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Hepatocellular carcinoma (HCC) is the 6th most prevalent cancer and the 4th leading
cause of cancer-related death worldwide. Mechanisms explaining the carcinogenesis of
HCC are not clear yet. In recent years, rapid development of N6-methyladenosine (m6A)
modification provides a fresh approach to disclosing this mystery. As the most prevalent
mRNA modification in eukaryotes, m6A modification is capable to post-transcriptionally
affect RNA splicing, stability, and translation, thus participating in a variety of biological
and pathological processes including cell proliferation, apoptosis, tumor invasion and
metastasis. METTL3 has been recognized as a pivotal methyltransferase and essential
to the performance of m6A modification. METTL3 can regulate RNA expression in a
m6A-dependent manner and contribute to the carcinogenesis, tumor progression, and
drug resistance of HCC. In the present review, we are going to make a clear summary
of the known roles of METTL3 in HCC, and explicitly narrate the potential mechanisms
for these roles.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is the sixth most prevalent cancer (4.7%) and the fourth leading
cause (8.2%) of cancer-related death worldwide, with estimated 841,080 new cases and 781,631
deaths in 2018. The incidence of liver cancer presents obvious geographic heterogeneity, mostly
observed in Eastern Asia and Northern Africa (Bray et al., 2018). Generally liver cancer is classified
into the primary liver cancer and the secondary liver cancer. HCC, as the most significant subtype
of primary liver cancer, comprises almost 75∼85% of the cases (Forner et al., 2012; Sia et al.,
2017). The carcinogenesis of HCC is known as a sophisticated multistage process. Multiple risk
factors have been validated to be associated with HCC, including hepatitis B virus (HBV) infection,
hepatitis C virus (HCV) infection, non-alcoholic fatty liver disease (NAFLD), exposure to aflatoxin
B1, alcohol intake, diabetes, and obesity (Singal and El-Serag, 2015). Despite the tremendous
efforts devoted to exploring the mechanisms of hepatocarcinogenesis, few progresses have been
made. Over the past decades, the rapid development of epigenetics has provided a fresh approach
to disclosing the mechanisms of hepatocarcinogenesis, including DNA methylation, histone
modification, chromatin remodeling, as well as RNA methylation in which N6-methyladenosine
(m6A) modification plays an important role (Schulze et al., 2015; Villanueva et al., 2015; Xu et al.,
2017; Liu et al., 2018).

N6-methyladenosine modification, which refers to the insertion of a methyl substituent onto
the N-6 position of adenosine, is known as the most prevalent internal messenger RNA (mRNA)
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modification within eukaryotes (Bokar, 2005). M6A modification
has been demonstrated to be capable to post-transcriptionally
regulate RNA and affect RNA stability (Huang et al., 2018),
splicing (Xiao et al., 2016), and translation (Lin et al., 2016). It
has been proposed that m6A modification is involved in various
physiological and pathological processes such as cancers (Liu
et al., 2018). The conserved enrichment of m6A modification
in the coding sequence (CDS) and the 3′ untranslated region
(3′UTR) of mRNA has been revealed. A consensus DRACH motif
(where D = A, G or U, R = A or G, H = A, C or U) serves as
the predominant site of m6A modification (Perry et al., 1975;
Csepany et al., 1990; Narayan et al., 1994; Meyer et al., 2012;
Linder et al., 2015; Bayoumi and Munir, 2021). In mammalian
cells, m6A modification has been found to be dynamically and
reversibly regulated by several proteins which have been classified
into three groups, including “erasers” with demethylation ability
like FTO (Jia et al., 2011) and ALKBH5 (Tang et al., 2018),
“readers” such as YTHDF1/2/3 (Li A. et al., 2017) and YTHDC1/2
(Meyer and Jaffrey, 2017; Liu J. et al., 2021) that can recognize
and bind to m6A-modified transcripts, and “writers” serving as
methyltransferases such as METTL3/14 and WTAP (Bokar et al.,
1997; Liu et al., 2014; Figure 1). Typically, as a m6A “writer,”
the METTL3-METTL14 complex has been demonstrated to
be essential to the performance of m6A modification. In this
complex, Methyltransferase-like 3 (METTL3), also known as
MT-A70, is believed to be the only catalytic subunit (Liu et al.,
2014; Ping et al., 2014).

