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Summary
Background Hepatic steatosis (HS) identified on CT may provide an integrated cardiometabolic and COVID-19 risk
assessment. This study presents a deep-learning-based hepatic fat assessment (DeHFt) pipeline for (a) more
standardised measurements and (b) investigating the association between HS (liver-to-spleen attenuation ratio <1
in CT) and COVID-19 infections severity, wherein severity is defined as requiring invasive mechanical ventilation,
extracorporeal membrane oxygenation, death.

Methods DeHFt comprises two steps. First, a deep-learning-based segmentation model (3D residual-UNet) is trained
(N = 80) to segment the liver and spleen. Second, CT attenuation is estimated using slice-based and volumetric-based
methods. DeHFt-based mean liver and liver-to-spleen attenuation are compared with an expert’s ROI-based
measurements. We further obtained the liver-to-spleen attenuation ratio in a large multi-site cohort of patients
with COVID-19 infections (D1, N = 805; D2, N = 1917; D3, N = 169) using the DeHFt pipeline and investigated
the association between HS and COVID-19 infections severity.

Findings The DeHFt pipeline achieved a dice coefficient of 0.95, 95% CI [0.93–0.96] on the independent validation
cohort (N = 49). The automated slice-based and volumetric-based liver and liver-to-spleen attenuation estimations
strongly correlated with expert’s measurement. In the COVID-19 cohorts, severe infections had a higher
proportion of patients with HS than non-severe infections (pooled OR = 1.50, 95% CI [1.20–1.88], P < .001).

Interpretation The DeHFt pipeline enabled accurate segmentation of liver and spleen on non-contrast CTs and
automated estimation of liver and liver-to-spleen attenuation ratio. In three cohorts of patients with COVID-19
infections (N = 2891), HS was associated with disease severity. Pending validation, DeHFt provides an automated
CT-based metabolic risk assessment.
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Research in contextResearch in context

Evidence before this study
Deep-learning has shown great promise in its ability to
facilitate automated liver segmentation and attenuation
assessment, resulting in more standardised and reproducible
measurements. Hepatic attenuation on computed
tomography (CT) is a surrogate marker for cardiometabolic
risk, including Type 2 diabetes and its progression. Despite
its clinical importance, hepatic fat is not routinely assessed
on coronary artery calcium (CAC) CTs owing to the
difficulty in the accurate manual delineation of regions of
interest (ROI), inter-reader variability in measurements, lack
of consensus on measurement methodology, and spatial
heterogeneity in liver attenuation.
To overcome these problems, we present a deep-
learning-based hepatic fat assessment (DeHFt) pipeline
for more standardised measurement. We utilise our
pipeline to investigate further the association between
HS (defined as liver-to-spleen attenuation ratio <1 in CT)
and COVID-19 infection severity in a large multi-site
cohort of patients with COVID-19 infections (N = 2891),
wherein severity is defined as requiring invasive
mechanical ventilation, extracorporeal membrane
oxygenation, or death.

Added-value of this study
In this study, we showed that DeHFt could facilitate
automated liver segmentation and attenuation assessment,
resulting in more standardised and reproducible
measurements of Hepatic steatosis (HS). The result
demonstrated that DeHFt-based liver and liver-to-spleen
attenuation estimations strongly correlated with manual ROI-
based measurement performed by the expert. In multi-site
COVID-19 cohorts (N = 2891), the severe infections had a
higher proportion of patients with HS than non-severe
infections (pooled OR 1.50, 95% CI [1.20–1.88])

Implications of all the available evidence
DeHFt pipeline may provide an integrated cardiometabolic and
COVID-19 risk assessment by identifying HS on computed
tomography (CT). The approach can potentially enable
automation of HS assessment in clinical practice and thus help
identify high-risk metabolic patients. It can also be applied to
large datasets to understand the association between liver
steatosis and cardiometabolic outcomes. DeHFt canbe used as an
aid for comprehensive risk assessment of patientswith COVID-19
infection to assign care level (e.g., inpatient vs outpatient) and
decision for early use of therapeutics (e.g., antivirals).

