1A). This three-dimen-
sional appearance with oblique illumination also poses an
interesting dilemma on defining the precise location of the
boundary, which we will discuss later. To date, there have
been very few articles addressing image analysis of split
detection images,17,18,22,31,32 with only one report of cone
photoreceptor segmentation22 (defined as the extraction of
the region occupied by cells as opposed to identification of
cell centers).

Here, instead of manually creating shape priors,27,30 we
proposed to solve the cone photoreceptor segmentation
problem by dynamically establishing circular templates for
cone photoreceptors, based on automatic detection of
their dark and bright regions, and also cell-specific circular
templates, which we call circularly constrained active
contour model (CCACM). This improves upon our previous
work22 with a novel snake method to improve contour
position estimation by achieving subpixel segmentation.
We then demonstrate the potential power of the CCACM
approach in streamlining the creation of a normal database
of cone photoreceptor diameters across a wide range of
eccentricities. Finally, we illustrate the potential clinical
utility of the photoreceptor inner segment size as a metric
by studying a patient with photoreceptors that appear to
be locally enlarged over reticular pseudodrusen.

METHODS

Data Collection

Research procedures adhered to the tenets of the Declaration
of Helsinki and were approved by the Institutional Review
Board of the National Institutes of Health. Written informed
consent was obtained after the nature of the research and
possible consequences of the study were explained to the
subjects.

Data were acquired by using a custom-built multimodal AO
retinal imager (based on an AOSLO)11,33 outfitted with a
computer-controlled fixation system.34 Image sequences were
corrected for eye motion35 and manually assembled into
montages that included both confocal and split detection
images, as previously described.17 In this study, we imaged 10
subjects with no history of systemic or ocular disease (five
female, five male; age range, 22–40 years; mean 6 SD, 26.3 6

5.6 years; additional information in Supplementary Table S1)
and also a patient with late-onset retinal degeneration (male, 55
years). For each subject, over 100 retinal locations were
imaged, from the fovea out to an eccentricity of approximately
6 mm in the temporal direction. The powers of the 790- and
850-nm light sources measured at the cornea were less than
135 lW and 35 lW, respectively, which were less than the
maximum permissible exposure set by the American National
Standards Institute standard Z136.1 2014.36 The retinal scaling
factor for conversion from degrees to millimeters was
computed by using a paraxial ray trace on a three-surfaced
simplified model eye37 using the subject’s biometric informa-
tion (axial length, corneal curvature, and anterior chamber
depth) measured with an IOL Master (Carl Zeiss Meditec,
Dublin, CA, USA).

FIGURE 1. Overview of cone photoreceptor segmentation algorithm on split detection images (subject 2). (A) Input image. (B) Dual-intensity
extreme region detections (yellow dots). (C) Dual-intensity extreme regions (red and blue regions). (D) Detection pair connections that represent
candidate cone photoreceptors for segmentation (green lines). (E) Convex hull of each cone (black contours). (F) Circular templates computed
from contours (yellow circles). (G) Cone boundaries (cyan contours) from CCACM. (H) Refined boundaries (green contours) via snake model.
White arrows indicate a cone photoreceptor with single extreme region detection; black arrows, cone with more than two region detections. A
recovery process finds missing opposing intensity regions to complete the process, allowing the proposed segmentation algorithm to handle cones
with single-region detection while still tolerating multiple-region detections. Scale bar: 10 lm.
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Automated Cone Segmentation Algorithm

The automated cone segmentation algorithm consists of seven
steps (Fig. 1; detailed mathematical description of the
proposed algorithm is provided in the Appendix).

Step 1: Dual Region Detection. Because cone photore-
ceptors contain both dark and bright regions, multiscale
circular voting17 is used to detect region pairs. Briefly, this
algorithm detects gradient magnitude values at the boundaries
of circular regions and effectively transfers them into the
centers of the local radii of curvature. The region centroid is
then determined as the point with the highest response values
(Fig. 1B, yellow dots).

Step 2: Dual Region Segmentation. Pairs of dark and
bright regions are segmented for the purpose of establishing
cell-specific circular templates for segmentation in the
subsequent steps. Since dual regions are either dark or bright,
their intensity values are either regions of local minima or
maxima. Their first image derivatives are therefore close to
zero, with second derivatives either positive for dark regions or
negative for bright regions. Therefore, we used the Hessian
matrix to represent the second image derivatives of the 2D
image intensity function (see Appendix).

Dual region detections from Step 1 form seed points to
initialize this step. Starting from each seed point, region
growing is exploited to include image points with positive or
negative Hessian matrix response according to Equation A7 to
segment dark and bright regions (Fig. 1C, red and blue
regions). Since actual cone segmentation is carried out in a
subsequent step, the positioning of this dual region segmen-
tation relative to actual cone boundaries is deemphasized here.
Instead, we leverage the robustness of the Hessian matrix
response to establish stable circular templates for initializing
the actual cone segmentation that follows.

Step 3: Dual Region Connection. This step pairs bright
and dark regions corresponding to each cell, according to the
following criteria: (1) dark regions are always on the left of
bright ones (Fig. 1C; red and blue regions, respectively), (2)
their distance between region detections (Fig. 1B, yellow dots)
is less than the expected maximum cone radius (4.5 lm in our
datasets, which is consistent with what has been reported in
histology38), and (3) if there are multiple region candidates, the
one with the largest area is selected (Fig. 1C, black arrow).
Dual regions from a single cone photoreceptor can thus be
connected (Fig. 1D, green lines). Some cells contained only a
single region (Fig. 1C, white arrow). The strategy for recovery
of such regions is described in Step 4.

