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1  | INTRODUC TION

Acute myeloid leukaemia (AML) is haematologic malignancy with 
high heterogeneity, characterized by uncontrolled proliferation of 
myeloid progenitor cells gradually replacing the normal haematopoi-
etic function of bone marrow. With the continuous exploration and 
research at the cellular and molecular level on the pathogenesis of 

AML, the choice of novel treatment modalities has surged over the 
past few years, including targeted small-molecule inhibitors, anti-
body-drug conjugate, tumour-targeted immunotherapy and so on.1,2 
The prognosis of majority of young AML patients has improved, and 
most patients have access to complete remission. However, more 
than half of young adult patients and approximately 90% of older 
patients still die of their diseases.3 Hence, a reliable prognostic 

 

Received: 6 November 2019  |  Revised: 28 January 2020  |  Accepted: 20 February 2020

DOI: 10.1111/jcmm.15109  

O R I G I N A L  A R T I C L E

Development and validation of a 10-gene prognostic signature 
for acute myeloid leukaemia

Zuyi Yang1 |   Jun Shang2  |   Ning Li1 |   Liang Zhang1 |   Tingting Tang1 |   
Guoyan Tian1 |   Xiaohui Chen1

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2020 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.

Zuyi Yang and Jun Shang contributed equally to this work. 

1Department of Hematology and Oncology, 
The Affiliated Hospital of Hangzhou Normal 
University, Hangzhou, China
2School of Life Sciences, Fudan University, 
Shanghai, China

Correspondence
Xiaohui Chen, Department of Hematology 
and Oncology, The Affiliated Hospital of 
Hangzhou Normal University, Hangzhou, 
Zhejiang 310015, China.
Email: zk887073@126.com

Funding information
Natural Science Foundation of Zhejiang 
Province, Grant/Award Number: No. 
LY15H080001; Hangzhou Science & 
Technology Planning Projects, Grant/Award 
Number: 20140633B08 and 20120633B15

Abstract
Acute myeloid leukaemia (AML) is the most common type of adult acute leukaemia 
and has a poor prognosis. Thus, optimal risk stratification is of greatest importance 
for reasonable choice of treatment and prognostic evaluation. For our study, a total 
of 1707 samples of AML patients from three public databases were divided into 
meta-training, meta-testing and validation sets. The meta-training set was used to 
build risk prediction model, and the other four data sets were employed for valida-
tion. By log-rank test and univariate COX regression analysis as well as LASSO-COX, 
AML patients were divided into high-risk and low-risk groups based on AML risk 
score (AMLRS) which was constituted by 10 survival-related genes. In meta-training, 
meta-testing and validation sets, the patient in the low-risk group all had a signifi-
cantly longer OS (overall survival) than those in the high-risk group (P <  .001), and 
the area under ROC curve (AUC) by time-dependent ROC was 0.5854-0.7905 for 
1 year, 0.6652-0.8066 for 3 years and 0.6622-0.8034 for 5 years. Multivariate COX 
regression analysis indicated that AMLRS was an independent prognostic factor in 
four data sets. Nomogram combining the AMLRS and two clinical parameters per-
formed well in predicting 1-year, 3-year and 5-year OS. Finally, we created a web-
based prognostic model to predict the prognosis of AML patients (https://tcgi.shiny​
apps.io/amlrs_nomog​ram/).

K E Y W O R D S

acute myeloid leukaemia, gene expression profiling, nomogram, prognosis, signature

www.wileyonlinelibrary.com/journal/jcmm
https://orcid.org/0000-0002-5767-1492
mailto:﻿
http://creativecommons.org/licenses/by/4.0/
mailto:zk887073@126.com
https://tcgi.shinyapps.io/amlrs_nomogram/
https://tcgi.shinyapps.io/amlrs_nomogram/


     |  4511YANG et al.

stratification system which can be applied to clinical risk evaluation 
is of high importance for the choice of therapy and follow-up in AML 
patients.

