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SUMMARY

Translating human genetic findings (genome-wide association studies [GWAS]) to pathobiology 

and therapeutic discovery remains a major challenge for Alzheimer’s disease (AD). We present a 

network topology-based deep learning framework to identify disease-associated genes (NETTAG). 

We leverage non-coding GWAS loci effects on quantitative trait loci, enhancers and CpG islands, 

promoter regions, open chromatin, and promoter flanking regions under the protein-protein 

interactome. Via NETTAG, we identified 156 AD-risk genes enriched in druggable targets. 

Combining network-based prediction and retrospective case-control observations with 10 million 

individuals, we identified that usage of four drugs (ibuprofen, gemfibrozil, cholecalciferol, and 

ceftriaxone) is associated with reduced likelihood of AD incidence. Gemfibrozil (an approved 

lipid regulator) is significantly associated with 43% reduced risk of AD compared with simvastatin 

using an active-comparator design (95% confidence interval 0.51–0.63, p < 0.0001). In summary, 

NETTAG offers a deep learning methodology that utilizes GWAS and multi-genomic findings to 

identify pathobiology and drug repurposing in AD.

Graphical abstract
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In brief

Xu et al. develop an interpretable deep learning framework (termed NETTAG) to identify 

Alzheimer’s disease (AD) risk genes and drug targets through leveraging GWAS, multimodal 

genomics, and human protein-protein interactome network data. Combining human interactome 

network-based prediction and EHR-based patient data validation identifies gemfibrozil’s effect on 

reduced incidence of AD.

INTRODUCTION

Alzheimer’s disease (AD), first described in 1907 by Alois Alzheimer, is the most 

common type of dementia with gradual cognitive decline and memory loss.1 AD and 

AD-related dementias (AD/ADRD) are a major global health challenge, and the number 

of affected individuals is expected to double by 2050,2,3 affecting more than 150 million 

people worldwide.2,4 The prevalence of AD in the United States is expected to double 

by 2050,5,6 while the attrition rate for AD clinical trials (2002–2012) is estimated at 

99%.7 High-throughput DNA/RNA sequencing technologies have rapidly led to a robust 

body of genetic and genomic data in multiple national AD genome projects, including 

the Alzheimer’s Disease Sequencing Project (ADSP)8 and the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI).9 Genome-wide association studies (GWAS) have also 

identified ~100 AD susceptibility loci.10-14 Despite this progress in understanding AD 

genetic risk, the complex, polygenic, and pleiotropic genetic architecture has precluded the 
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development of therapeutics. This is partly because the growing mass of genetic datasets has 

not been effectively explored for AD drug discovery and development.

Recent advances in genetics and systems biology have shown that AD is governed by 

network-associated molecular determinants (termed disease modules) of common endotypes 

or endophenotypes.15,16 Approaching AD with a simplistic single-target approach has 

been demonstrated as effective for developing symptomatic therapies and for monoclonal 

antibody development, and specifically modulating genetic risk genes may lead to disease-

modifying treatments in AD.16 However, more effective means of advancing therapies for 

disease modification are urgently needed.15 A recent study showed that selecting genetically 

supported targets can double the success rate in clinical development.17 However, existing 

data, including genomics, transcriptomics, proteomics, and interactomics (protein-protein 

interactions), has not yet been fully utilized and integrated for targeted therapeutic 

development for AD.18-20

Understanding AD from the point of view of human interactome perturbations is the essence 

of network medicine.15,16 The central hypothesis of AD network medicine is that cellular 

networks disturbed by genetic variants gradually rewire throughout disease pathogenesis and 

progression.15,16 Systematic characterization and identification of underlying pathobiology 

can provide a foundation for identifying disease-modifying targets for AD. Integration 

of the genome, transcriptome, proteome, and human interactome is essential for such 

identification. Several network-based analytic techniques have recently been developed to 

address the myriad different types of inputs of omics layers. Weighted gene co-expression 

network analysis (WGCNA)21 and multiscale embedded gene co-expression network 

analysis (MEGENA)22 are two commonly used network-based methods that are based 

on brain gene/protein expression profiles of AD patients. Random walk with restart 

(RWR)23 has also been used to predict AD-associated genes, based on input data from 

literature-reported genes. However, in contrast to NETTAG, these existing network-based 

approaches do not leverage the integration of multi-omics profiles, such as genetics, 

functional genomics, transcriptomics, and proteomics, for risk gene prediction and drug 

target identification.

This study introduces a network topology-based deep learning framework to identify 

disease-associated genes (NETTAG) and drug targets from genetic and multi-omics 

discoveries for AD. The fundamental premise of NETTAG is that disease risk genes 

(1) exhibit distinct functional characteristics compared with non-risk genes and therefore 

can be distinguished by their aggregated genomic features, (2) converge to a limited 

number of pathobiological pathways captured by the human protein-protein interactome, 

and (3) include multiple AD pathobiological modulators and potential therapeutic 

targets. In addition to pinpointing well-known AD-risk genes, (e.g., APOE, BIN1, and 

PICALM), NETTAG identified potential AD-associated genes, such as MEF2D and CPLX2. 

Importantly, we demonstrated the putative risk genes identified by NETTAG offer actionable 

drug targets for drug repurposing, and we further validated drug findings in a large real-

world patient database.
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RESULTS

An interpretable deep learning framework

Here, we present NETTAG, a network-based deep learning framework to identify likely 

risk genes from GWAS and brain-specific multi-omics findings in AD. NETTAG integrates 

multi-omics data and the human protein-protein interaction (PPI) network to infer likely 

risk genes and potential drug targets impacted by GWAS loci. The fundamental premise 

of NETTAG is that disease risk genes exhibit distinct functional characteristics compared 

with non-risk genes and that they can be distinguished by their aggregated genomic 

features under the human protein interactome. Specifically, we assembled non-coding 

GWAS loci effects on expression quantitative trait loci (eQTLs), histone QTLs, transcription 

factor binding QTLs, enhancers and CpG islands, promoter regions, open chromatin, and 

promoter flanking regions from GTEx,24,25 NIH RoadMap,26 Ensembl Regulatory Build,27 

SNPnexus,28 and ENCODE.29 The procedure for NETTAG (Figure 1) is divided into five 

components. First, we utilized a deep learning model to cluster PPIs into multiple functional 

network modules by capturing the topological structures within the human protein-protein 

interactome (STAR Methods). We then characterized each functional network module 

by linking its nodes (genes) with protein annotation from the Gene Ontology (GO) 

knowledgebase.30 Second, we quantified a node’s (gene’s) score by integrating its functional 

similarity with each gene identified with multiple brain-specific gene regulatory evidences 

via influencing GWAS loci. Third, we prioritized likely risk genes in AD by their aggregated 

gene regulatory features. Fourth, we prioritized repurposable drugs for potential treatment of 

AD by evaluating network proximities between NETTAG-inferred AD-risk genes (alzRGs) 

and known drug targets under the human protein-protein interactome network model. Fifth, 

we identified supportive information for drug-AD outcomes using a large-scale patient 

longitudinal, patient electronic health record (EHR) database (Figure 1).

A gene regulatory landscape of GWAS loci in AD

After mapping AD loci (p < 1.0 × 10−5) from multiple brain-specific gene regulatory 

elements (STAR Methods), we pinpointed 23 genes with CpG islands (e.g., APOE, PVR, 

and STK11), 19 genes with CTCF binding sites (e.g., BIN1, JPH1, and SYK), 13 genes 

with enhancers (e.g., BIN1, FARP1, and MARK4), 21 genes with eQTL (e.g.,CD2AP, 
IL6, and PVR), 169 genes with histone modifications including H3K27ac, H3K27me3, 

H3K36me3, H3K4me1, H3K4me2, H3K4me3, H3K9ac, and H4K20me1 (such as APOE, 
CKAP5, DST, and NECTIN2), 48 genes with open chromatin (e.g., BIN1, CLU, and 

INPP5D), 23 genes with promoters (e.g., APOE, IL6, and STK11), 59 genes with promoter 

flanking regions (e.g., BIN1, CLU, and MARK4), and 20 genes (e.g., BCAM, CLU, 

and VSNL1) with transcriptional factor binding sites, respectively (Figure 2A and Table 

S1). As shown in Figure 2A, 69 genes have AD loci with multiple gene regulatory 

evidence, such as apolipoprotein E (APOE), BIN1, CLU, IL6, and PTK2B (Table S1). 

Specifically, APOE loci have regulatory influence with CpG islands (rs429358 and rs7412), 

histones (rs405509 and rs769449), promoters (rs769449), and promoter flanking regions 

(rs75627662) (Figure 2A and S1A). Bridging integrator 1 (BIN1), another risk factor of late-

onset Alzheimer’s disease (LOAD),31,32 is associated with multiple regulatory elements, 

including CTCF binding sites (rs12989701), enhancers (rs10207628), histones (rs6431219, 
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rs10194375, rs72838215, rs10207628), open chromatin (rs6733839), and promoter flanking 

regions (rs10194375). Phosphatidylinositol binding clathrin assembly protein (PICALM) 

loci in AD display regulatory activity involving histones (rs867611, rs527162, rs639012, and 

rs17817600), promoters (rs867611), and promoter flanking regions (rs10792832). PICALM 

regulates AD pathology with Aβ generation and disordered lipid metabolism.33 Inositol 

polyphosphate-5-phosphatase D (INPP5D), a LOAD-risk gene,14 is associated with open 

chromatin regulation (rs10933431). Furthermore, a mouse model (5xFAD) study found that 

expression of Inpp5d was elevated in microglia as the disease progressed.34 We also found 

that spleen-associated tyrosine kinase (SYK) (rs1172922) is linked with a CTCF binding 

site. Activation of SYK boosts inflammation35 and modulates both Aβ- and tau-induced 

pathologies.36 Together, these multi-omics analyses highlight the crucial roles of gene 

regulation involving various AD GWAS loci. We therefore developed NETTAG to infer 

gene regulatory variants and putative risk genes in AD using network-based multi-omics 

evidence aggregation analyses.