Step 4: Convex Hull Determination. This step deter-
mines initial bounding regions for each cell from its dual
regions. The morphology of the bounding region is used to
determine the size of circular templates. Note that there are
usually gaps between dual regions (Fig. 1C). To fill these gaps,
two distance functions39 are computed for each gap starting
from the boundary contours of its dual regions, where the
distance function measures the shortest distance of each image
point to the starting contour. The shortest distance between
two contours is used as a filling threshold: the gap is filled with
a set of image points if their distance to both contours is less
than the shortest contour distance (Equation A10; Fig. 1E,
green regions). Finally, the combined dual regions plus filled
gaps are imported into the convex hull algorithm40 to
determine the smallest convex polygon (Fig. 1E, black
contours).

Recovery Procedure. A recovery procedure is applied to
cones that contain only a single region (Figs. 1C–E, white
arrows). First, we generate an intensity histogram of all dark
regions that were identified from the previous steps. Next, for
each cone with a single bright region, we define a trapezoidal

arc search area starting from the region detection of the
current bright region to find a seed point in the missing dark
region. The missing dark region is recovered through a fast
matching algorithm25 to grow the seed point. Following
recovery, convex hull algorithm can be used to determine
the bounding regions for dual regions, except that there are no
filled gaps. In the opposite case (dark regions missing bright
regions), the same recovery process is applied except that we
invert the intensity values of the original split detection image
as �I x; yð Þ ¼ 255� I x; yð Þ, where the maximum intensity value
is 255. Thus, dark regions are changed to bright, and bright
ones are inverted to dark for the purposes of recovery.

Step 5: Circular Template Construction. This step aims
to create circular templates from bounding regions to help
constrain actual cone segmentation. An ellipse is fit to each
bounding region from the previous step, with minor and major
axes r1 and r2, respectively. A circular template is constructed
centered on the bounding region with radius given by
ðr1 þ r2Þ=2, based on the assumption that cone photorecep-
tors are circular in shape (Fig. 1F, yellow circles). Since these
circular templates are constructed dynamically from the image
itself, they are already placed in the desired image locations to
constrain cone segmentation.

Step 6: Circularly Constrained Active Contour Model.
The goal of this step is to find cone boundary contours based
on (higher) image gradient magnitudes, which is guided by the
circular templates from Step 5. Level-set propagation is used to
reduce oversegmentation of any cone photoreceptors that
touch (e.g., at lower eccentricities, where they are closer
together). The level set is initialized by using the circular
template contour, and image forces are defined as the weighted
linear combination of image gradient magnitudes and normal-
ized distance from circular template boundaries (Appendix,
Equation A16). Level sets are iteratively pulled toward cone
boundaries by these image forces (Fig. 1G, cyan contours).
Image forces reach a minimum when they approach the
boundary balanced by image gradients and the circular
template, at which point the iterations are stopped.

Step 7: Active Contour Refinement. Cone boundary
contours from CCACM often contain many jagged edges due to
pixel space (Fig. 1G, cyan contours), which can discretize the
computation of cone photoreceptor diameters. Moreover,
cones do not appear to have jagged edges in images (or if
they do, it is below the resolution limit of the current system).
Therefore, the purpose of this step is to reduce the effects of
pixelation and to achieve subpixel segmentation. Instead of
using level-set propagation to refine contours, an explicit
active contour model (snake)24 is used because it contains a
higher-order contour smoothness term. Enforcing the smooth-
ness term stretches the contour to remove the jagged edges in
subpixel space (Fig. 1H, green contours).

Cone Diameter Measurement

The area of each cell contour is calculated by treating it as a
polygon and is computed on the basis of this representation.41

Cone diameter was calculated on the basis of a circle with
equivalent area.

Pixel Sampling

Pixel sampling is determined during image acquisition by the
field of view (FOV): larger FOVs reduce the number of pixels
within each cone, which might cause instability of some image
operations in the segmentation algorithm that are computed
over pixel space. A commonly used FOV for AO imaging (e.g.,
~0.46 mm, corresponding to 1.58 of visual angle) can have
cones that are only approximately 11 pixels across in size, even
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at eccentric locations (Fig. 2). In contrast, smaller FOVs lead to
larger numbers of pixels within each cone, but may be less
ideal for image acquisition owing to the need to acquire more
image locations and the increase in retinal exposure to light
when compared to larger FOVs. Therefore, determination of
acceptable pixel sampling that results in accurate results is
important for cone diameter estimation. Ten retinal regions of
interest (ROIs) (60 3 60 lm) from 10 healthy subjects at the

eccentricity of approximately 4.5 mm were selected to
determine the optimal FOV for cone diameter estimation. Each
area was imaged with three different FOVs: 0.23, 0.30, and 0.45
mm. Cone contours were manually marked in the image with
FOV of 0.23 mm (Fig. 2, red contours) because it contained the
highest pixel sampling. Manually marked contours, including
repeated markings from the same expert grader, were
compared with the results from CCACM. The segmentation
accuracy was evaluated by using the average absolute diameter
difference (ADD) and relative diameter difference (RDD) as
defined in Table 1. All subsequent results were generated from
optimized pixel samplings.

Validation of Cone Segmentation Results

Ten retinal ROIs (60 3 60 lm) from 10 healthy subjects at the
eccentricity of approximately 4.5 mm from fixation were
selected to evaluate segmentation accuracy. At this eccentric-
ity, approximately half of the image is covered by cones, while
the other half is not, providing equal opportunity for false
positives and false negatives to appear. These 10 retinal ROIs
are different from the ones used for the FOV optimization. All
cone photoreceptors from these ROIs were manually segment-
ed by a single expert grader to generate ground truth. For
evaluation of segmentation accuracy, in addition to ADD and
RDD, we also used average symmetric contour distance (ASD),
root mean square symmetric contour distance (RMSD), and
maximum symmetric contour distance (MSD) (Table 1). These
metrics are widely used to evaluate accuracy in organ and
tumor segmentation.42

Owing to the ‘‘3D’’ appearance of cells, the precise cell
boundary can be difficult to define (e.g., whether and how
much of the ‘‘shadow’’ to include in the cell). To better
quantify this issue, for each ROI, five cone photoreceptors
were randomly selected (approximately half of the cones that
are fully contained within each ROI; Supplementary Fig. S1);
we then asked the same grader to repeat manual segmentation
on unmarked versions of these cones 8.5 months afterwards (at
which point the grader did not retain any memory of the
previous markings). This grader did not have any knowledge of
the automated segmentation results until the completion of the
study. Differences between the first and second contours were
analyzed to understand repeatability. We also compared
automated segmentation results with the first manual marks,
second manual marks, and average of two manual marks.