Whether it is an established classification system, such as the 
French-American-British (FAB) classification system in 1976,4 World 
Health Organization (WHO) classification in 20085 and 20166 incor-
porating genetic information, or prognostic factors, for instance, clin-
ical factors including mounting age and poor performance status,7 
cytogenetic changes8 and gene mutation,9 all have their downsides 
for risk stratification, such as the insufficiency of generalization ca-
pacity, the uncertainty in the accuracy of prediction. Hence, recently 
increasing sight has turned to studies on risk prediction models by 
prognostic signature based on multiple gene integration for differ-
ent types of tumours, especially in solid tumours. In this study, we 
aimed to construct a prognostic signature based on gene expression 
profile from public database and validate its stability and forecasting 
performance, as well as establish a clinically applied nomogram for 
AML risk stratification.

2  | MATERIAL S AND METHODS

2.1 | Data sources

We retrospectively gathered the gene expression profile data and 
corresponding clinical information of AML patients from three can-
cer public data sets. A total of eight cohorts were included in the 
study, including six cohorts from the Gene Expression Omnibus 
(GEO) database, one from The Cancer Genome Atlas (TCGA) data-
base and one from Therapeutically Available Research to Generate 
Effective Treatments (TARGET) database. After deleting those data 
without survival and expression information, a total of 1707 AML 
samples were ultimately enrolled in our study, including 1419 GEO 
AML samples, 132 TCGA AML samples and 156 TARGET AML sam-
ples. Detailed information about the data sets was described in 
Table S1. The workflow was drawn in Figure 1.

2.2 | Data processing

The gene expression data and corresponding clinical information 
of GSE12417, GSE37642, GSE6891 and GSE71014 data sets were 
collected from GEO data sets (https://www.ncbi.nlm.nih.gov/geo/). 
Affymetrix microarray data of GSE12417, GSE37642 and GSE6891 
data sets were downloaded in the form of CEL file and adjusted by 
Robust Multichip Average (RMA) normalization method (R package 
affy, V1.60.0). Because cohorts of GSE12417 and GSE37642 hybrid-
ized on Affymetrix U133B had repeated samples and small number 
of gene probe, we removed cohorts of GSE12417 and GSE37642 
hybridized on Affymetrix U133B. For GSE71014, normalized expres-
sion data were downloaded. The expression data and corresponding 
clinical information of TCGA and TARGET data sets were down-
loaded from UCSC (https://xenab​rowser.net/hub/), and logarithmic 

transformed was done in all gene expression. All data were adjusted 
with ComBat method (R package sva, V3.30.0) to eliminate the batch 
effect between different data sets (Figure  2A-D). We merged the 
GPL570-GSE6891, GPL570-GSE37642, GPL96-GSE37642 and 
GPL570-GSE12​4177 data sets into a meta-data set and randomly di-
vided this data set into meta-training set (n = 635) and meta-testing 
set (n = 621) in a 1-to-1 ratio. Meanwhile, GPL96-GSE12417 (n = 163), 
TCGA (n = 132) and TARGET (n = 156) were utilized as independent 
cohorts for validation of our prognostic prediction model.

2.3 | Construction and validation of the prognostic 
signature for AML

The log-rank test and univariate COX regression analysis were used 
to screen survival-related genes in the meta-training set. 1000 time 
iterations were carried out by using LASSO-COX (R package glm-
net, v2.0-16),10 to identify the most stable gene set. AML risk score 
(AMLRS) was calculated by using the linear weighted method of co-
variates based on COX regression and gene expression value of tar-
get genes, and each patient got an AMLRS, the formulate as shown 
below 11,12:

The optimal cut-off value identified by X-title method was uti-
lized to divide patients into the low-risk and high-risk groups.13 
Time-dependent receiver operating characteristic (ROC) and 
Kaplan-Meier survival analysis were employed to assess the prog-
nostic predictive power of AMLRS (R package, survivalROC, v1.0.3). 
The meta-testing, GPL96-GSE12417, TCGA and TARGET data sets 
were carried out to validate the stability of AMLRS.