NETTAG-based prediction of likely risk genes in AD

Through NETTAG, we first clustered PPIs into functional subnetwork modules using 

a topology-based self-supervised learning framework. We found that these subnetwork 

modules could reflect biological relationships (Figure 2B). Specifically, proteins with more 

GO terms (not used in training) tend to have more network clusters in the human PPI 

interactome (Figure 2B and Table S2). We found that proteins in the same subnetwork 

module tend to have more shared GO annotation (Wilcoxon signed rank test, p < 2.2 

× 10−16, STAR Methods), indicating that network-based fingerprints of the PPI module 

overlay among genes and can characterize functional modularities and similarities.37 We 

inferred likely risk genes by integrating PPI-derived network modules and multimodal 

analyses of nine types of gene regulatory elements implicated by AD GWAS loci. Taking 

CpG islands as an example, the predicted score for one particular gene regarding CpG 

islands could estimate its functional overlap (Spearman correlation, r = 0.44, p = 1.86 × 

10−24, Figure S1B and STAR Methods) with all 23 AD CpG island-linked genes (Table 

S1). Finally, we inferred likely risk genes by integrating (summing) all nine types of 

gene regulatory elements (STAR Methods). The area under the curve (AUC) values for 

receiver operating characteristic curve (ROC) using reported AD-associated genes collected 

from AlzGene,38 DistiLD,39 TIGA,40 and DISEASES41 (Figures 2C and S2A) are 0.81, 

0.80, 0.72, and 0.78 respectively, suggesting reasonable accuracy of NETTAG. We further 

compared NETTAG with three classical approaches: RWR,23 spectral clustering,42 and 

k-means clustering.43 We found that NETTAG predicted more genes non-overlapped with 

the mapped input genes associated with different regulatory elements (80%) compared 

with RWR (less than 50%, Figure S3A). Furthermore, genes predicted by NETTAG were 

more significantly enriched in AD-relevant functional pathways compared with those 

identified by RWR (Figure S3B). In addition, we found that the overlapping clustering 

method implemented in NETTAG outperformed traditional spectral clustering and k-means 

clustering (Figures S3C and S3D).

Via NETTAG (Figure 1), we identified 156 likely alzRGs, such as APOE, APP, BIN1, FYN, 

and STK11. Products (proteins) of 139 alzRGs out of 156 formed the largest connected 
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component within 294 PPIs (Figure 3A and Table S3) in the human protein-protein 

interactome. Via gene and functional enrichment analyses, we found that the NETTAG-

predicted alzRGs are significantly enriched by gene regulatory elements (Figures 3B and 

S4A), compared with the same number of randomly selected genes with a similar degree 

distribution in the human interactome network. We assembled AD-associated genes from 

the GWAS Catalog,44 UK Biobank GWAS45 and DisGeNET with published experimental 

evidence from animal models and human studies.46 We found that alzRGs were significantly 

enriched in all three AD-associated gene sets: GWAS Catalog (adjusted p value [q] = 2.25 

× 10−7), UK Biobank GWAS (q = 8.59 × 10−3), DisGeNET (q = 1.19 × 10−8, Fisher’s 

exact test, Table S3). Pathway enrichment analyses47 showed that alzRGs are significantly 

enriched in multiple immune pathways (Table S3 and Figure S4B), including B cell (q = 

5.32 × 10−4), T cell receptor (q = 1.17 × 10−2), and cytokine signaling pathways (IL-2: 

q = 6.99 × 10−3, IL-7: q = 1.43 × 10−2, IL-18: q = 1.65 × 10−2). In summary, NETTAG 

achieved a high accuracy (AUC = 0.81) in predicting likely AD-risk genes with diverse 

functional pathways, including key immune pathways. We next performed multi-omics 

validation for NETTAG-predicted alzRGs, including single-cell/nuclei transcriptomics in 

disease-associated microglia (DAM) and astrocytes (DAA) isolated from transgenic mouse 

and human brains with well-established AD neuropathology.

NETTAG-predicted genes are differentially expressed in AD brains

We found 95 alzRGs (p = 2.67 × 10−7, Fisher’s exact test) that are differentially expressed 

regarding at least one type of transcriptomic study in AD brains. Specifically, 29 (p 

= 0.0185), 67 (p = 2.36 × 10−3), and 39 (p = 2.96 × 10−7) alzRGs are differentially 

expressed genes (DEGs) according to microarray (human AD patients and controls), 

bulk RNA sequencing (human AD patients and controls), and single-cell/nucleus RNA 

sequencing (AD transgenic mouse model and human postmortem brain samples) analyses, 

respectively (STAR Methods). Nine genes (ACTL6B, ATP2B1, EPB41L3, ABCA1, CPLX2, 
P2RX7, PDE1A, SLC38A2, and VSNL1) are DEGs based on all three types of differential 

expression evidence (Figure S5A). Additionally, the purinergic receptor P2X7 (P2RX7) 

inhibitor was found to reduce tau accumulation in P301Stau transgenic mice,48 and P2X7R 

antagonists were supported as potential therapeutic AD options.49 Also, visinin-like 1 

(VSNL1) is co-expressed with multiple genes involved in molecular mechanisms of AD, 

including amyloid beta precursor protein (APP).50 Moreover, nineteen genes (ABCA1, 
APOE, BCL3, BIN1, CKAP5, CLU, FARP1, HSPG2, MADD, MAPK7, MARK4, NCS1, 
PICALM, PTK2B, SPRED2, TGFB2, TOMM40, TOP1, and VSNL1) have been identified 

by gene regulatory elements and AD GWAS studies44 (Figure S5B). More explicitly, 

microtubule affinity regulating kinase 4 (MARK4) is the protein linked with most gene 

regulatory elements, including CpG island (rs28469095), CTCF (rs12463049), enhancer 

(rs536518226), eQTL (rs8100183), histone (rs9653111 and rs10421247), open chromatin 

(rs138137383), promoter flanking region (rs10421247 and rs138137383), and TF-binding 

site (rs12463049) (Table S1 and Figure S5B). Furthermore, MARK4 has been suggested as 

a potential target for AD via binding with acetylcholinesterase (AChE) inhibitors, such as 

donepezil (an AChE inhibitor used for patients with AD).51 In addition to APOE, BIN1, and 

PICALM, CLU loci are linked with four types of regulatory elements, including histones 

(rs9331896 and rs1532278), open chromatin (rs2279590), promoter flanking regions 
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(rs9331888), and TF-binding sites (rs1532278) (Table S1 and Figure S5B). Clusterin (CLU) 

is another risk gene for LOAD52 by multiple pathologies, including neuroinflammation, Aβ 
accumulation, and lipid metabolism.53

Among the 67 alzRGs that are differentially expressed based on bulk RNA-seq studies, 42 

alzRGs form a subnetwork within the human interactome network (Figure 4A). Within the 

23 top differentially expressed alzRGs such as HOMER2, ABCA1, and HSPG2 (∣log2FC∣ 
> 1, q < 0.05, Table S4), homer scaffold protein 2 (HOMER2) (downregulated log2FC = 

−1.65, q = 2.39 × 10−3, Table S4) was found to inhibit APP production and secretion of Aβ 
peptide together with HOMER3.54 ATP binding cassette sub-family A member 1 (ABCA1) 

was among the most upregulated genes according to bulk RNA-seq studies (log2FC = 1.21, 

q = 1.37 × 10−3, Table S4), and its mutation has been associated with an elevated risk 

of AD.55 Heparan sulfate proteoglycan 2 (HSPG2) was another highly upregulated gene 

according to bulk RNA-seq studies (Table S4). Correlation studies suggested that people 

with an APOEϵ4 allele have increased risk of AD if also carrying an HSPG2 A allele.56

We collected and analyzed six sets of proteomics data from transgenic mouse AD models 

(STAR Methods). Among the 156 predicted AD-associated genes, protein products of 29 

genes (e.g., HSPA5, ENO1, FERMT2, and VAV1) are differentially expressed (p = 3.98 

× 10−7, Fisher’s exact test, Table S4). Heat shock protein family A (Hsp70) member 5 

(HSPA5) is important in tau phosphorylation and has been proposed as a potential target for 

AD treatment.57 Another study showed that oxidative inactivation of enolase 1 (ENO1) 

can significantly accelerate AD progression from mild cognitive impairment (MCI).58 

Additionally, FERM domain containing kindlin 2 (FERMT2) was identified as an AD-risk 

gene by GWAS studies.14 It is observed that FERMT2 can modulate APP metabolism and 

Aβ formation, therefore linking its mechanism with AD pathology.59 Another mouse model 

study found that targeting vav guanine nucleotide exchange factor 1 (VAV1) could rescue 

neuronal death by inhibiting JNK signaling pathway.60

alzRGs are differentially expressed in AD-associated microglia and astrocytes

Neuroinflammation plays a crucial role in pathogenesis and progression of AD.61 We found 

that predicted alzRGs are significantly enriched by multiple immune pathways, including 

B cell receptor, T cell receptor, and cytokine (IL-2, IL-7, and IL18) signaling pathways 