Methyltransferase-like 3 has been observed to be substantially
overexpressed and has been viewed as an adverse prognostic
factor in HCC patients (Liu G. M. et al., 2020). Overexpression of
METTL3 was associated with tumorigenicity and lung metastasis.
In vitro experiments suggested that knockdown of METTL3
could lead to reduced capability of HCC cells in proliferation,
migration, and colony formation (Chen et al., 2018). However,
the mechanisms explaining how METTL3 contributes to HCC
are not clear yet. METTL3 has been verified to function as
the pivotal unit of the methyltransferase complex of m6A
modification (Bokar et al., 1997). Therefore, the roles that
METTL3 plays in HCC through m6A modification are worth
discussion. In the present review, we are going to make an explicit
summary on roles of METTL3 through m6A modification
in HCC and the underlying mechanisms. Chances are that
uncovering this mystery will provide us with new strategies for
treatment of HCC.

MECHANISMS UNDERLYING THE
CARCINOGENESIS AND PROGRESSION
OF HCC

METTL3 Suppresses SOCS2 Dependent
on YTHDF2
The YTH domain family member 2 (YTHDF2) is known as a
m6A “reader” that is capable to recognize and bind to m6A-
modified sequences. YTHDF2 has been found associated with
mRNA degradation (Du et al., 2016). Knockdown of YTHDF2

led to increased stability of target mRNAs with extended half-
life of those mRNAs. Especially it is the C-terminal domain of
YTHDF2 that is responsible for m6A-modified mRNA binding,
while the N-terminal domain help execute the decay process
(Wang et al., 2014). METTL3 was considered to be involved in
YTHDF2 downstream regulation in a m6A-dependent manner.
Knockdown of METTL3 led to remarkably reduced binding of
YTHDF2 to its targets and thus extended the lifespan of those
targets (Chen et al., 2018).

The previously reported YTHDF2 PAR-CLIP-Seq data
together with transcriptome-wide m6A profiling data clearly
showed the binding between the 3′ end of the suppressor
of cytokine signaling 2 (SOCS2) transcript and YTHDF2.
Consistently, knockdown of YTHDF2 significantly increased
SOCS2 expression, suggesting that SOCS2 probably served as a
direct downstream target of YTHDF2 (Dominissini et al., 2012;
Liu et al., 2015; Chen et al., 2018). The m6A level of SOCS2
mRNA was strongly reduced after the knockdown of METTL3.
SOCS2 expression was dramatically increased after suppressing
the effect of METTL3 through the methylation inhibition.
However, after mutating the adenosine bases of SOCS2 that
abolished m6A modification, METTL3 silencing could not affect
the expression of SOCS2. Together, METTL3 was considered to
inhibit SOCS2 expression dependent on YTHDF2 through m6A
modification (Chen et al., 2018).

Clinically, low expression of SOCS2 was correlated with poor
prognosis in HCC patients (Cui et al., 2016). Knockdown of
SOCS2 in HCC cells substantially promoted cell proliferation and
migration (Chen et al., 2018). The SOCS2, as a member of SOCS
family, is a negative regulator of the cytokine-dependent Janus
kinase (JAK)/signal transducer and activator of transcription
(STAT) pathway. SOCS2 could inhibit the binding of STAT to
its receptors and also target components of the pathways for
proteosomal degradation. Enhanced JAK/STAT pathway induced
by SOCS2 silencing has been indicated to play a role in cancers.
Typically, STAT3 has been verified to contribute significantly to
the tumorigenesis, progression, and metastasis process of HCC
(Bromberg et al., 1999; Li et al., 2006; Rico-Bautista et al., 2006;
Thomas et al., 2015; Xie et al., 2018).

In conclusion, overexpression of METTL3 in HCC probably
facilitates the degradation process of SOCS2 dependent on
YTHDF2 and reduces its expression, thus leading to aberrant
JAK/STAT pathways which is responsible for the proliferation
and migration of HCC cells.

METTL3 Inhibits RDM1
RAD52 motif-containing 1 (RDM1) has been verified as a
target of METTL3-mediated m6A modification. Incremental
expression of METTL3 decreased RDM1 expression, while
it increased the m6A level of RDM1 mRNA in HCC cell
lines. Overexpression of METTL3 was also correlated with
decreased expression of RDM1 in the tissues from HCC patients
(Chen S. L. et al., 2020).