A predictive nomogram was performed to build clinically appli-
cable scale plate (R package, rms, v5.1-2). Calibration plots were car-
ried out to evaluate the forecasting performance of the nomogram 
(R package, rms, v5.1-2). Online prognostic tool was built with shiny 
(R package, shiny, v1.2.0).

2.4 | Statistical analysis

The characteristics of gene expression and corresponding 
clinical information were displayed with heatmap (R package, 
ComplexHeatmap, v1.18.1).14 The principal component analysis 
(PCA) was conducted for clustering gene expression data (R package, 
gmodels, v 2.18.1). The chi-square test was used to compare the sta-
tistical difference in categorical variables, and two-tailed Student's 
t test was used for quantitative variables (SPSS version 19.0; IBM 
Corporation). The violin plot was performed with ggplot2 (R pack-
age, ggplot2, v3.0.0). Univariate and multivariate COX regression 
analyses were performed to evaluate the association between vari-
ables and overall survival (OS) (R package, survival, v2.42.6). Kaplan-
Meier survival analysis was carried out to compare the difference in 

AMLRS=
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survival among groups (R package, survminer, v0.4.3). A P value < .05 
was considered as statistical significance.

3  | RESULTS

3.1 | Patient characteristics

In five data sets, a total of 1707 AML patients were analysed, includ-
ing 390 males (22.8%), 355 females (20.8%) and 962 of unknown sex 
(56.4%). Except for TARGET data set, which consisted of paediatric 
and adolescent AML patients, the majority of patients in other data 
sets were adult AML patients, ranging from 15 to 88. In patients 
with known data, white blood cells (WBC) > 10 (12.5%) and platelet 
(PLT) counts < 100 (6.2%) patients comprised the majority, and M1 
(19%), M2 (24.4%), M4 (19.2%) and M5 (13.8%) subtype account for 
a large proportion in different FAB subtype patients. In patients of 
known cytogenetic risk stratification and cytogenetic abnormalities, 
intermediate-risk group and normal karyotype group were the most 
common subtypes, accounting for 23.8% and 30.8, respectively. The 

median follow-up times for the five data sets (meta-training, meta-
testing, GPL96-GSE12417, TCGA and TARGET) were 425, 459.3, 
280, 366 and 1348.5 days, respectively. The characteristics of data 
sets were displayed in Table S2.

3.2 | Construction of the prognostic signature

In our study, a total of 12 272 genes were investigated. Screening 
by log-rank test and univariate COX regression analysis, 852 genes 
were found as survival-related gene. To reduce the risk of overfit-
ting after initial screening, a LASSO-COX was used. After 1000 
iterations, a 10-gene signature was considered as the most stable 
gene set in the meta-training set (alpha = 1, Log (Lambda) = 0.193) 
(Figure  2E-F), including ALDH2, FAM124B, NYNRIN, DNMT3B, 
DDIT4, SOCS2, ADGRG1, CALCRL, NDST1 and FHL1 (the detail in-
formation of screen was presented in Table S3). The frequency of this 
gene signature was up to 224 times and was the highest frequency in 
different gene signatures (Figure S1). Using the linear weighting for 
the 10 genes, a formula of AMLRS was constructed, integrating the 

F I G U R E  1   The workflow of the study. 
A total of five data sets including 1707 
AML patient samples were analysed. 
Survival-related genes were screened 
in meta-training set and eventually used 
to build AMLRS. Meta-testing and three 
independent validation cohorts were 
utilized for validation. An optimal cut-off 
was identified by X-title (1.47) and divided 
patients into high-risk and low-risk groups. 
In meta-training set, the patient in the 
low-risk group had a significantly longer 
OS than those in the high-risk group 
(P < .001), and the AUC was 0.6962 for 
1 year, 0.7331 for 3 years and 0.7419 for 
5 years, respectively. AML, acute myeloid 
leukaemia; AMLRS, AML risk score; OS, 
overall survival
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gene expression value and the coefficients derived from multivari-
able COX regression. The AMLRS of each patient in our study was 
calculated, and the formula was exhibited below:

By X-title, an optimal cut-off value (1.47) was calculated to divide 
patients into low-risk and high-risk groups (Figure S2). In meta-train-
ing set, the patient in the low-risk group had a significantly longer 
OS than those in the high-risk group (P < .001) (Figure 3A), and the 
area under ROC curve (AUC) by time-dependent ROC was 0.6962 
for 1 year, 0.7331 for 3 years, and 0.7419 for 5 years, respectively 
(Figure  3F). The 1, 3 and 5-year survival rates in the high-risk vs 
low-risk patient were 41.6% vs 71.6%, 19.8% vs 55.7% and 15.8% vs 
50.5%, respectively. According to PCA, the expression of 10 genes 
could distinguish well the low-risk group from the high-risk group in 
meta-training set (Figure 4A). The results obtained from the forego-
ing analysis demonstrated that the prognostic signature had a good 
prognostic performance.

3.3 | Validation of the prognostic signature

To evaluate the generalization capacity of the prognostic signature, 
we validated the meta-testing set and three independent validation 
data sets, including GPL96-GSE12417, TCGA and TARGET data sets. 
In four validation data sets, the patients in the low-risk group all had 
a significantly longer OS than those in the high-risk group (P < .001; 
Figure  3B-E). Meanwhile, the time-dependent ROC was drawn in 
four validation data sets (Figure 3G-J). The AUC in meta-testing data 
set was 0.6799 for 1 year, 0.7152 for 3 years and 0.7156 for 5 years, 
respectively. The 1, 3 and 5-year survival rates in the high-risk vs 
low-risk patient were 42.7% vs 70.8%, 22.2% vs 55.3% and 19.0% 
vs 49.3%, respectively. The AUC in GPL96-GSE12417 data set was 
0.7905 for 1 year, 0.8066 for 3 years and 0.8034 for 5 years, respec-
tively. The 1 and 3-year survival rates in the high-risk vs low-risk 
patient were 19.7% vs 67.9% and 10.6% vs 52.9%, respectively. The 
AUC in TCGA data set was 0.7165 for 1 year, 0.6652 for 3 years, and 
0.6622 for 5 years, respectively. The 1, 3, and 5-year survival rates 
in the high-risk vs low-risk patient were 41.5% vs 73.1%, 20.0% vs 
42.9% and 16.0% vs 29.7%, respectively. The AUC in TARGET data 
set was 0.5854 for 1 year, 0.6814 for 3 years and 0.7107 for 5 years, 
respectively. The 1, 3 and 5-year survival rates in the high-risk vs 

low-risk patient were 85.5% vs 90.7%, 43.3% vs 69.2% and 34.2% vs 
65.3%, respectively. According to PCA, the expression of 10 genes 
could distinguish well the low-risk group from the high-risk group in 
testing and validation data sets (Figure 4B-E).

3.4 | Subgroup analysis fusing with clinical 
characteristics

We created heatmap in five data sets integrating AMLRS, survival 
statue and clinical characteristics, containing gender, FAB subtype 
and cytogenetic risk stratification (Figure 5), and the gene expres-
sion value of 10 genes was displayed in Figure S3. Patients with high 
AMLRS scores were more distributed in the unfavourable karyotype 
group, M0 and M1 subtypes, while patients with low AMLRS scores 
were more distributed in the favourable karyotype group, M3, M4 
and M5 subtypes (Figure  S4). Meantime, using time-dependent 
ROC we compared AMLRS and cytogenetic risk stratification, al-
though the ROC curve results suggested that AMLRS model was 
better, the cytogenetic risk stratification also performed very well 
(Figure S5). In 1707 AML patients, patients in M3 subtype and fa-
vourable karyotype group had longer OS (P <  .001), while patients 
in M0 subtype and unfavourable karyotype group had shorter OS 
(P < .001; Figure S6A,C). Patients in unfavourable karyotype group 
had the highest risk score, followed by the intermediate karyotype 
group, and favourable karyotype group had the lowest one (P < .001; 
Figure S6B). In FAB subtype, patients in M0 and M3 subtype had the 
highest and lowest risk score, respectively, while risk score for other 
types of patients was between the two groups (P < .001; Figure S6D). 
In cytogenetic abnormality, inv (16), t(8; 21) and t(15; 17) were more 
likely to be observed in the low-risk group, while −5/7(q), +8 and 
complex cytogenetic abnormalities were more likely to be observed 
in the high-risk group, that was consistent with genomic risk stratifi-
cation of AML.15 Detailed information about clinical characteristics 
was described in Table 1.