(Table S3 and Figure S4B). We then investigated how neuroinflammatory pathways were 

impacted by predicted alzRGs using DAM and disease-associated astrocytes (DAA) as two 

examples. We found that 14 alzRGs were differentially expressed (∣log2FC∣ > 0.25, q < 

0.05) in DAM from a 5xFAD mouse-model-derived single-cell RNA-seq dataset (one-sided 

t test: statistic = 33.85, p = 9.76 × 10−183, Figure S5C) and a 5xFAD mouse-model-derived 

single-nucleus RNA-seq dataset (one-sided t test: statistic = 34.65, p = 2.59 × 10−206, Figure 

4B). For DAA, 25 alzRGs are differentially expressed (∣log2FC∣ > 0.25, q < 0.05) across 

three single-nucleus RNA-seq datasets from human postmortem brains with several brain 

regions, including prefrontal cortex (p < 1.0 × 10−3, Figure 4C), entorhinal cortex (p = 

2.33 × 10−49, Figure 4D), and super frontal gyrus (p = 8.30 × 10−27) (Figure S5D, Table 

S4, and STAR Methods). Among 39 differentially expressed alzRGs in DAM or DAA, 28 

alzRG-coding proteins form a subnetwork within the human interactome network (Figure 
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4E). Activating transcriptional factor 3 (ATF3) overexpressed in DAM (one top DEGs 

log2FC = 0.62, q = 9.73 × 10−16 with 5xFAD mouse models, Table S4), was observed 

to have elevated expression in another mouse model study.62 An elevated expression level 

of ATF3 is positively correlated with Aβ accumulation.62 Microtubule-associated protein 

RP/EB family member 2 (MAPRE2) overexpressed in DAA (one top DEG with log2FC 

= 0.51, q = 7.03 × 10−20in human postmortem brain tissues, Table S4) was identified as 

an AD-associated gene based on GWAS from the ADNI cohort.63 In summary, NETTAG-

predicted alzRGs are differentially expressed in AD-associated microglia and astrocytes.

NETTAG-based discovery of potential risk genes in AD

We further identified potential risk genes in AD through combining multiple types of 

evidence: (1) top predicted genes by NETTAG (156 alzRGs), (2) NETTAG-predicted genes 

that are supported with at least three types of multi-omics evidence (Table S4), and (3) 

NETTAG-predicted genes that have not previously been identified by the GWAS Catalog.44 

In total, we have identified 25 potential AD-risk genes, e.g., CPLX2, FYN, MAPKAPK2, 
MEF2D, KLF4, P2RX7, BACE1, and HK2. (Figure 5 and Table S4). Myocyte enhancer 

factor 2D (MEF2D), an alzRG with currently non-existing AD-associated DNA regulatory 

or GWAS evidence, has the highest NETTAG-predicted score. MEF2D is differently 

expressed in both mouse single-nucleus RNA-seq and human microarray data analyses 

(Figures 5 and S5E and Table S4). A previous study showed that protocatechuic acid 

rescued a cell model from okadaic acid-induced cytotoxicity (tau hyperphosphorylation) 

by modulating the Akt/GSK-3β/MEF2D pathway, and it also exhibited neuroprotective 

effects for AD.64 Complexin 2 (CPLX2) is the second top predicted alzRG with currently 

non-existing AD-associated DNA regulatory or GWAS evidence. CPLX2 was identified as 

AD associated with five types of multi-omics evidence and was differentially expressed 

according to both transcriptome (DAA) and proteome studies (Figures 5 and S5F and Table 

S4). Experimental data with hippocampus from 3x-Tg AD mice showed abnormally lower 

proteomic levels of CPLX2,65 which is consistent with the observed downregulation in 

DAA. Another independent study based on the memory and aging project (MAP) cohort 

found that lower levels of CPLX2 were significantly associated with cognitive decline.66 

Together, these potential risk genes by NETTAG identify disease-associated genes and 

potential drug targets in AD.

Discovery of repurposable drugs via targeting NETTAG-predicted genes

Among the 156 predicted alzRGs, 38 proteins (gene products of alzRGs) have been 

identified as known drug targets with FDA-approved or clinically investigational medicines 

(p = 8.78 × 10−4, Fisher’s exact test, Table S4 and Figure 5). In total, nine targets (e.g., 

BACE1, CDK5, FYN, GSK3B, MARK4, MKL1, and PTK2B; Table S4) have been widely 

investigated as therapeutic approaches for treating AD. FYN proto-oncogene, Src family 

tyrosine kinase (FYN), which contributes to Aβ production and tau phosphorylation,67 has 

been suggested as one potential target for AD. Glycogen synthase kinase 3 beta (GSK3B) 

has been found to have a role in hyperphosphorylation of tau and Aβ production.68 

A previous study showed that thiadiazolidinone (a GSK3B inhibitor) decreased tau 

phosphorylation and improved neuronal survival.68 Beta-secretase 1 (BACE1), a β-secretase 

enzyme involved in Aβ peptide generation, has also been demonstrated to be a promising 
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target in AD.69 We next turned to identify repurposable drugs by specifically targeting 

protein products of alzRGs (Figure 3A).

Using network proximity approaches70 to evaluate the closest distance between disease 

module and a drug’s targets within the human protein-protein interactome network (STAR 

Methods), we computationally identified 118 candidate drugs using Z scores (Z) < −2 and 

false discovery rate (q) < 0.05 from the 2,938 US FDA-approved or clinically investigational 

drugs (Table S5 and STAR Methods). As shown in Figure 6A, we grouped these top 

predicted 118 candidate drugs into 14 pharmacological categories based on the first level 

of the Anatomical Therapeutic Chemical (ATC) code. Gemfibrozil, a lipid regulator used 

to treat hyperlipidemias, is one of these top predictions (Table S5). Gemfibrozil reduced 

the amyloid plaque burden in a mouse model of AD.71 Mechanistically, gemfibrozil’s 

targets (e.g., LPL, PPARA, and SLCO1B1) have physical interactions with proteins encoded 

by several predicted alzRGs (e.g., APOE, APP, HSPG2, and TOMM40) (Figure 6B). 

Cholecalciferol (vitamin D3) is another top predicted candidate (Table S5). Multiple cohort 

studies found that vitamin D deficiency was associated with elevated risk of AD.72,73 

The drug target network analysis showed that cholecalciferol’s targets (e.g., CDC25A, 

VDR, and GLRA1) have physical interactions with proteins encoded by several predicted 

alzRGs (e.g., GSK3B and MAPKAPK2) (Figure 6C). Choline, a nutrient found in many 

vitamins, is our fifth ranked predicted drug (Table S5). Experiments with APP/PS1 mouse 

models showed that dietary choline reduced Aβ production and improved spatial memory by 

suppressing overactivation of DAM.74 While choline does not directly target any alzRGs, its 

targets interact with multiple protein products of predicted alzRGs, including BIN1, CDK5, 

and FYN (Figure S6A). Ibudilast, an anti-inflammatory drug used to attenuate multiple 

sclerosis, is another top predicted drug (Table S5). Ibudilast inhibited pro-inflammatory 

cytokine production and blocked neuroinflammation to prevent Aβ-induced cognitive 

impairment.75 Mechanistically, ibudilast’s targets (e.g., PDE3A, PDE4B, and PDE4D) 

have physical interactions with proteins encoded by several predicted alzRGs (e.g., BIN1, 

FYN, and GSK3B) (Figure S6B). Ceftriaxone (Table S5), an antibiotic, was found to be 

neuroprotective by inhibiting amyloid deposition and neuroinflammation in an AD mouse 

model.76 Ceftriaxone’s targets interact with multiple protein products of predicted alzRGs, 

such as CSNK2A1 and TOP1 (Figure S6C). Ibuprofen, one commonly used non-steroidal 

anti-inflammatory drug (Table S5), was capable of suppressing interleukin 1 beta (IL1B) 

protein level and amyloid deposition in an AD transgenic mouse model.77 Ibuprofen’s 

targets interact with multiple protein products of predicted alzRGs, such as MARK4 and 

FYN (Figure S6D). In summary, risk genes identified by NETTAG offer potential drug 

targets for AD therapeutic discovery, including drug repurposing (such as gemfibrozil and 

cholecalciferol). We next turned to test AD drug outcomes from large-scale patient EHR 

data using well-established pharmacoepidemiologic approaches.70,78

Validating possible causal AD associations of candidate drugs in patient data

We used subject matter expertise based on a combination of prespecified factors to select 

candidate drugs: (1) strength of network proximity measures via quantifying relationships 

between drug targets and proteins encoded by NETTAG-predicted alzRGs; (2) novelty of 

the predicted associations through exclusion of drugs currently being tested in AD clinical 
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trials; (3) availability of sufficient patient data for meaningful evaluation (exclusion of 

infrequently used medications); (4) published positive in vitro or in vivo experimental data 

in AD models; and (5) ideal brain penetration (STAR Methods). Applying these criteria 

resulted in identifying four top candidate drugs, including gemfibrozil, cholecalciferol, 

ceftriaxone, and ibuprofen (Table S5), for patient data analysis. We identified a total of 

3,180,111 valid subject records from the Northwestern Medicine Enterprise Data Warehouse 

(NMEDW) database between 2011 and 2021 after screening 10 million patient records. We 

then adjusted various confounding factors (including age, race, sex, ethnicity, and disease 

comorbidities) based on previous studies.70,78 Overall, we found that use of four drugs was 

significantly associated with reduced incidence of AD compared with propensity score (PS)-

matched non-drug exposure (STAR Methods, Table S6A): (1) ibuprofen vs. PS-matched 

non-ibuprofen users (odds ratio [OR] = 0.80, 95% confidence interval [CI] 0.74–0.87, p < 

0.001); (2) gemfibrozil vs. matched non-gemfibrozil users (OR = 0.76, 95% CI 0.70–0.84, 

p < 0.001); (3) cholecalciferol vs. matched non-cholecalciferol users (OR = 0.87, 95% CI 

0.82–0.91, p < 0.001); and (4) ceftriaxone vs. matched non-ceftriaxone users (OR = 0.86, 

95% CI 0.78–0.95, p = 0.003).