Articles

2

Introduction
Obesity and prediabetes affect a significant proportion
of the American population (estimated at 90 million
individuals), placing them at risk for future Type 2
diabetes (T2D).1 As a chronic condition posing the
highest risk for cardiovascular disease, T2D presents
both a challenge and an opportunity for preventive
approaches. Hepatic steatosis (HS, defined as liver-to-
spleen attenuation ratio <1 in CT)2 enhances the iden-
tification of patients with marked insulin resistance at
risk for future progression to T2D and represents a risk
predictor for future CV disease, thus representing a
marker of cardiometabolic risk.3

Liver biopsy is used as the reference gold standard
for assessing liver fat content and diagnosis of HS.4

However, it is not widely used due to its invasive na-
ture and high cost. Noninvasive techniques include
ultrasound (US),5 magnetic resonance imaging (MRI),6

and computed tomography (CT). Among the noninva-
sive imaging techniques to quantify liver fat, MRI pro-
ton density fat fraction (PDFF)6 is used as a reference
standard for estimating the presence and grading of HS.
Some studies7,8 have recently found the correlation be-
tween PDFF and liver fat, allowing for the estimation of
liver fat content using non-contrast CT. Thus, providing
an opportunistic imaging-based risk assessment.9 HS
identified on CT may provide additional metabolic risk
assessment in patients undergoing coronary artery cal-
cium scoring, facilitating an integrated cardiometabolic
risk assessment.10

Despite its clinical importance, hepatic fat is not
routinely assessed on CTs (including those done for
coronary artery calcium (CAC) scoring) owing to the
difficulty in the accurate manual delineation of regions of
interest (ROI), inter-reader variability in measurements,
lack of consensus on measurement methodology, and
spatial heterogeneity in liver attenuation. Convolutional
Neural Networks (CNN) have shown great promise in
their ability to facilitate automated liver segmentation and
attenuation assessment, resulting in more standardised
and reproducible measurements.11 Prior studies12–17 have
suggested that deep-learning-based methods provide ac-
curate liver segmentation on full-dose CTs with and
without contrast. Liver segmentation on low-dose non-
contrast CTs poses a challenge given the signal hetero-
geneity, lack of border contrast, and partial liver imaging.
The manual ROI-based measurement limits the oppor-
tunistic screening for HS in a population-based study. In
this work, we present a deep-learning-based hepatic fat
assessment (DeHFt) pipeline for (a) liver and spleen
segmentation and (b) CT attenuation estimation on non-
contrast CT scans performed for CAC screening.

Further, HS is one of the most common diseases
resulting from obesity’s vast range of systemic
www.thelancet.com Vol 85 November, 2022
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metabolic dysfunctions. Recently, few studies have
shown that obesity has also been linked to more hos-
pitalisations, mechanical ventilation due to acute respi-
ratory failure, extensive coagulopathy, and, finally,
death.18,19 Recent studies20,21 showed that HS was higher
in the RT-PCR positive group than in controls. Among
the COVID-19 positive group, hepatic manifestation was
independently linked to the severity of coronavirus dis-
ease.22 However, not many studies have investigated the
association of HS with the severity of COVID-19 in-
fections in a large multi-site cohort of patients. Conse-
quently, we utilised the DeHFt pipeline to investigate
the association of HS with disease severity in a large
multi-site cohort of patients with COVID-19 infections
(D1, N = 805; D2, N = 1917; D3, N = 169), wherein
severity is defined as requiring invasive mechanical
ventilation, extracorporeal membrane oxygenation, or
death.
Methods
Inclusion and exclusion criteria for cohort
construction
CAC CTs
We obtained a convenience sample of 129 anonymised
CTs done for CAC assessment as part of clinical care at
University Hospitals in Cleveland, OH, between January
2014 and December 2020. Participants were at least
Fig. 1: Patient flow chart including patient en

www.thelancet.com Vol 85 November, 2022
45 years of age with no known coronary artery disease
and at least one cardiovascular risk factor (smoking,
hyperlipidemia, hypertension, diabetes, family history of
heart disease, or chronic inflammatory conditions), refer
to Fig. 1a. CTs were acquired using a standardised
protocol. Subjects were positioned within the gantry of
the MDCT scanner in the supine position. During a
single breath-hold, images of the heart, from the level of
the tracheal bifurcation to below the base of the heart,
were acquired using prospective ECG triggering at
50–80% of the RR-interval, depending on the heart rate.
Scan parameters: 16 × 1.5 mm collimation, 205 mm
field of view (FOV), variable rotation time (scanner
specific), 120 kVp, and 40–70 mAs (based on weight).
This study was approved by the Institutional Review
Board at University Hospitals.