3.5 | Multivariate analysis in two risk groups

To further validate the prognostic power of 10-gene signature, uni-
variate and multivariate analyses based on COX regression without 
missing data were carried out for clinical variables and AMLRS in 
four data sets. Clinical variables that may be associated with prog-
nosis were included in the analysis, including gender, cytogenetic 
risk stratification and FAB subtype. As can be seen from Figure 6, 
the AMLRS was illustrated to be a significantly independent prog-
nostic factor in four data sets after elimination of the effects of 

AMLRS=ALDH2 (expression level) ∗0.0152+FAM124B∗0.017

+NYNRIN∗0.007+DNMT3B∗0.021+DDIT4∗0.015

+SOCS2∗0.0197+ADGRG1∗0.039+CALCRL∗0.072

+NDST1∗
(

−0.015
)

+FHL1∗0.010.

F I G U R E  2   Comparison before and after batch effect elimination on different cohorts. The boxplot shown gene expression of eight 
cohorts, each of which contained 20 random samples (A) before and (B) after combat. The PCA of eight cohorts (C) before and (D) after 
combat. Prognosis-related gene selection in the LASSO-COX regression. (E) LASSO coefficient values of the 10 prognosis-related genes in 
training cohort. The dotted vertical line at the log(Lambda) = −0.193. (F) L1-penalty of LASSO-COX regression. The dotted vertical lines at 
optimal log(Lambda) value
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confounding factor (meta-training data set, HR 2.292, 95% CI 1.562-
3.362, P < .001; meta-testing data set, HR 2.6, 95% CI 1.665-4.059, 
P <  .001; TCGA data set, HR 2.659, 95% CI 1.537-4.599, P <  .001; 
TARGET data set, HR 1.534, 95% CI 0.809-2.907, P = .19). In Kaplan-
Meier survival analysis, the low-risk group had longer OS than those 
in the high-risk group in different cytogenetic risk stratification and 
M1, M2, M4 and M5 subtypes (P < .05; Figure S7). No statistically 
significant difference was found in M0, M3, M6 and M7 subtypes 

between the low-risk and high-risk groups, and this is possibly due 
to insufficient sample size.

3.6 | Establishment of the predictive nomogram

For the convenience of clinical application, a clinically quanti-
tative method was expected to produce that could predict the 

F I G U R E  3   The Kaplan-Meier survival analysis in five data sets. A, Meta-training data set. B, meta-testing data set. C, GPL96_GSE12417 
data set, D, TCGA data set. E, TARGET data set. In five data sets, the patient in the low-risk group all had a significantly longer OS than 
those in the high-risk group (P < .001). The time-dependent ROC in five data sets. F, In meta-training data set, the AUC was 0.6962 for 1 y, 
0.7331 for 3 y and 0.7419 for 5 y, respectively. G, In meta-testing data set, the AUC was 0.6799 for 1 y, 0.7152 for 3 y and 0.7156 for 5 y, 
respectively. H, In GPL96_GSE12417 data set, the AUC was 0.7905 for 1 y, 0.8066 for 3 y and 0.8034 for 5 y, respectively. I, In TCGA data 
set, the AUC was 0.7165 for 1 y, 0.6652 for 3 y and 0.6622 for 5 y, respectively. J, In TARGET data set, the AUC was 0.5854 for 1 y, 0.6814 
for 3 y and 0.7107 for 5 y, respectively