We next performed additional active-comparator analyses based on an active-comparator 

design approach allowing comparison of the agent of interest to an agent used for the 

same medical indication but not identified as a candidate by NETTAG-predicted alzRGs 

(STAR Methods): (1) 712,103 patients in the ibuprofen cohort vs. 474,110 patients in 

an aspirin cohort; (2) 72,691 patients in the gemfibrozil cohort vs. 119,949 patients in a 

simvastatin cohort; (3) 447,846 patients in the cholecalciferol cohort vs. 235,993 patients 

in an ergocalciferol cohort; and (4) 91,192 patients in the ceftriaxone cohort vs. 248,724 

patients in a ciprofloxacin cohort. Table S6A summarizes clinical characteristics of the 

patients across each drug cohort. More details for each drug cohort design are provided 

in Table S6D. Among four active-comparator design analyses, (1) gemfibrozil use was 

significantly associated with a reduced risk of AD compared with simvastatin (an approved 

anti-lipid medicine under the phase II AD trials [ClinicalTrials.gov identifier: NCT00053599 

and NCT00939822]) users (OR = 0.57, 95% CI 0.51–0.63, p< 0.001); (2) ibuprofen usage 

was significantly associated with a reduced risk of AD compared with aspirin (a drug 

failed in a large phase II AD trial79) users (OR = 0.78, 95% CI 0.66–0.91, p = 0.002); 

(3) cholecalciferol was slightly associated with a reduced risk of AD compared with 

ergocalciferol users (OR = 0.85, 95% CI 0.73–0.99, p = 0.039); and (4) ceftriaxone use 

was not associated with a reduced risk of AD compared with ciprofloxacin (OR = 1.08, 95% 

CI 0.94–1.25, p = 0.263).

We further performed sex- and race-specific patient subgroup analyses (Figure 7), and we 

found that ibuprofen usage was significantly associated with a reduced incidence of AD 

compared with aspirin users in only male individuals; and ibuprofen usage was slightly 

associated with a reduced incidence of AD compared with PS-matched non-ibuprofen 

users in White Americans (OR = 0.82, 95% CI 0.68–0.97, p = 0.023) but not for Black 

Americans (OR = 0.90, 95% CI 0.56–1.42, p = 0.639). Gemfibrozil usage was significantly 

associated with a reduced risk of AD compared with simvastatin users and PS-matched 

non-gemfibrozil users, across all four sex- and race-specific subgroups (OR ranging from 

0.49 to 0.58, p ≤ 0.002 for simvastatin users and OR ranging from 0.71 to 0.82, p ≤ 0.04 for 
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PS-matched non-gemfibrozil users). Cholecalciferol usage was associated with reduced AD 

incidence compared with ergocalciferol users for females (OR = 0.79, 95% CI 0.65–0.94, 

p = 0.01) and White Americans (OR = 0.80, 95% CI 0.67–0.95, p = 0.01) but not for 

males (OR = 1.07, 95% CI 0.82–1.39, p = 0.636) and Black Americans (OR = 0.75, 95% 

CI 0.49–1.16, p = 0.196). Ceftriaxone use was not associated with reduced AD incidence 

compared with ciprofloxacin users across all four PS-matching subgroups.

In summary, among the four NETTAG-predicted drugs, these comprehensive 

pharmacoepidemiologic observations revealed that gemfibrozil was a strong candidate drug 

for potential prevention and treatment of AD. The association between gemfibrozil use and 

decreased incidence of AD will require a randomized controlled trial with diverse population 

to establish the causality.

DISCUSSION

In this study, we presented the development of a deep learning framework known as 

NETTAG that integrates multi-omics data to infer putative risk genes in AD. To avoid 

“black-box” deep learning models, we utilized the human protein-protein interactome 

network to make NETTAG more transparent and interpretable in inferring AD-risk genes 

from GWAS and multi-omics findings. Specifically, there are 16,720 proteins in the human 

protein-protein interactome network according to the GO knowledgebase30 (Table S2). We 

found that 97% (16,214) of annotated proteins in the human interactome have multiple 

GO terms, ranging from two to around 200 (Table S2 and Figure S7A), and our NETTAG-

predicted subnetwork modules were highly correlated with GO-annotated protein function 

(Figure 2B). We performed additional spearman (r) correlation analyses to evaluate the 

relationship between NETTAG-predicted scores (cumulative overlays of divided subnetwork 

modules) and cumulative overlays of protein functions by considering each gene regulatory 

element and found that deep-learning-predicted scores showed significant correlations across 

all gene regulatory elements (Figure S1B). For example, CpG islands (r = 0.44, p= 1.86 × 

10−24), enhancer (r = 0.34, p = 9.07 × 10−13), histones (r= 0.50, p = 6.49 × 10−37), and 

TF-binding sites (r = 0.36, p = 3.50 × 10−17) show strong correlations, whereas promoter 

flanking regions (r = 0.26, p = 2.60 × 10−12), open chromatin (r = 0.22, p = 2.91 × 10−10), 

promoters (r = 0.20, p = 2.42 × 10−15), CTCFs (r = 0.09, p = 1.45 × 10−2), and eQTLs 

(r = 0.14, p = 8.62 × 10−10) show weak to moderate correlations. In addition, we scored 

genes according to their clustering similarities with genes associated with each regulatory 

element as shown in heatmaps (Figure S8). We found that top genes ranked by NETTAG 

can be attributed to their protein functional overlap with the input proteins associated with 

each regulatory element. Consistent with correlation analyses (Figure S1), CpG islands, 

enhancers, histone QTLs, and TF-binding sites play more important gene regulatory roles 

of GWAS loci in AD compared with promoter flanking regions, open chromatin, promoters, 

CTCF binding, and eQTLs. We also found that the AUC values for NETTAG-predicted 

gene scores, generated by integrating a total of nine genome regulatory elements, are 23% 

(AlzGene), 23% (DistiLD), 18% (DISEASES-knowledge), and 17% (TIGA) higher than the 

average AUC value when considering each single gene regulatory element alone (Figures 

S2B-S2F). Taken together, NETTAG offers an interpretable deep learning framework to 

identify AD-risk genes from GWAS loci by leveraging multi-omics findings.
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To evaluate effects of modifications implemented in NETTAG (STAR Methods), we 

compared NETTAG with three additional experiments: (1) without any modifications, (2) 

subsampled topological similar subgraphs (Modification 2 in STAR Methods), and (3) 

coupling second-order term (Modification 1 in STAR Methods). Each group contained 10 

random experiments with fixed seeds. We evaluated the performance of four experiments 

using the GWAS Catalog for validation, and we found superior efficacy of NETTAG 

with either modification, compared with the other groups (Figure S7C). In detail, we 

compared NETTAG with existing network-based approaches, including RWR, spectral 

clustering, and k-means (STAR Methods). We found that the percentage of predicted genes 

(not overlapped with input genes) by NETTAG was much higher compared with RWR 

(Figure S3A and Table S3). In addition, clustering approaches implemented in NETTAG 

outperformed classical spectral and k-means clustering methods (Figures S3C and S3D) as 

well. This indicates that overlapping clustering-based approaches could better coincide with 

the multiple biologic functions of any given protein.

We found that NETTAG-predicted drugs could guarantee consistency with forecasts from 

other methodologies. For example, pioglitazone was proposed as one potential AD treatment 

from another artificial intelligence-based approach.80 Sildenafil was suggested as promising 

AD treatment based on Aβ-tau synergistic endophenotype study.78 Our approach also 

stably highlights both drugs as top-ranked AD candidate options (Table S5). Combining 

network-based prediction and large-scale patient data observations, we identified four 

candidate drugs for treating AD: gemfibrozil, cholecalciferol, ceftriaxone, and ibuprofen. 

The beneficial effect of ceftriaxone with AD was demonstrated with both Aβ (APP1)81 and 

tau (3xTg-AD)82 mouse models as well. In both APP181 and 3xTg-AD mouse models,82 

ceftriaxone restored glutamate-transporter-1 (GLT-1) expression levels and ameliorated 

cognitive decline. Ibuprofen’s treatment effects with AD were consistent with a mouse 

model study that ibuprofen could inhibit neuroinflammation and amyloid deposition.77

Gemfibrozil is a lipid regulator used to treat hyperlipidemia.71 Recent mouse (5xFAD) 

model studies have shown that oral gemfibrozil treatment reduces amyloid plaque 

pathology.71 The same team found that gemfibrozil reduced neuroinflammation by 

inhibiting microgliosis and astrogliosis.71 We selected gemfibrozil to test its possible 

association with AD using a large-scale patient longitudinal database (STAR Methods). With 

PS-matching, we found that gemfibrozil was significantly associated with a decreased risk 

of AD in the general population group after adjusting various cofounding factors, including 

age, gender, race, ethnicity, MCI, hypertension (HT), type-2 diabetes (T2D), and coronary 

artery disease (CAD) diagnoses, based on our sizable efforts (Figure 7). Compared with 

non-gemfibrozil users, gemfibrozil was significantly associated with reduced AD across 

all four subgroup (i.e., sex and race) analyses as well (Figure 7). The active-comparator 

design analyses showed that gemfibrozil was associated with greater risk reduction for AD 

compared with simvastatin in both general and all subgroup studies (Figure 7). Simvastatin 

is an HMG-CoA reductase inhibitor used for cardiovascular-related disease treatment, 

which is under several phase II AD trials (ClinicalTrials.gov identifier: NCT01439555 and 

NCT00486044). Altogether, gemfibrozil offers a promising candidate drug to be tested in 

future randomized controlled trial in AD patients with diverse populations to establish the 

causality.
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In summary, we established a deep learning framework (NETTAG) that incorporates multi-

genomic information along with human protein interactome to infer AD-associated genes. 