COVID-19 CTs
Following the inclusion and exclusion criteria (Fig. 1b),
we additionally obtained non-contrast chest CTs from
805 patients with COVID-19 infections admitted to
Renmin Hospital of Wuhan University, Hubei General
Hospital (D1). Another cohort used for the study was
the STOIC2021-COVID-19 AI Challenge dataset (D2),23

containing non-contrast chest CTs from 1917 patients
suspected of being infected with COVID-19 during the
first wave of the pandemic in France. The third cohort
used for the study was the Stony Brook University
rollment, inclusion, and exclusion criteria.

3
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COVID-19 Positive Cases dataset (D3),24 which contains
non-contrast chest CTs from 169 patients who tested
positive for COVID-19. Patients were categorised into
two groups based on the disease severity25: severe
(requiring invasive mechanical ventilation, extracorpo-
real membrane oxygenation, or death) vs non-severe (no
invasive ventilator support (no respiratory distress, oxy-
gen supplementation, non-invasive ventilation). Alto-
gether, three different cohorts of patients—D1, N = 805
(465 severe and 340 non-severe); D2, N = 1917 (288
severe, 887 non-severe, and 742 non-diseased); D3,
N = 169 (47 severe and 122 non-severe)—were used to
explore the association between automated HS quanti-
fication by the DeHFt pipeline with clinical severity of
COVID-19 infections, given the known associations
between HS and COVID-19 outcomes.19

Data annotation and ROI measurements
For each CT, a trained expert—with ten years of cardiac
CT segmentation experience—performed manual seg-
mentation and manual ROI-based CT attenuation
measurements on CAC CTs. For segmentation, the
expert performed manual demarcation of the liver and
spleen on all slices using 3D Slicer software.26 For the
manual ROI-based CT attenuation measurements, cir-
cular ROI measuring 5–10 cm2 were placed at different
locations (three on the liver and one in the spleen),
avoiding vasculature, cysts, blood vessels, bile ducts,
calcification, and other heterogeneous areas (refer to
Fig. S1). The liver-to-spleen attenuation ratio was ob-
tained by dividing the mean Hounsfield units (HU)
across the three ROIs in the liver by the mean HU of the
spleen ROI as previously described.2 The manual ROI-
based measurements were performed on 49 anony-
mised validation scans. The same expert was asked to
perform the repeated measurement on the same set of
cases (after a washout period of a month) for intra-
reader variability analysis. The human expert per-
formed all these ROI-based measurements without
knowing the automated results of the liver and liver-to-
spleen attenuation ratio.

Deep-learning-based hepatic fat estimation (DeHFt)
The schematic for the DeHFt pipeline is illustrated in
Fig. 2. It is a two-stage method; first, a deep-learning-
based model is presented to segment the entire
imaged liver and spleen. Second, CT attenuation is
measured on the imaged organ using the DeHFt pipe-
line. Additional details are provided below.

Deep-learning-based liver and spleen segmentation
We utilised low-dose CAC CTs (N = 129) to train and
validate the deep-learning-based segmentation models
to segment the liver and spleen. We trained four state-
of-the-art, convolutional neural network-based segmen-
tation models27–30 with random 80 low-dose CAC CT
scans and evaluated their accuracy on the remaining 49
independent validation CAC CTs. The performance of
these models was compared based on the dice similarity
coefficient (DSC).31 DSC is a spatial overlap index that
ranges from 0 to 1, with 0 indicating no spatial overlap
and 1 representing the total overlap between the pre-
dicted and ground truth segmentations. The best per-
forming model (3D residual-UNet architecture from
nnUnet framework) was trained for 1000 epochs using
3D image patches of size = (28, 256, 256) and batch = 2.
The model was trained de novo (i.e., without any pre-
training) with five-fold cross-validation. A schematic
representation of the model architecture can be found in
Fig. 3. We employed an Nvidia Tesla V100 GPU with
32 GB memory to train the model. The model training
took a total of 43 h of computation on the GPU. The
final trained model took ∼1 min to segment the liver
and spleen for each patient.