FIGURE 2. FOV (pixel sampling) optimization. Comparison of cone segmentation results on the images acquired at the same retinal region of
subject 5 with different FOVs: (A) 0.23 mm (cone diameter ~22 pixels); (B) 0.3 mm (~16 pixels); (C1) 0.46 mm (~11 pixels); (C2) 0.46 mm
upsampled to 0.23 mm (~22 pixels). For visualization purpose, all images are displayed at the same scale. CCACM segmentation results are shown
in green contours, and manual markings in red. Since cone photoreceptors are composed of intensity patterns of half dark and half bright regions,
the width of each region will contain even fewer pixels (approximately half the cone diameter). This can lead to pixel-sampling–induced errors in
segmentation. The cone indicated by white arrows was oversegmented in (B) and (C1), but not (A), while the one indicated by blue arrows was
significantly oversegmented in (C1), but not in (A) and (B). These oversegmentation issues can be addressed as shown in (C2) by upsampling the
image to provide sufficient pixel numbers within each cone. Scale bar: 10 lm.

TABLE 1. Five Metrics to Evaluate the Segmentation Accuracy Between
Manually Marked and Automatically Segmented Cone Boundaries
Contours
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Let CM and CS be manually marked and automatically segmented
contours, containing N1 and N2 points, respectively. DM;i and DS;i are i-
th cone diameters computed from CM and CS . N is the number of cones
that is contoured in both CM and CS . DM x; yð Þ and DS x; yð Þ are two
distance functions computed from CM and CS . ADD is the average
absolute difference of cone diameters from manually marked and
automatically segmented contours. ASD is the average symmetric
contour distance; for each point in the manually marked contour, the
closest point in the automatically segmented contour is determined
from the Euclidean distance; the same process is performed on each
point in the automatically segmented contour; the average of all these
shortest distances gives ASD; the value is 0 for a perfectly overlapping
contour pair. RDD is the average ratio between absolute diameter
difference and diameters from manually marked contours. The MSD
metric is also similar to ASD, except that the maximum of all shortest
distances is chosen instead of the average. The RMSD metric is similar
to ASD; it considers the squared distances between the two sets of
contour points, averages the squared values, and then takes the square
root.
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Quantification of Cone Diameters in Relation to
Published Studies

As reported previously,17 cone photoreceptors cannot current-
ly be reliably resolved by using split detection in the foveal
center of healthy retinas. Therefore, at eccentricities ranging
from approximately 1.35 to 6.35 mm along the temporal
direction, 146 ROIs were selected from 10 healthy subjects (70
3 70 lm ROIs). Whenever needed, the ROIs were slightly
shifted to avoid blood vessels. Following automated CCACM
segmentation, data were manually corrected to remove
erroneous identifications for the purposes of establishing a
preliminary normal database. Cone diameters were computed
from normal database and plotted against published histology
and in vivo data.11,12,38,43

Cone diameter is a region-based quantitative measurement,
which differs from existing point-based measurements such as
cone density and spacing. Whether there are relationships
between the two remains to be explored. Therefore, we also
computed the cone density and spacing for the same 146 ROIs,
from a previously developed implementation9 of the density
recovery profile approach.44,45 Univariate linear regression was
performed to understand the correlation between diameter
and density as well as diameter and spacing, with 1-way
analysis of variance performed to determine statistical signif-
icance. Differences between cone diameters measured in
males and females were compared by using a 2-tailed,
unpooled, paired t-test; axial length and age between males
and females were compared by using a 2-tailed, unpooled t-
test. Moreover, the coefficient of variation was used to evaluate
the relative variability of cone diameters at each ROI by
dividing the standard deviation of cone diameters by their
mean for each eccentricity.

Demonstration of Value of Cone Diameter
Measurements in a Patient With Late-Onset Retinal
Degeneration

Cone diameter measurements were performed on images from
a patient with late-onset retinal degeneration whose eye
contained reticular pseudodrusen lesions46 that were visible
with multimodal imaging, including AOSLO, as has been
previously described.47 Here, we selected four ROIs where
single reticular pseudodrusen were clearly visible as hyper-
reflective regions on confocal reflectance AOSLO across a
range of eccentricities (2.85, 3.52, 4.39, and 4.58 mm; each
ROI was 175 3 175 lm). CCACM, followed by manual
correction, was used to segment cone photoreceptors and
measure cone diameters and the coefficient of variation on the
selected regions corresponding to lesion (cones directly above
individual reticular pseudodrusen) and nonlesion (neighboring
cones not directly above individual reticular pseudodrusen).
For the manual correction, three expert graders independently
identified cones inside ROIs and only cones with agreement
between at least 2 of 3 graders were selected (the purpose of
this was to ensure agreement of cone identification only,
before any segmentation analysis). To calculate cone spacing
and density in the nonlesion area, we used ROIs of size 70 3 70
lm. For each lesion, cone diameters in lesion and nonlesion

areas were compared by using a 2-tailed, unpooled t-test.
Nonlesion cone diameters were compared to the expected
normal cone diameter from our data by using a 2-tailed,
unpooled, paired t-test. Finally, nonlesion cone spacing and
density were compared to expected normal values from
histology48 by using a 2-tailed, unpooled, paired t-test.