We showed that predicted genes are enriched with drug targets, differently expressed 

in DAM and astrocytes, and most importantly significantly associated with AD. We 

demonstrated that the predicted genes offer potential targets for drug repurposing, and 

we validated one NETTAG-predicted drug, gemfibrozil, in reducing risk of AD using 

large-scale, longitudinal patient data. We believe that the NETTAG presented here, if 

broadly applied, could significantly catalyze innovation in drug discovery for AD and other 

neurodegenerative diseases.

Limitations of the study

We acknowledge several potential limitations in this study. For example, incompleteness 

of the human protein-protein interactome and GWAS loci by limited population size may 

influence the model performance. More brain-specific functional genomics data should be 

integrated in the future studies,83 and the latest GWAS data (Bellenguez et al., 2022)10 

should be integrated in the future. While considering all protein pairs sharing at least 

one common GO annotation, we found that shortest path-based distances among those 

protein pairs are 2 (53.97%), 3 (39.05%), and 4 (5.05%) in decreasing order (Figure S7B). 

Therefore, in NETTAG, we have two hidden layers to indirectly aggregate features from 

second-order neighbors. We postulate that reformulating the model to sample second- and 

third-order neighbors directly may improve the model performance further.

The EHR-based observational studies may have limitations. First, since true drug 

administration data were not available, for validation of the NMEDW data, we considered 

the patients that had been prescribed the drugs. Although patients are likely to adhere to 

their prescriptions, this is not always the case. Second, pharmacoepidemiologic studies could 

be biased due to unavailable confounding factors. Although we adjusted for age, sex, and 

disease comorbidities, including CAD, HT, T2D, and MCI, other factors not included in the 

database may also be associated with risk of AD, such as education level, socioeconomic 

status, and genotyping information (such as APOE).84-87 Finally, EHR-based observational 

studies cannot build causal relationships between drug use and beneficial clinical response 

of AD.78,88 Our results therefore warrant rigorous clinical trial testing of the treatment 

efficacy in patients with AD, inclusive of both sexes and controlled by placebo.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and software should be 

directed to and will be fulfilled by the lead contact, Feixiong Cheng (chengf@ccf.org).

Materials availability—This study did not generate new materials.

Data and code availability

• This paper analyzes existing, publicly available data. The accession numbers for 

the datasets are listed in the key resources table.
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• The Python implementation of NETTAG is publicly available at https://

github.com/ChengF-Lab/NETTAG and archived on Zenodo (https://doi.org/

10.5281/zenodo.7159120). The Github repository contains the regulatory 

element data and NETTAG default parameters used in the manuscript.

• Any additional information required for this paper is available from the lead 

contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Patient electronic health records (EHR) database—The de-identified patient EHR 

database is from Northwestern Medicine Enterprise Data Warehouse (NMEDW) which 

covers clinical and medical data from approximately 10 million individuals. The more 

detailed information is in the method details - pharmacoepidemiologic methods section.

METHOD DETAILS

Construction of multi-genomic features—In this study, we collected 1,047,489 SNPs 

across multiple genetic traits from GWAS catalog,44 such as Alzheimer’s disease, cerebral 

amyloid deposition measurement. Next, we performed web server SNPnexus28 to annotate 

all SNPs in human genome (GRCh38) and collected the regulatory elements information 

from five databases, including CpG Islands,28 Ensembl Regulatory Build,27 ENCODE,29 

the Genotype-Tissue Expression (GTEx) portal24,25 and Roadmap.26 Finally, nine regulatory 

elements (histone, open chromatin, CpG Island, TF, CTCF, eQTL, enhancer, promoter 

and promoter flanking region) were used as features to evaluate AD disease-associated 

genes. To be more specific, step 1: for SNPs with respect to each regulatory elements, 

e.g., CpG island, we merge them with SNPs curated by GWAS Catalog44 with AD as the 

mapped traits. Step 2: For each AD related SNPs, the corresponding genes were identified 

by the “MAPPED GENE(S)” column as provided by GWAS Catalog.44 For SNPs with 

no mapped genes, if there were any reported genes (REPORTED GENE(S) column in 

GWAS Catalog44) associated with this SNP, we then map the SNP to its reported genes. 

For ENCODE29 and Ensembl Regulatory Build27 databases, we only consider epigenomes 

from brain and neuron tissues and normal karyotype. For eQTLs from GTEx,24,25 we only 

consider those from human brain tissues. When mapping eQTLs with GWAS Catalog, we 

only counted significant eSNP (q < 0.05, LD r2 < 0.1) associated eGenes as input features 

for downstream analysis.24,25 To enhance the statistical analysis from eQTL feature, all 

eGenes were counted as eQTL features when an eSNP associated with multiple genes. 

However, we only counted one most significant eQTL feature when an eGene associated 

with multiple SNPs. The specific epigenomes with brain and neurons for each database are 

presented in Table S1, separately. The final mapped genes for each regulatory element are 

provided in Table S1.

Building the human protein-protein interactome—To build the comprehensive 

human interactome from the most contemporary data available, we assembled commonly 

used PPI databases with experimental evidence and in-house systematic human PPIs: 

(i) binary PPIs assessed by high-throughput yeast-two-hybrid (Y2H) experiments18; (ii) 

kinase-substrate interactions via literature-derived low-throughput and high-throughput 
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experiments from Human Protein Resource Database (HPRD),108 DbPTM 3.0109, 

Phospho.ELM,110 KinomeNetworkX,111 PhosphoNetworks,112 and PhosphositePlus113; 

(iii) binary PPIs from 3D protein structures from Instruct114; (iv) signaling networks 

by literature-derived low-throughput experiments from the SignaLink2.0115; (v) protein 

complex data (~56,000 candidate interactions) identified by a robust affinity purification-

mass spectrometry collected from BioPlexV2.0116; and (vi) literature-curated PPIs identified 

by affinity purification followed by mass spectrometry from HPRD,117 PINA,118 MINT,119 

InnateDB,120 IntAct,121 and BioGRID.122 In total, 351,444 PPIs connecting 17,706 

distinctive proteins are now freely available at https://alzgps.lerner.ccf.org. In this study, 

we consider only the largest connected components of this dataset, which includes 17,456 

proteins and 336,549 PPIs.

Description of NETTAG—NETTAG involves 3 steps. Step 1: we build up a graph neural 

network (GNN) model to capture PPI’s topology structure and establish the appropriate 

overlapping clustering. The GNN model is motivated by NOCD-G123 which is one 

GNN-based overlapping community detection framework. And in NETTAG, we made 2 

modifications with respect to NOCD-G.123

Modification 1: The model architecture used in NETTAG is defined below (Equation 1)

F : = ReLU GCNΘ2
K A, ReLU GCNΘ1

2 (A, X) , with GCNΘl
2

= ∑
k = 0

2
AkXW k, l (Equation 1)

Here: A0 = I, A1 = A = D−1 ∕ 2AD−1 ∕ 2, A2
 is the elementwise square of A and the sub/

super-script l is the layer index. A is the adjacency matrix of the PPI, D is the corresponding 

diagonal degree matrix. X in generate denotes the node feature matrix, and here we set 

X = A as implemented by NOCD-G.123 In classical graph convolution network (GCN) 

models,124 nodes with various degrees share the same weight matrix, the normalized matrix 

A could alleviate this. In NETTAG, coupling A2
 into the model is to enhance this, i.e., 

to strengthen different weight matrices for nodes with high and low degrees. Finally, the 

dimension of the final output layer interprets the clustering number.

The output matrix F is then feed into Bernoulli-Poisson model125 (Equation 2.1) to learn 

PPI’s topology (Equation 2.2). The output matrix F has N (number of total nodes in 

PPI) rows and C (clustering numbers) columns. Locally minimal communities126 estimate 

the lower bound of the clustering number and we tested different clustering number with 

increment 100. The final clustering number was determined as the one with lowest akaike 

information criterion (AIC) value (Equation 2.3, Figure S7F). Each specific row (vector) 

denotes the node’s weights for being assigned to each cluster. Therefore, we can interpret 

the loss as follows: if two nodes have multiple commonly shared clusters (Fu ⋅ Fv
T  is large), 

then there should exist an edge connecting each other (1 − exp(Fu ⋅ Fv
T ) is close to 1) and vice 

versa.
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Puv(c) = 1 − exp( − Fuc ⋅ Fvc) (2.1)

(Loss ∕ − Loglikeliℎood) L = − ∑
(u, v) ∈ E

log 1 − exp Fu ⋅ Fv
T

+ ∑
(u, v) ∉ E

Fu ⋅ Fv
T

(2.2)

AIC = L
N × (N − 1) ∕ 2 + C

N (2.3)

Modification 2: The PPI network is a highly sparse network which implies number of 

connected edges is far less than that of non-connected edges (For our PPI, the ratio between 

number of connected edges over number of non-connected edges = 1/451). To address this 

imbalanced training problem, the authors in123 first uniformly subsampled certain amounts 

of connected edges and then subsampled the equal amounts of non-connected edges for 

training. Instead of uniformly sampling edges directly, we first group nodes according to 

their degrees into multiple bins. And in each training iteration, we first uniformly subsample 

same amounts of nodes from each bin, then we extract an adjacency matrix Asub which 

compromising only selected nodes. In this way, we can keep the topology similarities among 

sampled subgraphs from different iterations. Next, we use the connected and non-connected 

edges in Asub to compute the train loss, and the rest connected and non-connected edges in 

A Asub for test loss evaluation. With this graph subsampling scheme, we find that we are 

capable to maintain similar connected and non-connected training edge percentages (Figure 

S7G).