CT attenuation measurement
DeHFt pipeline employed two methods of measuring
the CT attenuation automatically: slice-based and
volumetric-based. In a slice-based estimation, the
DeHFt pipeline identifies the slice with the maximum
area and obtains the mean attenuation and standard
deviation across that slice. In a volumetric-based esti-
mation of liver and liver-to-spleen attenuation, the
DeHFt pipeline considers the whole liver and spleen for
the measurement, and the ratio of mean HU for liver
and spleen is obtained. The mean liver and mean liver-
to-spleen CT attenuation are estimated using both
methods and compared with manual ROI-based mea-
surement performed by the expert. We considered the
average of the two intra-measurements done by the
expert as the reference measurement.
Ethics
All ethical procedures for the study were approved by
the Institutional Review Board committee of record at
University Hospitals, Cleveland (STUDY20200213) and
the Ethics committee of the Renmin Hospital of Wuhan
University (2020KS02010), and the need for written
consent was waived.
Statistical analysis
The Pearson correlation coefficient (ρ) was used to
measure the linear association of DeHFt-based liver/
liver-to-spleen attenuation estimation with manual
ROI-based measurement by the human expert. Bland–
Altman plots were presented to evaluate the agree-
ment between the two measurement methods. We used
a t-test to determine if there is a statistically significant
difference between the mean liver/liver-to-spleen atten-
uation of severe vs non-severe COVID-19 patients’
group. Further, a two-proportions z-test was used to
compare the proportions of patients with HS (liver-to-
spleen attenuation ratio <1) in the severe and non-severe
www.thelancet.com Vol 85 November, 2022
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Fig. 2: Block diagram of deep-learning-based hepatic fat assessment (DeHFt) pipeline.
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COVID-19 infections group. A meta-analysis was per-
formed to estimate the pooled association between HS
and severe COVID19 infection. We used Python (3.7.0)
with the SciPy (1.5.2) package for statistical analyses. A
P-value of less than 0⋅05 indicated statistical signifi-
cance. P-values less than 0.05, 0.01, and 0.001 are
marked with one, two, and three asterisks, respectively.

Role of the funding source
The funders of the study had no role in study design,
data collection, data analysis, data interpretation, or
writing of the report.
Results
In the hold-out validation CAC cohort (N = 49), the
attenuation (mean ± standard deviation) of the liver and
spleen was 48.46 ± 11.30 and 42.96 ± 7.33, respectively.
The mean liver-to-spleen attenuation was 1.17 ± 0.38.
Fig. S2 shows the scatter plot and Bland–Altman graphs
for intra-reader measurements by the expert reader.
www.thelancet.com Vol 85 November, 2022
There was a strong correlation for intra-reader variability
of the liver, spleen, and liver-to-spleen attenuation
measurements (0.94, 0.80, and 0.85, respectively). The
mean of the liver attenuation was 48.14 ± 11.40 and
48.78 ± 11.52 (P = .12) during the intra-reader mea-
surements by the human expert. The intra-reader mean
of the spleen attenuation was 43.79 ± 8.01 and
42.12 ± 7.43 (P = .01), respectively. Similarly, the liver-
to-spleen attenuation was 1.15 ± 0.41 and 1.20 ± 0.38
(P = .06), respectively. Bland–Altman graphs revealed
that the bias (i.e., the mean difference between two
measurements by the expert) for liver, spleen and liver-
to-spleen attenuation were −0.64, 1.67, and −0.05,
whereas the 95% limits of agreement range were −8.03
to 6.76, −7.81 to 11.15, and −0.49 to 0.38, respectively.
The scatter plots suggest the lack of a consistent bias in
the two measurements (intra-reader) by the expert.