RESULTS

Selection of Field of View (Pixel Sampling) for
CCACM-Based Cone Segmentation

The average ADD on all 10 ROIs was 0.92, 1.05, and 1.55 lm
for the FOVs of 0.23, 0.30, and 0.46 mm, respectively (Fig. 2;
Table 2). The automated segmentation accuracy gradually
decreased with increasing FOV, suggesting that the FOV of 0.23
mm is the best choice for the proposed implementation of
CCACM. Oversegmentation was the primary source of reduced
segmentation accuracy in the case of larger FOVs (Figs. 2B,
2C1), caused by inaccurate dual region segmentation. In
addition, the multiscale Hessian matrix requires a sufficient
number of image points to be stable (Equation A7). Neverthe-
less, we found that segmentation accuracy could be near fully
recovered by upsampling (bicubically increasing pixel density)
the 0.46-mm FOV to 0.23 mm (Fig. 2C2). Interestingly,
segmentation accuracy remained stable and sometimes even
dropped in the case of further upsampling to a FOV of 0.15 mm
or more owing to the presence of inhomogeneous regions
inside of dark and bright regions within cones that were
emphasized by further upsampling. Upsampling also increased
computational cost. In our instrument, the 0.23-mm FOV is the
smallest FOV that we use. Therefore, the optimal pixel
sampling corresponded to a FOV of 0.23 mm, which was used
to perform cone segmentation and diameter estimation in this
work.

Accuracy of Cone Segmentation

CCACM accurately segmented cone photoreceptors on 10
subjects with varying levels of image quality: ASD, RMSD,
MSD, ADD, and RDD were all within a small fraction of the
actual cone size (Fig. 3; Table 3). For the 0.23-mm FOV, the
diameter of a cone photoreceptor is approximately 22
pixels. This means that the average contour difference
between manually marked and automatically segmented is
less than 2 pixels (ASD). The difference in cone diameter is
also approximately 2 pixels (ADD). The computation time
to segment cones in a 70 3 70 lm ROI (approximately 200
3 200 pixels) was 1.6 seconds on a standard Windows 7
64-bit PC (Microsoft, Redmond, WA, USA; Intel quad-core
i7-3770 3.4-GHz CPU, CPU release date April 2012, 16 GB
of RAM). CCACM was implemented in Cþþ with single
thread. There were five main types of discrepancies
between manually marked and automatically segmented
cones: (1) contour displacements due to different defini-
tions of where the cone photoreceptor boundary should be
(Figs. 3A1, 3A2; white arrows), (2) undersegmentation
caused by strong edge effects between dark and bright
regions that mislead active contour propagation (Figs. 3B1,

TABLE 2. Evaluation of Segmentation Accuracy on the Same Retinal Regions With Different Square Fields of View on 10 Subjects

FOV 0.23 mm 0.30 mm 0.46 mm 0.46 mm Up-Sampled to 0.23 mm

ADD, lm 0.92 6 0.74 1.05 6 0.91 1.55 6 1.42 0.93 6 0.76

RDD, % 12 6 11 14 6 14 21 6 22 12 6 11

Ten split detection AOSLO images at the field of view 0.23 mm from 10 subjects were manually marked for comparison.
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3B2), (3) oversegmentation due to homogenous regions
that have particularly weak cell boundaries, which fail to
stop propagation (Figs. 3C1, 3C2), (4) incomplete image
information due to cells being at or near image boundaries
(Figs. 3D1, 3D2), and (5) ambiguous cell boundaries due to
the presence of multiple edges that masquerade as
boundaries (Figs. 3E1, 3E2).

Manual segmentation of cone photoreceptors was
repeatable, with average ASD, RMSD, MSD, ADD, and
RDD also within a small fraction of cone size, comparing
data from the same grader repeated 8.5 months apart
(Supplementary Fig. S1). These correspond to differences of
approximately 1 pixel (ASD) and diameter differences of
approximately 2 pixels (ADD). However, for a small subset
of cones, there were some notable differences observed
(Supplementary Figs. S1D2, S1E2; white arrows), Therefore,
we compared our automated segmentation results to both
manual segmentations and to the average of two manual
segmentations. The difference between CCACM versus
average segmentation was close to the difference between
two manual segmentations, suggesting that the accuracy of
the automated segmentation is close to the achievable
accuracy of manual segmentation, but with the benefit of

zero variation (since the algorithm will always return the
same results for the same data).

Normal Database of Cone Diameters Across
Eccentricities

A total of 7441 cone photoreceptors were automatically
segmented from 10 subjects across the eccentricities ranging
from 1.35 to 6.35 mm along the temporal direction.
Erroneously segmented cones (defined as the five types of
errors described in the validation section above) were
manually excluded to ensure high data quality for the purposes
of establishing a normal database (Fig. 4, blue contours). The
remaining 5191 cones were selected for inclusion into the
normal database. Segmented cones were grouped every 0.3
mm from 1.35 to 6.35 mm (18 bins total). Within each group,
the mean and standard deviation of cone diameters and actual
eccentricities were computed and plotted against published
histology and in vivo data. The resulting automatically
segmented cone diameters were in good agreement with
existing histology and published data (Fig. 5), except for the
results from Andrade da Costa,43 possibly owing to a species-
dependent variation (Cebus apella) (Table 4). There is very
little human-based data on cone photoreceptor diameters (to
our knowledge, the only study is that of Scoles et al.11 and
none that have measured large amounts of cones). Our study
was in good agreement with the human histology data from
Scoles et al.11 and was consistent with the two other diameter
measurements based on split detection images.11,12 Interest-
ingly, there was a reduction in cone diameter at the
eccentricity of 5.5 to 6.0 mm, consistent with results from
Scoles et al.11 This may potentially be related to an increased
presence of rods48 or also a change in the density of RPE cells49

at this eccentricity. Although additional subjects are needed to
confirm, cone diameters in male subjects were slightly smaller
at most eccentricities than those in females (Supplementary
Fig. S2, P < 0.01), which could not be adequately explained by
differences in axial length (male: 24.6 6 1.5 mm, female: 23.8
6 0.5; P¼ 0.35) or age (male: 27.6 6 7.0 years, female: 25.0 6
3.3 years; P ¼ 0.53). Two male subjects had higher myopia