F I G U R E  4   The PCA of the low-risk and high-risk groups based on 10 survival-related gene expression. A, Meta-training data set. B, 
Meta-testing data set. C, GPL96_GSE12417 data set. D, TCGA data set. E, TARGET data set
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probability of 1-year, 3-year and 5-year OS in AML. Therefore, using 
data without missing data from meta-training, meta-testing, GPL96-
GSE12417, TCGA and TARGET data sets, we conducted a nomogram 
which merge AMLRS and two clinically correlated risk factors, in-
cluding FAB subtype and cytogenetic risk stratification (Figure 7A). 
As can be seen in calibration plots for the 1-year, 3-year and 5-year 
OS, the nomogram was predicted well in all data, and concordance 
index was 0.6542 (P = .0157; Figure 7B). In order to make clinical use 
convenient, we created an online tool predicting prognosis of AML 
patients (https://tcgi.shiny​apps.io/amlrs_nomog​ram/).

4  | DISCUSSION

With the flourish of precision medicine and the accumulation of 
clinical and biological data, increasing scholars have dedicated 
their effort to lucubrate the diagnostic or prognostic prediction 
models, and prediction research for AML patients is no excep-
tion.16,17 There are already some published AML signatures, such 
as 17-gene stemness score (LCS17), 3-microRNA prognostic scor-
ing system, 24-gene prognostic signature and so on. LSC17 per-
formed very well in predicting the prognosis of AML patients in 
different data sets. However, some clinically applied risk strati-
fication, such as cytogenetic risk stratification, should continue 
to be used.17 A 3-microRNA prognostic scoring system was con-
structed by Chuang et al, which applied private and public da-
tabases. However, the patient number in training and validation 
cohorts both is small, which reduced the stability and accuracy 
of the prognostic signature, and study population is only for adult 
AML patients.18 Another 24-gene prognostic signature was estab-
lished using private database by Li et al which comprised various 
cytogenetic and molecular abnormalities AML patients and was 
validated by two independent cohorts.19 Nevertheless, exces-
sive gene number being used to constructed prognostic signature 
might produce adverse effects of model overfitting. Besides, Zhu 
et al generated a 4-microRNA prognostic signature in paediatric 
and adolescent AML patients.20 Unfortunately, because of short-
age of other microRNA with survival information, the model was 
validated only in the testing data set, but not in independent data 
set.

In our study, we downloaded almost available multiple gene 
expression data and corresponding clinical information from the 
GEO, TCGA and TARGET database, and merged data from differ-
ent platform after eliminating batch effects. In meta-training data 
set, screened by univariate COX, log-rank test and LASSO-COX 
method, 10 genes were ultimately identified to create AMLRS. 
Subsequently, the AMLRS was validated by meta-testing data set 

and three independent validation data sets. The result indicated 
that AMLRS could divide well AML patients into two instinct sub-
groups with the low-risk and high-risk groups. Meanwhile, in order 
to eliminate effects of farraginous factors, the AMLRS and clinical 
parameters were analysed by univariate and multivariate COX re-
gression without missing data. The AMLRS involved in 10 prog-
nostic genes was proven to have independent prognostic value in 
AML patients.

Compared with previous studies, our study not only combines 
data from multiple platforms by Combat method, which expanded 
the sample size to a large extent, but also incorporates different 
clinical parameters. Meanwhile, because overfitting could reduce 
significance of the prognostic signature, we adopted LASSO-COX 
method for shrinkage and filtration of genes. In the selection of re-
search object, our study has greater inclusiveness, including patients 
of different ages and different cytogenetic and molecular abnormal-
ities. Based on these elements, a robust and reliable 10 gene prog-
nostic signature of AML was accurately created for different types 
of AML patients.