All trained deep-learning-based segmentation
models had excellent performance with DSC between
0.94 and 0.95 (refer to Table S1). The best performing
model (3D residual-UNet architecture from nnUnet
5

www.thelancet.com/digital-health


Fig. 3: Schematic representation of the 3D residual-UNet architecture.
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framework) achieved a DSC of 0.95, 95% CI [0.93–0.96]
on the hold-out validation set and was used for
measuring CT attenuation. Fig. 4 shows an example of
the automated and manual segmentation for the best,
median, and worst-case according to the DSC score. The
performance of the CT attenuation measurement
methods is illustrated in Table 1. With ground truth
segmentation (performed manually by the expert), a
strong correlation was found between slice-based liver
and liver-to-spleen attenuation estimation with manual
ROI-based measurement (Pearson correlation coeffi-
cient ρ = 0.97 and ρ = 0.94, respectively). Similarly,
volume-based liver and liver-to-spleen attenuation esti-
mation achieved a Pearson correlation coefficient of
ρ = 0.93 and ρ = 0.89 with manual ROI-based mea-
surement, respectively. With the segmentation obtained
using the DeHFt pipeline, slice-based automatic liver
and liver-to-spleen attenuation estimation had a signifi-
cant association with manual ROI-based measurement
(Pearson correlation coefficient ρ = 0.98 and rho = 0.95,
respectively, refer to Fig. 5a and b). With manual ROI-
based liver and liver-to-spleen attenuation estimations,
volume-based automatic liver and liver-to-spleen atten-
uation estimations achieved a Pearson correlation coef-
ficient ρ = 0.96 and ρ = 0.92, respectively (refer to Fig. 5c
and d). When compared to ground truth segmentation,
the mean liver and mean liver-to-spleen CT attenuation
estimation with nnUnet30 segmentation had a better
correlation with manual ROI-based measurement.

Out of the 805 patients in the dataset (D1) with
COVID-19 infections, 465 had severe infections, and
340 had non-severe infections. DeHFt-based liver-to-
spleen attenuation ratio (1.19 ± 0.17 vs. 1.23 ± 0.18,
P = .001) were lower in severe vs. non-severe COVID-19
patients. When categorised using traditional definitions
of HS (liver-to-spleen attenuation ratio <1), patients with
severe COVID-19 had a higher percentage of HS
compared with non-severe COVID-19 infections
(11.61% vs 8.24%, P = .12), refer to Fig. 6a. The odds
ratio (OR) was 1.46, 95% CI [0.9–2.36] (refer to Table 2).
Similar observations were obtained with the dataset (D2,
N = 1917) and (D3, N = 169). In the D2 dataset, DeHFt-
based-liver-to-spleen attenuation ratio (1.01 ± 0.31 vs.
1.05 ± 0.27, P = .03) was lower in severe (N = 288) vs.
non-severe (N = 887) COVID-19 patients (refer to
Fig. 6b). We also compared them with non-diseases
control patients (N = 742). We found that the liver-to-
spleen attenuation ratio (1.15 ± 0.30) was higher in the
non-diseases control group compared to the severe
(P < .001) and non-severe COVID-19 (P < .001) groups.
We also found that patients with severe COVID-19 had a
significantly higher percentage of HS compared with
non-severe COVID-19 infections (48.96% vs 38.22%,
P = .001) with OR = 1.55, 95% CI [1.19–2.02]). The non-
www.thelancet.com Vol 85 November, 2022

www.thelancet.com/digital-health


Fig. 4: Example of liver and spleen segmentation for the cases with the highest, median, and lowest DSC score (a) various 2D slices (b) 3D
volume.
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diseased control patients had a lower percentage of HS,
with non-severe (26.95% vs. 38.22%, P < .001,
OR = 2.60, 95% CI [1.96–3.45]) and severe (26.95% vs.
48.96%, P < .001, OR = 1.67, 95% CI [1.35–2.07])
COVID-19 infections. In D3, the DeHFt-based liver-to-
spleen attenuation ratio was (0.93 ± 0.27 vs. 0.93 ± 0.32,
P = .88) in severe (N = 47) vs. non-severe (N = 122)
COVID-19 patients. As can be appreciated from Fig. 6c,
similar findings hold for D3, where severe COVID-19
infections had a higher percentage of HS compared to
non-severe COVID-19 infections (65.96% vs 59.84%,
P = .46, OR = 1.30, 95% CI [0.64–2.63]). In a pooled
fixed effect model including the 3 cohorts, HS was
associated with increased odds for severe COVID19
infection (pooled OR 1.50, 95% CI [1.20–1.88], P < .001).
Segmentation methods Acc. Prec. Recall DSC CT atte
method

Manual segmentation – – – – Slice-bas

Volume

nnUnet30 0.97 0.95 0.95 0.95 Slice-bas

Volume

DSC, Dice similarity coefficient; ρ, Pearson correlation coefficient.