RAD52 motif-containing 1 has previously been regarded to
be associated with tumorigenesis. Overexpression of RDM1 was
observed in several cancers such as the breast cancer and lung
adenocarcinoma. In those cancers, RDM1 was regarded as an
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FIGURE 1 | Dynamic and reversible regulation of m6A modification by regulators including “writers,” “readers,” and “erasers.” M6A “writers” serve as
methyltransferases, such as WTAP and METTL3/14. M6A “readers” help recognize and bind to m6A-modified transcripts, like YTHDF1/2 and YTHDC1. M6A
“erasers” have the ability for demethylation, such as FTO and ALKBH5.

oncogene that could transcriptionally attenuate p53 expression
and increase RAD51 and RAD52 level. This potential regulation
of p53/RAD52/RAD51 signaling by increased RDM1 may lead
to dysfunctional DNA repair pathways and the suppression of
cell cycle arrest and apoptosis, thus promoting the tumor growth
(Hermeking and Eick, 1994; Tong et al., 2018; Chen et al., 2019).

In HCC, it was proposed that RDM1 functioned as a
tumor suppressor. Clinically low expression of RDM1 was
corelated with worse differentiation, higher malignancy, and
worse prognosis in HCC patients. Decreased expression of RDM1
has also been validated to improve the proliferation of HCC cells
(Chen S. L. et al., 2020). RDM1 was considered to participate
in DNA double-strand break (DSB) repair and recombination,
which may restrain the process of carcinogenesis in HCC cells
(Milne et al., 1995; Hamimes et al., 2006). Decreased expression of
RDM1 was noticed to be related to stimulated calcium signaling
which contributed to cancer cell survival, together with activated
KRAS and RAF pathways which, as upstream of MEK/ERK
pathways, enhanced cancer cell growth, survival and metabolism
(Chen S. L. et al., 2020) (Asati et al., 2016; Reczek and Chandel,
2018). Overexpression of RDM1 was considered able to activate
cell cycle and p53 signaling pathway (Chen S. L. et al., 2020).
RDM1 could post-transcriptionally upregulate p53 expression
and have a protective effect on wild-type p53, strengthening its
stability and elongating its life-time. The process of DNA damage
repair was predominantly facilitated by p53, serving as a crucial
suppressor in HCC through unions of various DNA-damage-
response (DDR) mechanisms (Staib et al., 2003; Williams and
Schumacher, 2016).

In brief, RDM1 functions as a tumor suppressor in HCC by
inhibiting cancer cell proliferation and promoting DNA damage
repair in a p53-dependent manner. However, overexpression of
METTL3 in HCC patients is able to decrease the expression of
RDM1 in a m6A-dependent manner, thus promoting the survival,
proliferation, and stability of HCC cells.

METTL3 Upregulates Snail via YTHDF1
Recently METTL3 has been introduced to participate in the
epithelial mesenchymal transition (EMT) process in HCC (Lin
et al., 2019). EMT refers to the transformation of epithelial

cells into mesenchymal stem cells through specific programs,
providing cancer cells with the opportunities for invasion and
metastasis (Chaffer et al., 2016). Knockdown of METTL3 strongly
suppressed the invasion abilities and EMT process of HCC cells
in vitro, with increased expression of E-cadherin and decreased
expression of MMP2 and FN (Wong et al., 2018; Lin et al., 2019).
A variety of transcription factors have been verified to be related
to EMT process such as Snail, Slug, Zeb, and Twist (Puisieux et al.,
2014). Typically, Snail (encoded by SNAI1) was suggested to be
affected by METTL3 (Xu et al., 2020).

YTHDF1 is known as a m6A “reader” and able to facilitate
the translation process of target mRNAs by promoting ribosome
loading on those mRNAs. Knockdown of METTL3 could repress
this process (Wang et al., 2015; Kapur et al., 2017). Results of
m6A RIP-PCR and YTHDF1 RIP-PCR suggested that SNAI1 was
the direct target of YTHDF1 on the CDS of SNAI1 during EMT
progression. In vitro experiments showed that knockdown of
METTL3 could reduce the expression of Snail. In tumor tissues
resected from liver cancer patients, increased expression of Snail
and malignant behaviors were observed, in line with elevated
expression of METTL3 and YTHDF1 (Lin et al., 2019). Together,
METTL3 helps increase the expression of Snail through enhanced
translation of SNAI1 mediated by YTHDF1.