FIGURE 3. Cone segmentation results comparing automated segmentation to manual marking for subjects 2, 3, 6, 8, and 10, corresponding to each
column. Note the variation in image quality. Green contours, automated segmentation; red contours, manual marking. Five example cones from five
subjects (white arrows) are selected to illustrate the difference between segmentation and manual marking. (A1, A2) Disagreement of contour
placement due to different assumptions of cell boundaries; (B1, B2) undersegmentation caused by the attraction of strong image edges in the cone
dark region; (C1, C2) oversegmentation because of the large circular template; (D1, D2) false cell segmentation near the image boundaries; (E1, E2)
ambiguous cell boundaries due to multiple image edges. Nevertheless, most cone photoreceptors are accurately segmented and their boundaries are
in good agreement with manual marking. Scale bar: 10 lm.

TABLE 3. Evaluation of Segmentation Accuracy on 10 Subjects

ASD, lm RMSD, lm MSD, lm ADD, lm RDD, %

0.63 6 0.09 0.75 6 0.10 1.52 6 0.13 0.71 6 0.51 9 6 7

Ten split detection AOSLO images from 10 subjects were manually
marked for comparison to automated segmentations. The average
computational time of automated segmentation is 1.6 6 0.1 seconds.
Additional details are shown in Supplementary Table S2.
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(Supplementary Table S1). The coefficient of variation was also
plotted (Supplementary Fig. S3, top row).

Relationship Between Cone Size and Packing

There was a statistically significant correlation between cone
diameter (averaged across the ROI) with both cone density and

spacing (P < 0.001 for both; Fig. 6). This is surprising given the
large intersubject variability that is observed in cone density,
spacing, and diameter when viewed independently. This
intersubject variability is most apparent at eccentricities of 4
to 6 mm (Supplementary Fig. S4). In the case of cone density
versus cone diameter, the inverse quadratic fit was only slightly
better than the inverse linear fit (R2 ¼ 0.45 compared to R

2 ¼

FIGURE 4. Example of cone diameter computation on subject 6 at the eccentricities ranging from 1.60 to 6.56 mm. Top row: Black squares (solid

and dotted) indicate regions of interest for diameter computation along the temporal direction. Five representative squares (solid lines) at the
eccentricities of 1.65, 3.04, 3.90, 5.23, and 6.37 mm are selected for illustration. (A1–E1) AOSLO images corresponding to five solid squares. (A2–
E2) Corresponding cell segmentation results, where cone contours in green were used for diameter computation, and contours in blue excluded.
Five types of cone segmentations were excluded in computation, including cell misidentification (white arrow; A1, A2), weak cell boundary (B1,
B2), image boundary (C1, C2), oversegmentation (D1, D2), and possible image artifacts (E1, E2). Scale bars: 100 lm (top) and 10 lm (bottom).

FIGURE 5. Comparison of cone diameters calculated from circularly constrained active contour model in 10 subjects with histology data and results
of the existing literature (Table 4). In our results, vertical bars denote the one standard deviation of cone diameters, and horizontal bars standard
deviations of eccentricities.
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TABLE 4. Subject Information for Cone Inner Segment Diameter Calculation in the Existing Histology Studies

Reference Subject n Age Sex

Eccentricity,

Temporal, mm

Packer et al.38 (1989) Macaca nemestrina 3 5–13.5 1 M; 2 F 0–20

Andrade da Costa et al.43 (2000) Cebus apella 7 Adult 4 M; 3 F 0–16

Scoles et al.11 (2014) Human 5 27–68 N/A 0–12

Scoles et al. (E-Abstract 5951)* Human 2 N/A N/A 0–12

Sun et al.12 (2016)† Human 16 27.3 6 19.9 11 M; 4 F 0–2.8

N/A, not available.
* Cone diameters were manually measured on split-detection AOSLO images.
† Cone diameters were estimated based on the average of two manually-drawn orthogonal lines.

FIGURE 6. Correlations between cone diameters with cone density and spacing measured in the same cells. Each dot represents data from one ROI,
color-coded for the 10 subjects. Cone diameters represent the average diameters across the ROI.
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0.43), which is likely due to the presence of rods at the
eccentricities plotted.

Quantification of Cone Swelling in Patient Data

In all four ROIs, cones were significantly enlarged above
reticular pseudodrusen lesions, compared to neighboring
cones from the same patient (P < 0.05 for each of the four
lesions; Fig. 7, Table 5). On average, cones above lesions were
23.0% bigger than their neighboring nonlesion cones. There
was no difference between cone diameters measured in
nonlesion areas compared to the expected normal cone
diameter from our data (P ¼ 0.41). A preliminary assessment
of the relative variance of the cone diameters (based on
calculation of the coefficient of variation in a sliding window
across the image as shown in Supplementary Fig. S3) showed
that cone diameters were often more irregular when compared
to the expected values from the normal database. The size of
the sliding window was matched to that used for the
computation of the normal database (70 3 70 lm). We were
not able to reliably quantify cone spacing and density for cones

above lesions because the individual lesions were too small,
and not all cones could be reliably identified owing to image
quality issues. Computation of cone density is particularly
sensitive to misidentification of even a single cone when the
size of the region is small (e.g., lesion areas in Fig. 7D3). This
fundamental limitation of cone spacing and density (i.e., that it
has to be computed over a contiguous array of cones)
illustrates the potential application of cone diameter (which
can be computed in a handful of noncontiguous cones). The
differences in cone spacing and density between nonlesion
cones and expected values from histology48 were not
statistically significant (P ¼ 0.06 and P ¼ 0.16, respectively).