Ten genes involved in the AMLRS have been investigated in 
our research, including ALDH2, FAM124B, MYNRIN, DNMT3B, 
DDIT4, SOCS2, ADGRG1, CALCRL, NDST1 and THL1. ALDH en-
zyme activity in haematopoietic system is utilized to define normal 
haematopoietic stem cell, but previous research has shown that 
ALDH activity might be related to the existence of leukaemic stem 
cells, and its high activity might be a reminder of poor prognosis.21 
DNMT3B, as a member of DNA methyltransferases family proteins, 
functions chiefly as de novo DNA methyltransferases to create new 
DNA methylation marks.22,23 Overexpression of DNMT3B impaired 
leukaemogenesis and postponed the progress of leukaemia.24 
Nevertheless, several recent researches of DNMT3B indicated that 
high expression of DNMT3B was connected with unfavourable out-
come in AML.24,25 In general, DNMT3B-mediated DNA methylation 
plays an important role in the onset and progression of AML. DDIT4 
was mainly applied to restrain mechanistic target of rapamycin 1 
(mTORC1) by maintaining the TSC1-TSC2 inhibitory complex.26 
The up-regulation of DDIT4 has been reported as prognostic bio-
marker in AML.27,28 SOCS2 was expressed in both normal HSC and 
AML-LSC,29 and did its job by inhibiting the JAK/STAT pathway.30 
Overexpression of SOCS2 was mostly associated with the advanced 
stages of chronic myeloid leukaemia.31-33 However, there were also 
studies showing that high expression of SOCS2 in paediatric AML 
patients had an inferior prognosis.34 Although not reported to be 
associated with the prognosis of AML patients, ADGRG1, NDST1, 
FHL1, FAM124B, NYNRIN and CALCRL had been reported to be 
related with several other cancers 35-37 and might be potential novel 
prognostic factors of AML.

F I G U R E  5   The heat map of risk score distribution, survival status and clinical parameters in five data sets. Each column represented 
a patient, and each row represented gender, FAB subtype, cytogenetic risk stratification, risk score stratification and survival status and 
corresponding survival time, respectively. All patients were ranked by risk score. A, Meta-training data set. B, Meta-testing data set. C, 
GPL96_GSE12417 data set. D, TCGA data set. E, TARGET data set. FAB, French-American-British

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE12417
https://tcgi.shinyapps.io/amlrs_nomogram/
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In addition, for the sake of the facility of clinical application, a 
nomogram was produced including AMLRS, cytogenetic risk stratifi-
cation and FAB subtype. In order to make clinical use convenient, we 
created an online tool predicting prognosis of AML patients (https://
tcgi.shiny​apps.io/amlrs_nomog​ram/). In all data, the nomogram per-
formed well.

However, there is certain deficiency in our study. First of all, 
this was a retrospective research based on public database. The 
missing rate of clinical information data was comparatively high, 
and the white race was in the majority, which lowered the stability 

and reliability of the prognostic signature. There were M3 sub-
types in research cohort, the prognosis of which was very differ-
ent. But owing to a small amount of these patients, we did not 
analyse it separately, which also caused a certain deviation in the 
prediction effect of the model. Furthermore, gene for screening 
was the gene in intersection after merging data from various da-
tabases. Certain genes with less expression and outside the in-
tersection were missed, which led to error. Last but not least, 
because of insufficiency of clinical parameters in our study, the 
end-point was only OS, which brought about the missing of clinical 

F I G U R E  6   The univariate and multivariate COX regression analyses for risk stratification and clinical variables including gender, 
cytogenetic risk stratification and FAB subtype in four data sets. FAB, French-American-British
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parameters that might have an impact on the outcome. For the 
next step, we will take AML patients in our centre as the research 
object to expand the proportion of Asians and incorporate more 
clinical parameters for analysis, as well as set additional end-point 
to observe the outcome of different events. Meantime, we will 
develop a gene quantification batch effect elimination tool that al-
lows individual patients to use gene expression quantification for 
risk stratification. We, if available, will explore the possible mech-
anism of prognostic genes.

5  | CONCLUSIONS

In conclusion, a promising prognostic signature based on 10 genes 
related to the prognosis was recognized for prognostic risk strati-
fication of AML. Meanwhile, a nomogram and an online tool were 
built to easy to clinical application. However, the relevant mecha-
nisms of the probable prognosis genes have not been distinctly iden-
tified, perhaps these genes will become potential therapeutic target 
in future.
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