Overall, overexpression of METTL3 in HCC is capable to
increase the expression of Snail dependent on YTHDF1, which
may promote the EMT process and provide HCC cells with
opportunities for invasion and metastasis.

METTL3 Promotes Metabolic
Reprogramming
Hepatitis B virus X-interacting protein (HBXIP) has been
found significantly upregulated in HCC tissues and HCC
cell lines (Melegari et al., 1998). Overexpression of HBXIP
has been demonstrated to be associated with poor prognosis
of HCC patients (Zheng et al., 2019). Several mechanisms
have been proposed to account for HBXIP’s oncogenic roles.
Among these mechanisms, metabolism reprogramming has
been validated to be associated with METTL3 in HCC (Yang
N. et al., 2020; Xiu et al., 2021). Liver cancer cells is
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metabolically characterized by the Warburg effect (or aerobic
glycolysis), with enhanced glycolysis and increased level of
lactic acid (Koppenol et al., 2011; Vaupel et al., 2019).
METTL3, which was positively regulated by HBXIP in HCC,
has been verified to be involved in metabolic reprogramming.
According to the gene set enrichment analysis, expression of
METTL3 was found positively correlated with the expression
of genes involved in glycolysis such as glucose transporter
member 1 (SLC2A1), hexokinase 2 (HK2), and pyruvate kinase
(PKM), while it was negatively correlated with the expression
of gluconeogenesis-related genes like glucose-6-phosphatase
catalytic subunit (G6PC), pyruvate carboxylase (PC), and
Fructose-1,6-bisphosphatase (FBP1) (Lin Y. et al., 2020). It seems
that overexpression of METTL3 could promote the glycolysis
process and inhibit the gluconeogenesis process. Knockdown
of METTL3 was noticed able to repress glycolysis process and
activate TCA cycle in HCC cells, with suppressed capability for
cell aggression. Further experiments demonstrated that HBXIP’s
role in metabolic reprogramming in HCC was dependent on
METTL3 (Yang N. et al., 2020).

Hypoxia-Inducible Factor 1α (HIF-1α), associated with the
genesis and development of tumors, has been demonstrated to
promote the glycolysis process and facilitate the carcinogenesis
in HCC (Gwak et al., 2005; Chiavarina et al., 2012; Lin and Wu,
2015). Overexpression of HIF-1α was associated with promoted
metabolic reprogramming. METTL3 has been verified to regulate
HIF-1α expression in a m6A-dependent manner. Results of
MeRIP-qPCR demonstrated that METTL3 could increase the
m6A level of HIF-1α mRNA. Knockdown of METTL3 strongly
reduced the expression of HIF-1α (Yang N. et al., 2020).

Another strategy that accounted for how METTL3
participated in metabolic reprogramming was proposed.
The mammalian target of rapamycin complex 1 (mTORC1)
signaling was introduced as a crucial signaling that was involved
in cell metabolism. MTORC1 signaling has been demonstrated
to promote the glycolysis process (Laplante and Sabatini,
2012; Tian et al., 2019). Expressions of genes that encoded
the enzymes of almost every step of glycolysis were found
upregulated in response to activation of mTORC1, such as
ALDOA, HK1/2, and SLC2A1/GLUT1 (Düvel et al., 2010). It
was proposed that METTL3 potentially targeted the mTORC1
to regulate the glycolysis process in HCC. Impaired mTORC1
activity was observed after knockdown of METTL3, with
reduced phosphorylation of S6K1 and 4EBP1 which were both
substrates of mTORC1 (Burnett et al., 1998; Lin Y. et al., 2020).
Additional silencing of METTL3 was unable to further decrease
the phosphorylation level of mTORC1 and glycolysis activity
in Rapamycin-treated HCC cells, suggesting the regulation of
METTL3 on mTORC1. How mTORC1 signaling affected the
glycolysis process has been researched. A c-Myc-LDHA axis was
proposed to be a downstream target of mTORC1 and contribute
to the abnormal glycolysis (Dang et al., 2009; Zhao et al., 2016).
In addition, HIF-1α could function as another downstream
effector of mTORC1 and participate in this process (Semenza
et al., 1994; de la Cruz López et al., 2019).