After learning the clustering affinity matrix F, we used the threshold defined in127 as the 

cutoff for F to determine the node (gene) clustering membership (Equation 3.1).

Fij
∗ = 1 if Fij ≥ − log(1 − 1 ∕ N)

0 Otherwise
(Equation 3.1)

The rationality of the threshold can be explained from the Bernoulli-Poisson model 

(Equation 2.1). In detail, we have:

Fuc ≥ − log(1 − 1 ∕ N)
Fvc ≥ − log(1 − 1 ∕ N)

Puv(c) = 1 − exp( − Fuc ⋅ Fvc) ≥ 1
N (Equation 3.2)

This calculation indicates that a given node could be designated as belonging to a given 

cluster because it was connected with one or more nodes in the same cluster, rather than 

being randomly selected alone.

Step 2 of NETTAG: After clustering the entire PPI into overlapping communities, we next 

scored each node with respect to each gene regulatory element. The detailed steps are 
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described below: Step 2.1. Compute node (gene, e.g., ‘APP’) score regarding one particular 

regulatory element Sfeat
i = ∑g

∣ Ci ∩ Cfeat
g ∣

∣ Cfeat
g ∣

, here Ci denotes the cluster assignments of node 

i, Cfeat
g  denotes the cluster assignments of gene g identified with this regulatory element. 

The node score equals the sum of clustering overlaps with all genes identified regarding 

this regulatory element. ∣feat∣ denotes the numbers of genes associated with this regulatory 

element.

Step 2.2 Construct background distribution to evaluate the significance for the score 

computed in Step 2.1. For node (gene, e.g., ‘APP’), we run 1000 random experiment, and in 

each random experiment, we do two things as listed below:

1. Select ∣feat∣ of genes randomly from GenePPI {feat∪i}

2.

Compute Srand
i = ∑

g

∣ Ci ∩ Crand
g ∣

∣ Crand
g ∣

(Equation 4)

Compute the Z score for Sfeat
i  as Zfeat

i =
Sfeat

i − μi
σi

, with μi = mean{Srand
i } and 

σi = std{Srand
i }, and the corresponding p value (Pfeat

i ) with respect to a standard normal 

distribution. The final node (gene, e.g., ‘APP’) score regarding the current regulatory 

element after considering statistical significance is:

Sfeat
i = Sfeat

i if Pfeat
i < 0.05

0 Otherwise
(Equation 5)

Here, it means we consider the gene score to be meaningful only if its clustering overlap 

with input genes is statistically significant.

Step 2.3. integrating multiple regulatory elements: The final node (gene, e.g., ‘APP’) 

score after integrating all regulatory elements is:

Si = ∑
feat

Sfeat
i

(Equation 6)

Step 3of NETTAG: After inferring the nodes’ score, we extracted the disease module 

by considering only genes inferred as significantly associated with AD. We collected all 

positive gene scores {Si > 0}, and computed the mean μ, standard deviation σ and the Z 
score. We considered genes with p value ≤0.01 as the predicted AD associated genes and 

mapped those genes to the background PPI network to generate disease module.
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Other existing network-based approaches for risk genes prediction

Random walk with restart (RWR): We used R package ‘diffusr’ to implement risk gene 

prediction based on RWR.23 We used genes associated with each regulatory element as the 

starting distribution for RWR, and gene scores regarding each specific regulatory element 

equaled to their stationary distribution. The integrated gene scores, same as NETTAG, 

equaled to summation after considering scores with all gene regulatory elements. We 

prioritized genes predicted by RWR with the same Z score cutoff as with NETTAG. 

We conducted disease enrichment analyses using GWAS Catalog44 and DisGeNET46 

(Enrichment analysis).

Spectral clustering.: We used the function ‘SpectralClustering’ from Python package 

‘scikit-learn’ to implement risk gene prediction based on spectral clustering.42 We used 

the adjacency matrix of our PPI as the precomputed affinity matrix, and we set the clustering 

number to be 1200 because this was the same as we set with NETTAG. The subsequent 

steps of gene scoring were the same as NETTAG (STAR Methods - Step 2 of NETTAG).

K-means.: We used function ‘KMeans’ from Python package ‘scikit-learn’ to implement 

risk gene prediction based on k-means.43 Considering the curse of dimensionality, we 

performed singular value decomposition (SVD)128 with function ‘TruncatedSVD’ from 

Python package ‘scikit-learn’ to the adjacency matrix of our PPI first. The selection of 

desired dimensionality (parameter ‘n_components’) was described in Table S3. The reduced 

version of adjacency matrix was then used as the input for k-means clustering. We set the 

clustering number to be 1200 because this was the same as we set with NETTAG. The 

subsequent steps of gene scoring were the same as NETTAG (STAR Methods - Step 2 of 

NETTAG).

Network proximity for drug prediction—We assembled drugs from the DrugBank 

database relating 2,938 FDA-approved drugs or clinically investigated molecules.129 To 

predict drugs using the extracted disease module from NETTAG, we adopted the closest-

based network proximity measure70 shown below.

dclosest(X, Y) = 1
‖X‖ + ‖Y‖ ∑

x ∈ X
min
y ∈ Y

d(x, y) + ∑
y ∈ Y

min
x ∈ X

d(x, y) (Equation 7)

where d(x,y) is the shortest path length between protein x and y from protein sets X and 

Y, respectively. In our work, X denotes the disease module from NETTAG, and Y denotes 

the drug targets (protein/gene set) for each drug. To evaluate whether such proximity was 

significant, the computed network proximity is transferred into Z score form as shown 

below:

Zdclosest = dclosest − μd
σd

(Equation 8)

Here, μd and σd are the mean and standard deviations of permutation tests with 1,000 

random experiments. In each random experiment, two random subnetworks Xr and Yr 
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are constructed with the same numbers of nodes and degree distribution as the given 2 

subnetworks X and Y, separately, in the PPI network. This reduces any literature bias 

associated with well-studied proteins.

Pharmacoepidemiologic methods

Dataset source: The data for validation is from Northwestern Medicine Enterprise Data 

Warehouse (NMEDW),130 which contains medical and clinical data from approximately 

10 million patients across 11 hospitals in Illinois.131 We extracted the data from NMEDW 

between 2011 and 2021 for analysis.

Study design: We evaluated the effect of four target drugs on AD, i.e., Ibuprofen, 

gemfibrozil, cholecalciferol and ceftriaxone. For each drug, to minimize confounding 

factors, we conducted two types of drug cohort-based observational studies: (1) users 

versus non-users of a certain drug, denoted as drug vs. non-drug, such as Ibuprofen vs. 

non-Ibuprofen; (2) active-comparator design132 that constituted users of a drug versus users 

of a comparator drug with similar U.S. FDA-approved indications. The target drugs and 

comparator drugs we used are listed in Table S6B. The primary outcome variable was 

incidence of AD defined by the International Classification of Diseases (ICD-9/ICD-10) 

codes (Table S6C).

For each comparison, we executed 3 steps to generate the final cohort, i.e., data extraction, 

filtering and matching. For drug vs. non-drug comparisons, in the data extraction step, 

we extracted all the patients who had a drug order record from NMEDW for the target 

drug. The earliest drug order date was recorded as the index date based on the new-user 

design.132 All other patients in the NMEDW database were extracted from the non-drug 

group. In the filtering step, we excluded patients who had been diagnosed with AD before 

the index date for the target drug group. Patients in both groups whose age was missing 

were also excluded. Finally, in the matching step, we performed a propensity score matching 

algorithm133 to mitigate potential confounding variables, including age, gender, race, and 

ethnicity, as well as diagnosis of mild cognitive impartment (MCI), hypertension (HT), 

type 2 diabetes (T2D), and coronary artery disease (CAD). All diagnoses were defined by 

ICD9/10 codes, which are listed in Table S6C. In propensity score matching,134-136 the 

propensity score was estimated by fitting a logit model in which the outcome variable was 

a binary variable indicating whether the target drug was used, and the predictors were the 

potential confounding variables of age, gender, race, ethnicity, and diagnosis of MCI, HT, 

T2D, and CAD. By propensity score matching, each patient in the target drug group was 

paired with a patient from the non-drug group with a similar propensity score.

For drug vs. comparator drug comparisons, in the data extraction step we extracted all 

patients who had been prescribed the corresponding drug. According to the new-user design 

(Ho et al., 2011,2007; Stuart, 2010), we indicated the earliest drug order date as the index 

date for both the target group and the comparator. In the filtering step, besides excluding 

patients diagnosed with AD before the index date and patients with missing age, we also 

excluded patients who had been prescribed both the target drug and the comparator drug. 