DISCUSSION

We provided the first demonstration of a fully automated
region-based cone segmentation algorithm (CCACM) for split
detection images of cone photoreceptors. CCACM can quickly
and accurately segment cone photoreceptors on split detec-
tion AOSLO images through dynamically constructed circular
shape priors and active contour propagation. We further

FIGURE 7. Cone segmentation results on four retinal regions (columns) from a patient with late-onset retinal degeneration with individual reticular
pseudodrusen lesions (black dashed ellipses). The numbers above the images denote the retinal eccentricity (temporal to the fovea). Row 1: Input
images. Neighboring nonlesion ROIs are shown in dashed white squares. Cone photoreceptors appear to be enlarged in lesion areas. Row 2:
Results from CCACM. Green contours are correct segmentations, while blue contours are segmentation results that were manually removed
according to criterion defined in the results section. Row 3: Contours within lesion and nonlesion ROIs were manually corrected. Green contours

are untouched from CCACM; red contours were manually added. Scale bar: 50 lm.
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demonstrated the utility of using CCACM to efficiently
construct a normal database of cone photoreceptor diameters
across a wide range of eccentricities, from 1.35 to 6.35 mm,
and presented the largest database to date consisting of 5191
cones from 10 subjects. Our results are consistent with
previously reported values. Finally, application of this approach
to a patient with late-onset retinal degeneration to assess cone
photoreceptors above individual reticular pseudodrusen le-
sions46 demonstrates the potential clinical utility of this as a
potential biomarker for disease.

Cone density and spacing are the two most commonly used
quantitative metrics for cone photoreceptors, but both suffer
from the requirement that a sufficiently large, contiguous
patch of cones must be completely and accurately identified.
Cone density, in particular, is highly sensitive to misidentifica-
tion of even a single cone for small ROIs. Although the ROIs
above individual reticular pseudodrusen lesions are too small
to be used to reliably quantify spacing and density, we
illustrated that cone diameter can be measured even on a
handful of noncontiguous cones, which is a major advantage
for studying data from patients with poor image quality. Here,
we showed that even on a lesion-by-lesion basis, we can find
patches of cones that are significantly enlarged when
compared to their immediate neighbors. In the future, we
plan to investigate these photoreceptor-based changes in the
context of the underlying RPE (Liu J, et al. IOVS 2017;58:ARVO
E-Abstract 304).50 Automating cone diameter measurements
could have important applications for the management,
diagnosis, and development and testing of new treatments of
many diseases including glaucoma,51 retinitis pigmentosa,21

achromatopsia,52 rod monochromacy,10 cone-rod dystrophy,53

and macular telangiectasia type 2 (Scoles DH, et al. IOVS

2014;55:ARVO E-Abstract 5951).
Interestingly, cone diameter was correlated to both cone

spacing and cone density. It may be possible to reduce
intersubject variability in a dataset of cone spacing or cone
density by taking into consideration cone diameters. Generally,
one would expect cells to expand to fill the space that is
available surrounding them, but studying whether there are
natural size constraints to cells relative to their packing could
be an important step toward understanding how and why
cones become enlarged in disease. In this patient, cones were
enlarged by an average of 23.0% (and by as much as 30.5% in
one of the lesions). In the future, incorporating rod photore-
ceptors and Müller cells into a model of size and packing will
give a more complete understanding.

Given the ‘‘3D’’ appearance of cone photoreceptors in split
detection images, we found that it can be challenging to
precisely define the location of cell boundaries (e.g., in the
presence of ‘‘shadows’’). We propose the following guidelines
based on our experiences: an object is considered as a cone

photoreceptor in a split detection image if (1) it has a ‘‘3D’’
appearance with dark and bright regions on both sides and (2)
the cone boundary is defined as the locations with the largest
intensity gradient magnitude. This second criterion is an
important one, since the cone boundaries are not sharp edges.

CCACM is a natural extension of our previous cone
identification method,17 as the framework provides the
detections of dark and bright regions to start CCACM. We
expect that the integration of CCACM with cone identifica-
tion algorithms can further improve robustness, particularly
for the reduction of false positives. There are limitations of
CCACM that can be further improved as well as areas for
future work. First, many of the parameters used in CCACM
were empirically found to be optimal for a 0.23-mm FOV.
Further optimization of parameters throughout the algorithm
may lead to additional improvements in performance. Second,
incorporation of noncircular templates or other geometric
templates may be necessary in cases when cells are
significantly elongated. Third, we selected approximately
70% of the automatically segmented cones for inclusion in the
normal database, comprising only those cones with the
clearest boundaries. Most of the excluded cone photorecep-
tors were located near the fovea, where the dense packing
results in a higher likelihood of ambiguous boundaries (due to
boundaries of neighboring cones interacting with each
other). Nevertheless, the smaller size of cones and higher
density near the fovea meant that a similar number of cones
could still be selected for the normal database even with a
higher exclusion rate. While we do not expect that exclusion
of cones with weak boundaries will affect the accuracy of the
normal database, in the future, further enhancement of
segmentation accuracy of crowded cones could be achieved
by training the cone boundary classifier through deep
learning54,55 and applying the classifier to separate touching
cells.56 Fourth, in addition to cone diameter, second-order
metrics based on cone segmentation might lead to additional
insights about diseases such as Best disease, in which cones
have been reported to be noncircular.50 Finally, the CCACM
approach will also be useful for other recently demonstrated
nonconfocal AO images that contain pairs of bright and dark
regions, such as ganglion cells imaged by using offset-aperture
AO57 or translucent cells (e.g., horizontal cells) imaged in
mice by using knife-edge AO.58

In conclusion, CCACM provides a novel way to quickly and
accurately perform cone segmentation across a wide range of
eccentricities. This enabled us to efficiently construct the
largest normal database to date of cone photoreceptor
diameters, illustrating the potential for CCAM as an analysis
tool for quantifying photoreceptor changes that occur owing
to disease, which might not be captured by existing
approaches.