In summary, overexpression of METTL3 in HCC could owe
to the increased expression of HBXIP and be responsible for

metabolic reprogramming and the proliferation, migration and
invasion of HCC cells. HIF-1α is a potential target of METTL3-
mediated m6A modification and is involved in metabolic
reprogramming. Enhanced mTORC1 signaling is also closely
related to METTL3 overexpression and associated with aberrant
glycolysis process.

METTL3 Increases Lipogenesis via
Upregulation of LINC00958
In addition to mRNAs, METTL3 has been associated with long
non-coding RNAs (lncRNAs) in cancers including HCC (Zuo
et al., 2020; Liu G. M. et al., 2021; Qu et al., 2021; Rong et al.,
2021). lncRNAs, which comprises about 4–9% of total RNAs,
refers to RNAs with limited or no protein-coding potential and
possesses transcript sequence of more than 200 nt in length.
LncRNAs are believed to execute the function of regulating
gene expression and are involved in a variety of biological and
pathological processes including cancers. Some lncRNAs have
been demonstrated to be involved in carcinogenesis of HCC
(Esteller, 2011; Gong et al., 2017; Ji et al., 2019; Ye et al., 2020).
Here we take lncRNA LINC00958 as an example and demonstrate
the effects on LINC00958 by METTL3, together with the detailed
mechanisms explaining how this process affects HCC.

Overexpression of LINC00958 was observed in HCC and
correlated with malignant behaviors of HCC cells and poor
prognosis in HCC patients. Overexpression of LINC00958 was
likely to promote cell growth, proliferation, migration and
invasion in HCC cells. Clinically LINC00958 expression was
associated with tumor size, tumor differentiation, microvascular
invasion, and TNM stage. M6A RIP-qPCR analysis demonstrated
that m6A level on LINC00958 was increased appreciably in
HCC cells. Knock down of METTL3 reduced the m6A level of
LINC00958 which probably decreased the stability of LINC00958
transcript and reduced its expression, suggesting that METTL3 in
HCC may positively regulate LINC00958 expression (Liu G. M.
et al., 2020; Zuo et al., 2020).

A LINC00958/miR-3619-5p/HDGF axis was proposed.
Hepatoma-derived growth factor (HDGF) was regarded as
an independent prognostic factor in liver cancer and was
significantly upregulated in HCC (Zhou et al., 2010). Aberrant
lipogenesis process via HDGF may account for its oncogenic
characteristics. HDGF served as a coactivator of the sterol
regulatory element binding protein-1 (SREBP-1) to participate
in transcriptional activation of lipogenic enzymes associated
with fatty acid, triglyceride, and cholesterol synthesis in HCC
(Goldstein et al., 2006; Min et al., 2018). HDGF was a direct target
of miR-3619-5p. Expression of HDGF has been demonstrated
to be negatively regulated by miR-3619-5p (Zuo et al., 2020).
However, as a sponge of miR-3619-5p, LINC00958 was regarded
to be involved in abnormal lipogenesis process. Competitively
binding to miR-3619-5p prevented the interaction between
miR-3619-5p and HDGF, resulting in overexpression of HDGF
(Peng et al., 2017). With the overexpression of LINC00958,
HCC cells exhibited increased cellular levels of cholesterol and
triglyceride, suggesting that LINC00958 positively regulated
lipogenesis process.
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In a word, overexpression of LINC00958 may be ascribed to
METTL3-mediated m6A modification. A LINC00958/miR-3619-
5P/HDGF axis was proposed to explain how LINC00958 affects
lipogenesis and contributes to HCC.

MECHANISMS ACCOUNTING FOR
DRUG-RESISTANCE OF HCC

METTL3 Depletion Contributes to
Sorafenib Resistance via FOXO3
Apart from promoting the carcinogenesis and progression of
HCC, METTL3 has been related to the resistance of anti-HCC
drugs, such as the sorafenib resistance. Clinically, METTL3
silencing was found to noticeably enhance sorafenib resistance in
HCC patients (Lin Z. et al., 2020).