Finally, in the matching step, we applied a propensity score matching algorithm with 
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confounding variables, including age, gender, race, ethnicity, and diagnosis of MCI, HT, 

T2D, and CAD. For comparisons in which the target drug group had more patients than 

the corresponding comparator group, we matched each patient in the comparator group to 

a patient with similar confounding factors from the target group. In our dataset, for the 

comparison between ibuprofen and its comparator drug aspirin, we identified more younger 

patients and fewer older patients, causing failure of the propensity score matching with age. 

Thus, we excluded young patients with age<65 in the filtering step.

Collections of known AD-associated genes—We collected AD-associated genes 

from four databases, including AlzGene, DistiLD, TIGA and DISEASES. AlzGene38 

collected AD-associated genes via genetic association studies. Thirty-two genes supported 

by genetic evidence are collected from AlzGene. DistiLD made the existing GWAS studies 

easier for accessing disease-associated SNPs and genes.39 We collected 19 genes (p < 

5.0 × 10−8) with AD GWAS from DistiLD. TIGA40 was a web application that helps 

drug discovery scientists to prioritize targets by leveraging gene-trait association with 

multiple studies and evidence. Fifty-one genes with scores greater than 80 defined by 

TIGA specifically for AD (EFO_0000249) were collected. DISEASES41 was a text-mining 

founded database that collected disease-gene associations with manual curations, cancer 

mutation data and existing databases. We picked up twenty-seven genes associated with AD 

(DOID:10,652) which were curated from multiple sources, including MedlinePlus, AmyCo, 

UniProtKB-KW. The complete lists of genes we used for ROC analyses are presented in 

Table S2.

Gene Ontology—All proteins’ gene ontology annotation (human, gaf-version 2.1) are 

extracted from The Gene Ontology (GO) Knowledgebase.30 For our PPI with 17,706 

proteins, there are 16,736 proteins with total 268,241 GO annotation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Alignments between clustered subnetwork modules and protein functions—
With respect to each clustered subnetwork modules, we considered all possible protein-

protein pairs by counting the protein-protein pairs that shared at least one common GO 

annotation, and the protein-protein pairs that shared no common GO annotation. We then 

conducted a paired statistical test with null hypothesis of proteins in the same clustered 

subnetwork modules having no protein functional similarities and the alternative hypothesis 

that the proteins in the same clustered subnetwork module possessed common protein 

functions. We used Wilcoxon signed rank test with R (4.2.0). For each cluster and each 

possible protein pair we checked whether they shared common GO annotation. Therefore, 

for each cluster, we could have 2 values: a) numbers of protein pairs that share at least 

one common GO annotation, and b) numbers of protein pairs that share no common GO 

annotation. Two groups of data (Table S2) were generated after considering all clusters, and 

we performed the paired Wilcoxon signed rank test.

Differential expression analyses of brain transcriptomic data—Transcriptome 

analyses were performed based on microarray, bulk RNA-seq, and single-cell/nucleus 

(sc/sn) RNA-seq datasets. We utilized three sets of human brain microarray transcriptome 
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data collected from late-stage AD and control donors. The original data are available 

from Gene Expression Omnibus database,137 i.e., (GEO:GSE29378 with 31 late-stage 

AD and 32 controls),90 (GEO:GSE48350 with 42 late-stage AD and 173 controls),91 

and (GEO:GSE84422 with 328 late-stage AD and 214 controls),92 and the results are 

available from our recently developed AD knowledgebase AlzGPS.89 We also included 

human brain bulk RNA-seq transcriptome data collected from the hippocampus of late-

stage AD and control donors with three studies, including 4 late-stage AD versus 4 

controls,93 6 late-stage AD versus 6 controls,94 and 20 late-stage AD versus 10 controls.95 

The complete sc/sn RNA-seq datasets used for differentially expressed genes (DEGs) 

analyses in this study are available from the Gene Expression Omnibus database137 

under accession numbers: GSE98969,96 GSE140511,97 GSE147528,138 GSE138 8 5299 

and GSE157827.100 The DEGs between DAM and non-DAM were based on mouse 

scRNA-seq datasets GEO:GSE98969 and mouse snRNA-seq dataset GEO:GSE140511. 

The DEGs between DAA and non-DAA were based on the other three human 

snRNA-seq datasets GEO:GSE147528, GEO:GSE138852 and GEO:GSE157827. We 

used DEG analytical pipeline in our previous study88 for datasets GEO:GSE98969, 

GEO:GSE140511, GEO:GSE147528 and GEO:GSE138852. For the additionally added 

dataset GEO:GSE157827 which contained 21 prefrontal cortex tissue postmortem samples 

with 12 diagnosed as AD and 9 controls, we performed bioinformatics analyses according 

to the parameters used in the original manuscript100 with Seurat (4.0.6)103. Nuclei with 

≤200 genes and ≥20,000 unique molecular identifiers and ≥20% mitochondrial genes were 

removed. Then, the raw count was log-normalized and the top 1000 most variable genes 

were detected with the function FindVariableFeatures with selection.method = ‘Vst’. Next, 

all 21 samples were integrated by functions FindIntegrationAnchors and InegrateData with 

parameter dims = 1:20. Principal component analysis (PCA) was performed with parameter 

npcs = 50, and clustering was performed with the first 20 pcs and resolution 1. After 

identifying astrocytes with marker genes (ADGRV1, GPC5 and RYR3) provided by the 

original manuscript,100 we continued with the subcluster analysis. We ran the subcluster 

with the first 20 pcs and resolution 0.3. Next, we identified disease associated astrocytes 

(DAA) and homeostasis astrocytes by established marker genes.138 DEGs were calculated 

between DAA and HAA with MAST R package.104 For all DEGs generated from sc/sn 

RNA-seq datasets, we applied uniform criterion with q < 0.05 and ∣log2FC∣ ≥ 0.25. We have 

also included the complete DEG results based on microarray, bulk RNA-seq, sc/sn-RNA-seq 

aforementioned in Table S4.

Differential expression analyses from brain proteomic data—Differential 

expression analyses of brain proteomic data were conducted based on six mouse model 

datasets: (1) 7-month old ADLP mouse models (JNPL3 mouse model cross with 5xFAD 

mouse model),101 (2) 10-month old ADLP mouse models (JNPL3 mouse model cross with 

5xFAD mouse model),101 (3) 7-month old 5xFAD mouse models,101 (4) 10-month old 

5xFAD mouse models,101 (5) 12-month old 5xFAD mouse models,102 and (6) 12 month old 

hAPP mouse models.102 We obtained the differentially expressed proteins (DEPs) for each 

mouse brain proteomic dataset from the supplemental tables of the original manuscripts for 

the first four datasets101 with p value < 0.05 regarding the Student’s t-test, and last two 
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datasets102 with FDR <0.05. All lists of DEPs across different mouse brain datasets are 

available from AlzGPS.89 The complete lists of DEPs are provided in Table S4.

Enrichment analysis—All pathway and disease enrichment analyses were conducted 

using WikiPathways,139 GWAS Catalog 2019,44 UK Biobank GWAS v145 and DisGeNET46 

from Enrichr,106,107 respectively. The combined score defined in Enrichr106 equaled the 

product of log of p value from the Fisher’s test and Z score which characterized the 

departure from the expected rank. The GWAS Catalog44 contributes as a freely and easily 

assessable database of SNP-trait associations which were identified by literatures. The 

DisGeNET46 platform integrates information about disease-associated genes. Specifically, it 

assembles disease-associated genes from several sources: expert curated repositories, animal 

models, and the scientific literatures. Our prediction was enriched with 43 AD-associated 

genes from DisGeNET (Alzheimer’s disease [C0002395]).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• NETTAG identifies Alzheimer’s disease (AD) risk genes from multi-omics 

and network data

• NETTAG-predicted risk genes are differentially expressed in AD brains and 

microglia

• NETTAG-predicted AD-risk genes are enriched in known druggable targets

• Large-scale patient health record data support gemfibrozil use for reduced AD 

risk
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Figure 1. A diagram illustrating NETTAG
We first applied a deep learning model to capture the topological structure of the PPIs and 

divided it into multiple subnetwork modules (STAR Methods). Then we discovered that 

the divided subnetwork module could approximate protein functions annotated by the Gene 

Ontology (GO) knowledge portal (STAR Methods). Next, we predicted likely AD-risk genes 

(alzRGs), which are functionally similar to genes that have been identified by different gene 

regulatory elements, i.e., CpG island, CCCTC-binding factor (CTCF), enhancer, expression 

quantitative trait loci (eQTL), histone, open chromatin, promoter, promoter flanking region, 

and transcriptional factor(TF). Finally, we prioritize repurposed drugs (e.g., gemfibrozil) for 

potential AD treatment and identified supportive information with the large-scale patient 

longitudinal database (STAR Methods).
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Figure 2. Gene regulatory landscape of AD GWAS loci
(A) Overview of AD GWAS loci across different chromosomes after considering nine 

gene regulatory elements: GpG island, CCCTC-binding factor (CTCF), enhancer, expression 

quantitative trait loci (eQTL), histone, open chromatin, promoter, promoter flanking region, 

and transcriptional factor (Table S1).

(B) Proteins’ cluster numbers are positively correlated with their gene ontology (GO) 

annotation. We divide proteins into 10groups according to their GO terms. For example, 

G1 group include the proteins that have at least one, but less than ten GO annotation (Table 

S2). Error bars denote 1,000 randomly replicated experiments.