Table 1: Performance comparison of the segmentation methods & CT attenu

www.thelancet.com Vol 85 November, 2022
Discussion
In this work, we presented a fully automatic deep-
learning-based model (DeHFt) to segment the liver
and spleen on non-contrast computed tomography (CT)
performed for coronary artery calcium (CAC) in an
attempt to evaluate whole-volume liver and spleen
attenuation and HS. The DeHFt model was also applied
to large multi-site cohorts of COVID-19 patients to
investigate if the severe COVID-19 infections were
associated with lower hepatic attenuation values, in turn
reflecting HS.

Liver segmentation is an essential task in medical
image analysis, and various benchmarks/challenges for
liver segmentation14–16 have been organised thus far. The
best liver segmentation algorithm32 has reported a DSC
nuation measurement
s

Liver Liver-to-spleen

ρ P-value ρ P-value

ed 0.97 P < 0.001 0.94 P < 0.001

tric-based 0.93 P < 0.001 0.89 P < 0.001

ed 0.98 P < 0.001 0.95 P < 0.001

tric-based 0.96 P < 0.001 0.92 P < 0.001

ation estimation.

7
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Fig. 5: Scatter plot and Bland–Altman graph showing variability in (a) Slice-based Liver attenuation estimation (b) Slice-based Liver-to-Spleen
estimation (c) volumetric-based Liver attenuation estimation (d) volumetric-based Liver-to-Spleen. The dotted horizontal blue line shows the
mean of the differences (=bias) between the two methods, and the doted red horizontal lines show the upper and lower 95% limits of
agreement (= bias ± 1.96 × SD).

Fig. 6: Association between liver steatosis and COVID-19 infections severity in large multi-site COVID-19 cohorts. The figure shows the mean
liver-to-spleen (L/S) attenuation ratio between non-severe and severe patients, and the percentage of patients with hepatic steatosis (L/S < 1) in
non-severe vs. severe COVID-19 patients in (a) Renmin hospital of Wuhan University, Hubei General Hospital (D1, N = 805) (b) STOIC2021-
COVID-19 AI Challenge dataset (D2, N = 1917) (c) Stony Brook University COVID-19 Positive Cases dataset (D3, N = 169). HS, hepatic steatosis.

Articles
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Dataset Outcome Comparator OR [95% CI] P-value

Wuhan; D1 (N = 805) Severe COVID19 (N = 465) Non-severe COVID19 (N = 340) 1.46 [0.9–2.36] P = .12

STOIC; D2 (N = 1917) Severe COVID19 (N = 288) Non-Severe COVID19 (N = 887) 1.55 [1.19–2.02] P = .001

Non-Severe COVID19 (N = 887) Non-diseased COVID19 (N = 742) 1.67 [1.35–2.07] P < .001

Severe COVID19 (N = 288) Non-diseased (N = 742) 2.60 [1.96–3.45] P < .001

SBU: D3 (N = 169) Severe COVID19 (N = 47) Non-Severe COVID19 (N = 122) 1.30 [0.64–2.63] P = .46

Total (fixed effects) Severe COVID19 (N = 800) Non-severe COVID19 (N = 1349) 1.50 [1.20–1.88] P < .001

HS, hepatic steatosis; OR, odds ratio; CI, confidence interval.

Table 2: Association between HS (liver-to-spleen attenuation ratio <1) and COVID-19 infections severity in COVID-19 cohorts.

Articles
of 0.96 (in preprint). The public/challenge CT datasets
for liver and spleen segmentations are near-universally
performed on contrast-enhanced CT scans, while CAC
scans are low-dose non-contrast CTs (thick slabs of
2.5 mm). The performance of these models is relatively
poor on these low-dose non-contrast CTs.17 In our study,
we trained state-of-the-art deep-learning-based segmen-
tation models on low-dose non-contrast CTs and ach-
ieved a DSC of 0.95, 95% CI [0.93–0.96] on the
independent validation set (N = 49).