TABLE 5. Comparison of Cone Density and Spacing Between the Patient and Healthy Subjects at Four Different Eccentricities

Eccentricity,* mm

Cone Density, cones/mm2 Cone Spacing, lm Cone Diameter, lm‡

Patient, NL† Normal Patient, NL† Normal Patient, L Patient, NL Normal§

2.84 8378 9483 13.20 11.03 8.87 6 1.32 7.08 6 0.92 7.20 6 0.82

3.55 5798 7897 17.46 12.09 8.41 6 0.63 7.39 6 0.82 7.42 6 0.70

4.39 7058 6517 14.44 13.31 8.36 6 0.88 6.83 6 0.78 7.31 6 0.91

4.59 4741 6207 20.13 13.64 10.11 6 1.29 7.75 6 0.62 7.61 6 1.12

L, lesion; NL, nonlesion.
* The average eccentricity of the lesion and nonlesion ROIs is reported.
† It was not possible to reliably calculate the cone density or spacing in the lesion areas owing to the small size of the ROI.
‡ Numbers reported as mean 6 SD.
§ Cone diameters are reported from the nearest eccentricity bin.
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APPENDIX

Dual Region Segmentation

Let I(x,y) : R2 � R be the intensity function of a split detection
image. Dual-region segmentation can be considered as the
search of image regions with local minimum-maximum pairs,
corresponding to the dark and bright region pairs associated
with each cone photoreceptor. If an image point x; yð Þ is a local
minimum in a dark region, then I x; yð Þ, I x þ Dx; yþ Dyð Þ,
where Dx;Dyð Þ denotes a displacement vector; if it has local
m a x i m u m v a l u e i n s i d e a b r i g h t r e g i o n , t h e n
I x; yð Þ.I x þ Dx; yþ Dyð Þ. In the vicinity of the extrema, we
can use the Taylor series to get:

I x þ Dx; yþ Dyð Þ’ I x; yð Þ þ Ix; Iy

� �
Dx;Dyð ÞT

þ 1

2
Dx;Dyð ÞH x; yð Þ Dx;Dyð ÞT ; ðA1Þ

where H is the Hessian matrix of I x; yð Þ given by:

H x; yð Þ ¼ Ixx Ixy

Ixy Iyy

� 	
: ðA2Þ

Note that the linear term in (Dx, Dy) vanishes because (x, y)
are extrema and thus, the derivative of the intensity at these
points is zero. Therefore, Equation A1 becomes:

I x þ Dx; yþ Dyð Þ � I x; yð Þ’ 1

2
Dx;Dyð ÞH x; yð Þ Dx;Dyð ÞT :

ðA3Þ
H x; yð Þ.0 and H x; yð Þ, 0 (positive definite and negative
definite matrices, respectively) mean the corresponding point
x; yð Þ inside the dark and bright regions, respectively. Since

H x; yð Þ is a 2 3 2 symmetrical matrix in Equation 2, we have

H x; yð Þ.0) detH x; yð Þ.0 and H x; yð Þ, 0) detH x; yð Þ, 0;

ðA4Þ
where detH x; yð Þ ¼ IxxIyy � I2

xy. detH x; yð Þ involves image
derivative computation, which is an ill-posed problem but
can be converted into a well-posed problem via convolution
with Gaussian function G x; y; tð Þ.59 One critical issue is the
determination of t, which is also called scale selection
problem.60–62 Multiscale image representation, L(x,y;t) : R2 3
R
þ � R, is thus generated through convolution between I

x; yð Þ and a set of Gaussian functions:

L x; y; rð Þ ¼ G x; y; tð Þ � I x; yð Þ: ðA5Þ
The scale parameter t is defined as t 2 0:5; � � � ; 7:7½ �, where
tkþ1 ¼ ctk, with k denoting the index of scale level. We
selected c ¼ 1:2 from our earlier work.17 This leads to:

detH x; y; tð Þ ¼ LxxLyy � L2
xy: ðA6Þ

Region growing is exploited to segment dual regions, based
on the following criterion to include neighboring points:

t̂ ¼ arg max
t

detH x; y; tð Þj j and detH x; y; t̂ð Þj j.eH : ðA7Þ

Here, eH is a threshold, set to 100 as suggested by Mikolajczyk
and Schmid.62 Note that the scale-normalized Hessian matrix
here is invariant to scale changes. If detH x; y; tð Þ.0, the
current point belongs to a dark region; otherwise, it is from a
bright region:

Convex Hull Determination

Let CD and CB be boundary contours of a connected pair of
dark and bright regions, respectively. Using the Euclidean
distance39 (denoted by j j�j j) between a point p ¼ x; yð Þ and the
sets CD and CB, we compute two distances,

DD x; yð Þ ¼ min
w2CD

jjp�wDjj; p ¼ x; yð Þ

DB x; yð Þ ¼ min
w2CD

jjp�wBjj; p ¼ x; yð Þ; ðA8Þ

where p denotes points not at CD or CB, respectively, and w

denotes points at CD or CB, respectively.
The shortest distance d between CD and CB is calculated as

d ¼ min min
x;yð Þ2CB

DD x; yð Þ; min
x;yð Þ2CD

DB x; yð Þ
� �

: ðA9Þ

The gap is thus filled (Fig. 1E, green regions) by finding the set
of image points S satisfying

S ¼ f x; yð ÞjDD x; yð Þ � d and DB x; yð Þ � dg: ðA10Þ
Recovery process. The recovery process of missing regions
begins with seed point determination. Centering at the region
detection of the bright region, a trapezoidal arc search area is
set up as

X x; y; rmin; rmax; hð Þ ¼
x6rcosu; y6rsinuð Þjrmin � r � rmax; 1808 � h � u � 1808 þ h


 �
:

ðA11Þ

We use rmin ¼ 5; rmax ¼ 15 pixels, and h ¼ 308 in this work. We
select the seed point within the search area that fulfills

xs; ysð Þ ¼ arg min
x;yð Þ2X

I x; yð Þ and I xs; ysð Þ, eI ; ðA12Þ

where eI is the intensity value that is larger than 80% of the
samples in the histogram of dark regions found from previous
steps.