(C) Receiver operating characteristic (ROC) analyses of NETTAG based on four collected 

AD-association gene sets, i.e., AlzGene, DistiLD, DISEASES (knowledge), and TIGA 

(STAR Methods; Table S2).
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Figure 3. Observations of 156 prioritized AD-risk genes (alzRGs) by NETTAG
(A) Network-based visualization of 156 predicted alzRGs. 139 alzRGs are non-isolated 

and form a subnetwork with 294 protein-protein interactions (PPIs). Prioritized alzRGs are 

colored with various evidence. Green genes are the ones identified by GWAS Catalog but 

with no gene regulatory element evidence. Blue genes are the ones identified by GWAS 

Catalog and simultaneously with single or multiple gene regulatory element evidence. 

Yellow genes are the predicted genes with other types of evidence, e.g., multi-omics or 

literature evidence. Gray genes are the rest of predicted alzRGs (Table S3).

(B) Cumulative distributions of predicted scores with alzRGs and the same amount 

of random non-alzRGs with similar degree distribution (the human protein-protein 

interactome network) for expression quantitative trait loci (eQTLs), histones, and promoters, 

respectively.
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Figure 4. Transcriptomics-based observation of 156 prioritized AD-risk genes (alzRGs) by 
NETTAG
(A) Visualization of 67 predicted alzRGs that are also DEGs according to human bulk 

RNA-seq studies with both late-stage AD (LAD) and control donors (STAR Methods).

(B) Violin plots show alzRGs are more likely differentially expressed in disease-associated 

microglia (DAM) according to mouse single-nucleus (GEO: GSE140511; three mice for 

each group; 5xFAD, wild-type, Trem2 knockout 5xFAD, and Trem2 knockout wild type) 

RNA-seq datasets (unpaired t test, t test statistic = 34.65, p = 2.59 × 10−206, numbers of 

replicates = 1,000).

(C) Violin plot shows alzRGs are more likely differentially expressed in disease-associated 

astrocyte (DAA) according to human prefrontal cortex single-nucleus (GEO: GSE157827; 

nine normal control and 12 AD human postmortem brain samples) RNA-seq dataset 

(unpaired t test, t test statistic = 52.01, p = 0.00, numbers of replicates = 1,000).

(D) Violin plot shows alzRGs are more likely differentially expressed in DAA according to 

human entorhinal cortex (EC) single-nucleus (GEO: GSE138852; six control and six AD 

human postmortem brain samples) RNA-seq dataset (unpaired t test, t test statistic = 15.18, p 

= 2.33 × 10−49, numbers of replicates = 1,000).

(E) Visualization of 32 predicted alzRGs that are also differentially expressed genes (DEGs) 

according to single-cell/nucleus RNA-seq studies collected from both mouse models and 

human postmortem brain tissues in two disease-associated immune subtypes, i.e., DAM and 

DAA (STAR Methods).
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Figure 5. Multi-omics observations of 156 prioritized AD-risk genes (alzRGs) by NETTAG
Summary of multi-omics validations for all 156 predicted alzRGs (Table S3 and S4). 

The genes are sorted in predicted score decreasing order (clockwise direction). We have 

collected seven types of evidence, including drug target, differentially expressed genes 

(DEG) by microarray studies, DEG by bulk RNA-seq studies, DEG in disease-associated 

microglia (DAM), DEG in disease-associated astrocyte (DAA), DEG by proteome studies, 

and literature evidence. There are 126 predicted alzRGs that could be proved as associated 

with AD with at least one type of evidence.
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Figure 6. Network-based discovery of repurposable drug candidates for AD
Drug-AD associations were evaluated by the network proximity between predicted alzRGs 

and drug-target networks.

(A) 118 prioritized drugs for AD treatment (Table S5). Drugs are grouped by fourteen 

different classes (e.g., immunological, respiratory, neurological, cardiovascular, and cancer) 

defined by the first level of the Anatomical Therapeutic Chemical (ATC) codes.

(B) Proposed mechanism of actions (MOAs) for gemfibrozil by drug-target network 

analysis.

(C) Proposed MOAs for cholecalciferol by drug-target network analysis.
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Figure 7. Longitudinal patient data observations reveal that usage of four candidate drugs is 
associated with reduced incidence of Alzheimer’s disease (AD)
Odds ratios (ORs) and 95% confidence intervals (CIs) for eight drug cohort comparator 

studies are presented. Within each study, besides the overall group analysis (all), we also 

conducted four additional subgroup analyses by considering sex (female and male) and race 

(Black and White). Propensity score (PS)-stratified Cox proportional hazards models were 

used for statistical inference (Fisher’s exact test) of the ORs. For overall group analysis, 

the patient numbers in each group are ibuprofen (n = 712,103) vs. non-ibuprofen (n = 

2,468,008); ibuprofen (n = 712,103) vs. aspirin (n = 474,110); gemfibrozil (n = 72,691) vs. 

non-gemfibrozil (n = 3,107,420); gemfibrozil (n = 72,691) vs. simvastatin (n = 119,949); 

cholecalciferol (n = 447,846) vs. non-cholecalciferol (n = 2,732,265); cholecalciferol (n = 

447,846) vs. ergocalciferol (n = 235,993); ceftriaxone (n = 91,192) vs. non-ceftriaxone (n = 

3,088,919); ceftriaxone (n = 91,192) vs. ciprofloxacin (n = 248,724); Table S6D summarizes 

more detailed patient counts and event counts in each drug cohort design. Table S6A 

summarizes detailed clinical characteristics of patients used for each subgroup comparison.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

GWAS Catalog Buniello et al.44 https://www.ebi.ac.uk/gwas/

SNPnexus Oscanoa et al.28 https://www.snp-nexus.org/v4/

GTEx Lonsdale et al.24; GTEx Consortium25 https://gtexportal.org/home/datasets

Ensembl Regulatory Build Zerbino et al.27 https://grch37.ensembl.org/index.html

ENCODE Kundaje et al.29 https://www.encodeproject.org/

NIAGADS NA https://www.niagads.org

The Alzheimer’s disease Knowledge portal NA https://adknowledgeportal.synapse.org/

Human protein-protein interactome Zhou et al.89 https://alzgps.lerner.ccf.org

Gene Ontology Mi et al.30 http://geneontology.org

AlzGene Bertram et al.38 http://www.alzgene.org

DistiLD Palleja et al.39 http://distild.jensenlab.org

TIGA Yang et al.40 https://unmtid-shinyapps.net/shiny/tiga/

DISEASES Pletscher-Frankild et al.41 https://diseases.jensenlab.org/Search

Human microarray: 31 late-stage AD and 32 controls Miller et al.90; Zhou et al.89 GEO: GSE29378; https://alzgps.lerner.ccf.org

Human microarray: 42 late-stage AD and
173 controls

Berchtold et al.91; Zhou et al.89 GEO: GSE48350; https://alzgps.lerner.ccf.org

Human microarray: 328 late-stage AD and
214 controls

Wang et al.92; Zhou et al.89 GEO: GSE84422; https://alzgps.lerner.ccf.org

Human bulk-RNA seq: 4 late-stage AD and
4 controls

Zhou et al.89; Magistri et al.93 https://alzgps.lerner.ccf.org

Human bulk-RNA seq: 6 late-stage AD and
6 controls

Zhou et al.89; Annese et al.94 https://alzgps.lerner.ccf.org

Human bulk-RNA seq: 20 late-stage AD and
10 controls

Zhou et al.89; van Rooij, et al.95 https://alzgps.lerner.ccf.org

Mouse single-cell RNA seq: 6-month-old 16 5xFAD 
and16 WT mouses

Keren-Shaul et al.96 GEO: GSE98696; http://taca.lerner.ccf.org/

Mouse single-nucleus RNA seq: 7-month-old 3 
TREM2-KO WT, 3 TREM2-KO 5xFAD,
3 5xFAD, and 3 WT mouses

Zhou et al.97 GEO: GSE140511; http://taca.lerner.ccf.org/

Human single-nucleus RNA seq: 3 Braak stage 0, 4 
Braak stage and 3 Braak stage brain samples

Leng et al.98 GEO: GSE147528; http://taca.lerner.ccf.org/

Human single-nucleus RNA seq: 6 AD and 6 controls Grubman et al.99 GEO: GSE138852; http://taca.lerner.ccf.org/

Human single-nucleus RNA seq: 12 AD and
9 controls

Lau et al.100 GEO: GSE157827; http://taca.lerner.ccf.org/

Mouse proteomic data (7- and 10-month-old ADLP 
mouse models [JNPL3 mouse model cross with 
5xFAD mouse model])

Zhou et al.89; Kim et al.101 https://alzgps.lerner.ccf.org

Mouse proteomic data (7- and 10-month-old 5xFAD 
mouse model)

Zhou et al.89; Kim et al.101 https://alzgps.lerner.ccf.org

Mouse proteomic data (12-month-old
5xFAD mouse model)

Zhou et al.89; Savas et al.102 https://alzgps.lerner.ccf.org

Mouse proteomic data (12-month-old hAPP mouse 
model)

Zhou et al.89; Savas et al.102 https://alzgps.lerner.ccf.org

Software and algorithms
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REAGENT or RESOURCE SOURCE IDENTIFIER

NETTAG This paper https://github.com/ChengF-Lab/NETTAG

diffusr R package Valdeolivas et al.23 https://github.com/dirmeier/diffusr

Seurat R package Butler et al.103 https://github.com/satijalab/seurat

MAST R package Finak et al.104 https://github.com/RGLab/MAST

scikit-learn Python package: spectral clustering, k-
means, SVD

Pedregosa et al.105 https://scikit-learn.org/stable/index.html

Enrichment analysis Chen et al.106; Kuleshov et al.107 https://maayanlab.doud/Enrichr/
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