Sorafenib has been known as a multi-target oral drug for
treatment of tumors. It had dual anti-tumor effects aiming at both
tumor cell growth and tumor angiogenesis. Sorafenib functioned
as a multi-kinase inhibitor. It was capable to suppress tumor cell
proliferation by inhibiting RAF/MEK/ERK pathway, and repress
the angiogenesis process through impeding vascular endothelial
growth factor receptor (VEGFR) and platelet-derived growth
factor receptor (PDGFR). Sorafenib was the only FDA-approved
drug for first-line treatment of advanced HCC and has been
validated to prolong the overall survival (OS) of those patients
(Cheng et al., 2009; Iyer et al., 2010; Brunetti et al., 2019).
However, both primary and acquired resistance to sorafenib have
been reported during clinical application.

Hypoxia was observed in HCC resulting from inadequate
perfusion and diffusion in tumor tissues, with obvious damaged
oxygenation status (Vaupel et al., 2007). Tumor tissues obviously
showed higher expression of HIF-1α comparing to adjacent
normal tissues. In this situation, reduced expression of METTL3
was noticed in sorafenib-resistant HCC. Catalytic mutant
METTL3 did not sensitize METTL3-knockdown HCC cells
for sorafenib treatment, suggesting METTL3’s m6A-dependent
roles as a methyltransferase. Increased level of autophagosomes
and LC3 were also observed in sorafenib-resistant HCC, and
could be reversed by overexpression of wild-type METTL3,
indicating that autophagy process may be associated with
METTL3 and responsible for sorafenib-resistance (Lin Z.
et al., 2020). The autophagy process has been considered
to participate in multidrug resistance in chemotherapy of
cancer (Li Y. J. et al., 2017). FOXO3, as has been elucidated
to be associated with autophagy, was introduced to further
explain the mechanisms. Knock down of FOXO3 facilitated
the transcription of autophagy-related genes and was related to
enhanced autophagy. Knock down of METTL3 decreased both
mRNA and protein level of FOXO3, which could be reversed by
wild-type METTL3 other than catalytic mutant METTL3. RNA
m6A-Seq suggested that FOXO3 was probably the direct target of
YTHDF1 which is a m6A “reader” and promotes the translation
of its targets. The m6A site was located at the 3′UTR region
(Wang et al., 2015; Fitzwalter and Thorburn, 2018; Lin Z. et al.,
2020). In summary, Knockdown of METTL3 probably reversed

the increasing transcription efficiency of FOXO3 mediated by
YTHDF1 and brought about decreased FOXO3 expression, thus
facilitating transcription of genes related to autophagy including
ATG3/5/7/12, ATG16L1, and MAP1LC3B in HCC, ultimately
leading to resistance of sorafenib (Lin Z. et al., 2020).

Briefly, under the circumstance of hypoxic microenvironment
within tumors, METTL3 depletion has been discovered to
substantially contribute to the acquired sorafenib resistance in
HCC via FOXO3-mediated autophagy. Thus, METTL3 is a
promising target to reverse sorafenib resistance in chemotherapy
of HCC patients.

DISCUSSION

In the last decades, m6A modification has been researched
to clarify the potential mechanisms accounting for various
kinds of cancers (Sun et al., 2019). METTL3, as a critical
subunit of the METTL3-METTL14 methyltransferase complex,
has been validated to contribute to the process of cancer.
The present review focuses on hepatocellular carcinoma, and
demonstrates several potential targets of METTL3 and the way
METTL3 contributes to HCC in a m6A-dependent manner.
METTL3 has been verified to be involved in proliferation,
invasion, and metastasis of HCC cells, as well as the glycolysis
and lipogenesis processes, promoting the carcinogenesis and
progression of HCC (Chen et al., 2018; Chen S. L. et al.,
2020; Lin Z. et al., 2020; Xu et al., 2020; Yang N. et al.,
2020; Zuo et al., 2020; Table 1). Therefore, METTL3 may
function as a potential target of anti-HCC treatment. However,
METTL3 silencing has also been noticed to be correlated with
sorafenib resistance in chemotherapy of advanced HCC patients.
Mechanisms explaining how METTL3 serves as a double-edged
sword in HCC deserve discussion. Overexpression of METTL3
was correlated with activation of JAK/STAT and Ras/Raf/ERK
pathways, repression of p53 signaling pathway, and enhancement
of metabolic reprogramming and the EMT process. Regulation by
METTL3 on these signaling pathways and biological processes
resulted in carcinogenesis and progression of HCC. However,
the sorafenib resistance owed to the enhanced autophagy process
which acted as a protective mechanism in cancer and could
be induced by METTL3 silencing. Different targets of METTL3
accounted for its distinct influences (Figure 2). Clearly narrating
these mechanisms helps support the clinical application of
METTL3 in treatment of HCC. Apart from the mechanisms
that have already been discussed in this review, some other
potential targets of METTL3 may account for the carcinogenesis,
progression, and drug resistance process in HCC. More efforts
are required to further disclose METTL3’s role in HCC.