Circularly Constrained Active Contour Model
(CCACM)

If C qð Þ : 0; 1½ � ! R
2 parameterizes a contour, then its

Euclidean length is given by

E Cð Þ ¼
I

ds ¼
I

C0 qð Þj jdq ¼
R1
0

C0 qð Þj jdq: ðA13Þ
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The actual cone boundary contour, Ĉ qð Þ, is set up to stop
near (1) circular template boundaries as well as (2) an area that
contains large image gradient magnitudes. Image forces are
thus composed of these two terms, which achieve a maximum
when preparing to stop contour propagation (i.e., the contour
velocity should vanish when Ĉ qð Þ is found).

The influence of circular templates (Fig. 1F, yellow circles)
is introduced by using T x; yð Þ, which is defined as a normalized
distance function (Equation A8) from the template boundary
contour CT qð Þ, given by

T x; yð Þ ¼ Dnormalized x; yð Þ; where Dnormalized x; yð Þ 2 0; 1½ �:
ðA14Þ

If an image point x; yð Þ is close to CT qð Þ, T x; yð Þ is close to 0;
otherwise, it is close to 1. Therefore, T x; yð Þ can be used as the
speed term to pull Ĉ qð Þ to be close to CT qð Þ.

A second speed term is introduced as M x; yð Þ, which is
motivated by the fact that Ĉ qð Þ should stay in the image points
with high image gradient magnitudes.

M x; yð Þ ¼ 1

1þ rI x; yð Þj j2
� � ðA15Þ

Note that the ‘‘1’’ in the denominator of Equation A15 is a
tunable parameter that can be further adjusted to modulate this
speed term. Integrating Equations A14 and A15 into Equation
A13, the search of cone boundary contour Ĉ qð Þ can be
mathematically formulated as

Ĉ ¼ arg min
C

E Cð Þ ¼ arg min
C

R1
0

F C qð Þð Þ C0 qð Þj jdq

F x; yð Þ ¼ aT x; yð Þ þ 1� að ÞM x; yð Þ; x; yð Þ 2 C qð Þ; ðA16Þ
with a ¼ 0:7 to balance the influence of the circular template
and image gradients in this work. Equation A16 is similar to the
geodesic active contour,63 except that circular template is
included in this work. The Euler-Lagrange equation64 is used to
minimize Equation A16,

]C s; qð Þ
]s

¼ jF ~N � rF � ~N
� 

~N ; ðA17Þ

where j is the curvature of C and ~N is the unit inward normal.
Equation A17 shows that the minimization process of Equation
16 is the propagation of active contour C over time step s. To
achieve high accuracy and numerical stability, the contour C, as
well as its underlying image grids, is typically re-discretized
after a few iterations, which is especially critical when the
contour C moves a large distance. To alleviate such issue, level-
set function / x; yð Þ is instead used to implicitly describe the
active contour C, given by

/ x; yð Þ ¼ �D x; yð Þ if x; yð Þoutside the area inside C

D x; yð Þ else

�
;

ðA18Þ
where D x; yð Þ denotes the Euclidean distance of a point x; yð Þ
to C (Equation A8). Therefore, the contour C can be implicitly
represented as C ¼ f x; yð Þj/ x; yð Þ ¼ 0g. Such implicit contour
representation can avoid the discretization of image grids, and
Equation A17 is rewritten as

]/
]s
¼ F r/j jdiv

r/
r/j j

� 	
�rF � r/; ðA19Þ

where div �ð Þ denotes the divergence operator. The initial
contour at s ¼ 0 is set to CT qð Þ, which corresponds to the zero-

level set of / at s ¼ 0. Iterative evolution of level-set function
/ x; yð Þ over s leads to the identification of cone photoreceptor
boundaries.

Active Contour Refinement

Explicit active contour model, also called snake,24 is given by

E Cð Þ ¼ b
Z 1

0

C0 qð Þj j2dq þ f
Z 1

0

C00 qð Þj j2dq|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
smoothness term

� k
Z 1

0

rI C qð Þð Þj j2dq|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Image term

:

ðA20Þ

Here, we set b ¼ 1, f ¼ 1000, and k ¼ 0:2. This emphasizes
the smoothness term (especially the second smoothness term
describing the contour second derivatives, which constrains
the contour according to the thin plate equation to effectively
remove the jagged edges). The third image term still plays the
role of forcing the contour to stop at the image points with
high image gradients. The Euler-Lagrange equation64 is again
used to minimize Equation 20.

]C q; sð Þ
]s

¼ bC00 q; sð Þ � fC0000 q; sð Þ � r rI C q; sð Þð Þj j2
� �

ðA21Þ

Iteratively evolving C q; sð Þ over s yields the refined cone
boundary contour.

Cone Diameter Estimation

Given a cone boundary contour Ĉ with N points that is
discretely represented as p0; p1; � � � ; pNf g, where pi ¼ xi; yið Þ,
i 2 N, and p0 ¼ pN , the polygon area enclosed by Ĉ can be
computed as41

A ¼ 1

2

XN

i¼0

xi yiþ1 � yi�1ð Þ; xi; yið Þ 2 Ĉ : ðA22Þ

Assuming the cone photoreceptor is circular shape, the cone
diameter D is calculated as

D ¼ 2
ffiffiffiffiffiffiffiffiffi
A=p

p
: ðA23Þ
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