In a multi-stage algorithm, the effectiveness of the
preceding stage affects the performance of the subse-
quent downstream analyses. Therefore, we evaluated the
performance of these CT attenuation measurement
methods on the segmentation obtained by the DeHFt
pipeline and compared it with ground truth segmentation
(performed manually by the expert). Our results suggest
that the CT attenuation estimations with the DeHFt
pipeline yielded a strong correlation with manual ROI-
based measurement similar to the ground truth seg-
mentation. Overall, the results suggest that slice and
volumetric-based estimations via DeHFt were highly
correlated with human reader assessment. Our results
are also in-line with previous findings.33 However, unlike
their approach,33 DeHFt does not need an expert to
manually segment the liver or estimate liver fat.

We additionally utilised the DeHFt model to inves-
tigate the prevalence of HS (liver-to-spleen attenuation
ratio <1 in CT) in patients with severe COVID-19 in-
fections compared to non-severe COVID-19 infections.
We found that the patients with severe COVID-19 had a
higher percentage of HS compared with non-severe
COVID-19 infections across three different cohorts
from three different institutions. These differences were
statistically significant for D2, where P < 0.05. The
P-values were affected by sample size, effect size and
other factors. As the sample size increases (D3, N = 169;
D1, N = 805; D2, N = 1917), the P-value decreases (D3,
0.46; D1, 0.12, D3, <0.001) due to reduction in the
impact of random error. However, the effect sizes across
three datasets were comparable (OR: D1 = 1.46,
D2 = 1.55, and D3 = 1.30), with pooled OR 1.50, 95% CI
[1.20–1.88] suggesting a higher odd of HS among pa-
tients with severe COVID-19 than in non-severe
COVID-19 infections. We also observed a few outliers,
www.thelancet.com Vol 85 November, 2022
as can be seen in Fig. 6. On further investigation, we
found that these outliers were either due to the image
artifacts or due to the inclusion of a portion of the heart
causing incorrect estimation of liver attenuation.

Prior studies34,35 have shown that obesity and visceral
adiposity are linked with COVID-19 infections and poor
outcomes. For example, Tahtabasi et al.36 showed that
liver steatosis as assessed by CT (liver attenuation <40
HU) was more frequent in patients with COVID-19
infections compared with controls (40.9% vs. 19.4%,
P < .001).36 Palomar-Lever et al.35 showed that liver
steatosis (liver-to-spleen attenuation ratio ≤ 0.9) was
more common in patients with severe COVID-19 in-
fections compared with non-severe infections (69.9 vs
29%). Our study utilises a deep-learning-based pipeline
to investigate the association between HS and the
severity of COVID-19 infections in a large cohort of
patients. Our study further adds to the literature sug-
gesting that liver steatosis assessment using the DeHFt
pipeline can be utilised as an automated, reproducible
method to assess risk in COVID-19 infections.

This study also has a few limitations that need to be
acknowledged. The scans used in training did not
include the entire liver as they were intended for CAC
screening, and thus it is not clear how our model might
perform in scans that include the entirety of the liver/
spleen. Secondly, volume-based liver attenuation can be
biased by the presence of large cysts, masses, or calci-
fications that were not present in our training datasets.
Another limitation is that the study is retrospective as
opposed to prospective. Also the sample size of the
validation cohort is limited. Further research is needed
to investigate the effect of ethnic characteristics on HS
prevalence and its potential role in treatment response.
Conclusions
The deep-learning-based hepatic fat assessment
(DeHFt) pipeline enabled accurate segmentation of liver
and spleen on non-contrast CT scans and enabled
automated estimation of liver and liver-to-spleen atten-
uation ratio. It has been demonstrated that the ap-
proaches could be applied to large epidemiologic
studies, including COVID-19 studies, to assess HS and
its role in treating and managing patients.
9
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The presented pipeline has several potential appli-
cations. First, it can potentially enable automation of HS
assessment as part of CAC and other non-contrast CTs
and thus can facilitate its reporting to identify high-risk
metabolic patients. Second, the automated method can
be applied to large datasets to understand the associa-
tion between liver steatosis and cardiometabolic out-
comes. Third, volumetric segmentation allows
understanding of radiomic biomarkers that are associ-
ated with several diseases (e.g., non-alcoholic fatty liver
disease, cirrhosis, viral hepatitis) in addition to meta-
bolic risk markers. Fourth, the new method should be
investigated as an aid for comprehensive risk assess-
ment of patients with COVID-19 infection to assign care
level (e.g., inpatient vs outpatient) and decision for early
use of therapeutics (e.g., antivirals).
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