It should be noticed that m6A sequencing has been applied
to discuss the interaction between METTL3 and its targets.
However, the validity of m6Aseq is still unclear and needs
extensive validation. LncRNAs have been associated with
m6A modification in some cancers (Zuo et al., 2020; Liu
G. M. et al., 2021; Qu et al., 2021; Rong et al., 2021).
In the present review, we talked about LINC00958 which
was positively correlated with METTL3 and was involved in
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TABLE 1 | Roles of METTL3 in HCC.

Target RNAs Signaling pathways Biological processes Cellular function References

SOCS2 JAK/STAT signaling Cell proliferation, migration Chen et al., 2018

RDM1 Calcium signaling, Ras/Raf/ERK signaling, p53 signaling Cell survival, proliferation, stability Chen S. L. et al., 2020

SNAI1 EMT Cell invasion and metastasis Xu et al., 2020

mTORC1 signaling Metabolic reprogramming Cell proliferation, migration, invasion Yang N. et al., 2020

HIF-1α Metabolic reprogramming Cell proliferation, migration, invasion Lin Y. et al., 2020

LINC00958 lipogenesis Cell growth, invasion, migration Zuo et al., 2020

FOXO3 autophagy Cell survival, sorafenib resistance Lin Z. et al., 2020

Some potential targets of METTL3 have already been researched and discovered to be associated with the carcinogenesis, progression, and sorafenib-
resistance process of HCC.

FIGURE 2 | Roles of METTL3 as a methyltransferase in HCC. Different targets of METTL3 are associated with diverse signaling pathways and biological processes,
which contribute to the different influences of METTL3 on HCC.

aberrant lipogenesis in HCC (Zuo et al., 2020). Nevertheless,
the detailed mechanisms explaining how METTL3 regulates
LINC00958 are lacking. Extensive researches are required to
further explain the regulation of METTL3 on lncRNAs. Some
researches individually focused on METTL3 and its effects on
HCC. Considering that METTL3 and METTL14 collectively

form the methyltransferase complex, it is necessary to discuss
the interaction between METTL3 and METTL14. In addition
to m6A “writers,” some other regulators of m6A modification
including YTHDC2, ALKBH5 and FTO have been associated
with HCC (Li J. et al., 2019; Chen Y. et al., 2020; Liu J. et al.,
2021). It is necessary to disclose their roles and the relevant
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mechanisms, which could promote their applications in clinical
practice of HCC treatment.

Interestingly, opposite regulatory roles of METTL3 and
METTL14 were observed in some cancers including HCC (Ma
et al., 2017; Chen et al., 2018; Li T. et al., 2019; Yang X. et al.,
2020). METTL14 was reported to share almost 56% binding
sites with METTL3 (Liu et al., 2014). Functionally, METTL14
was regarded to structurally stabilize METTL3 conformation
and help substrate recognition (Wang et al., 2016) Decreased
expression of METTL14 was seen in HCC and was correlated
with migration, invasion and EMT of HCC cells (Shi et al., 2020).
Clinically, HCC patients with lower expression of METTL14
showed poorer prognosis, with lower OS rate. According to a
multi-omics analysis, most of the mRNAs, signaling pathways
and biological processes were differently regulated after knock
down of METTL3 and METTL14, potentially explaining the
distinct roles of METTL3 and METTL14 in HCC (Liu X.
et al., 2020). More researches are required to clarify the
disparate effects of METTL3 and METTL14 on HCC and the
relevant mechanisms.
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