
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Timothy I. Shaw,
Moffitt Cancer Center, United States

REVIEWED BY

Apostolos Zaravinos,
European University Cyprus, Cyprus
Hidetoshi Hayashi,
Kindai University, Japan

*CORRESPONDENCE

Valsamo Anagnostou
vanagno1@jhmi.edu

†These authors have contributed
equally to this work

SPECIALTY SECTION

This article was submitted to
Cancer Genetics,
a section of the journal
Frontiers in Oncology

RECEIVED 16 May 2022

ACCEPTED 04 July 2022
PUBLISHED 03 August 2022

CITATION

Scott SC, Shao XM, Niknafs N, Balan A,
Pereira G, Marrone KA, Lam VK,
Murray JC, Feliciano JL, Levy BP,
Ettinger DS, Hann CL, Brahmer JR,
Forde PM, Karchin R, Naidoo J and
Anagnostou V (2022) Sex-specific
differences in immunogenomic
features of response to immune
checkpoint blockade.
Front. Oncol. 12:945798.
doi: 10.3389/fonc.2022.945798

COPYRIGHT

© 2022 Scott, Shao, Niknafs, Balan,
Pereira, Marrone, Lam, Murray, Feliciano,
Levy, Ettinger, Hann, Brahmer, Forde,
Karchin, Naidoo and Anagnostou. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 03 August 2022

DOI 10.3389/fonc.2022.945798
Sex-specific differences in
immunogenomic features of
response to immune
checkpoint blockade
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Introduction: The magnitude of response to immune checkpoint inhibitor (ICI)

therapy may be sex-dependent, as females have lower response rates and

decreased survival after ICI monotherapy. The mechanisms underlying this sex

dimorphism in ICI response are unknown, and may be related to sex-driven

differences in the immunogenomic landscape of tumors that shape anti-tumor

immune responses in the context of therapy.

Methods: To investigate the association of immunogenic mutations with HLA

haplotypes, we leveraged whole exome sequence data and HLA genotypes

from 482 non-small cell lung cancer (NSCLC) tumors from The Cancer

Genome Atlas (TCGA). To explore sex-specific genomic features linked with

ICI response, we analyzed whole exome sequence data from patients with

NSCLC treated with ICI. Tumor mutational burden (TMB), HLA class I and II

restricted immunogenic missense mutation (IMM) load, and mutational

smoking signature were defined for each tumor. IMM load was combined

with HLA class I and II haplotypes and correlated with therapeutic response and

survival following ICI treatment. We examined rates of durable clinical benefit

(DCB) for at least six months from ICI treatment initiation. Findings were

validated utilizing whole exome sequence data from an independent cohort

of ICI treated NSCLC.

Results: Analysis of whole exome sequence data from NSCLC tumors of

females and males revealed that germline HLA class II diversity (≥9 unique

HLA alleles) was associated with higher tumor class II IMM load in females

(p=0.01) and not in males (p=0.64). Similarly, in tumors of female patients,

somatic HLA class II loss of heterozygosity was associated with increased IMM
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load (p=0.01) while this association was not observed in tumors in males

(p=0.20). In females, TMB (p=0.005), class I IMM load (p=0.005), class II IMM

load (p=0.004), and mutational smoking signature (p<0.001) were significantly

higher in tumors responding to ICI as compared to non-responding tumors. In

contrast, among males, there was no significant association between DCB and

any of these features. When IMM was considered in the context of HLA

zygosity, high MHC-II restricted IMM load and high HLA class II diversity was

significantly associated with overall survival in males (p=0.017).

Conclusions: Inherent sex-driven differences in immune surveillance affect the

immunogenomic determinants of response to ICI and likely mediate the

dimorphic outcomes with ICI therapy. Deeper understanding of the selective

pressures and mechanisms of immune escape in tumors in males and females

can inform patient selection strategies and can be utilized to further hone

immunotherapy approaches in cancer.
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Introduction

Immune checkpoint inhibitor (ICI) therapies improve

outcomes and are approved for use in multiple treatment

settings across tumor types with a rapidly expanding

repertoire of agents, applications, and combination strategies

(1). However, only a fraction of patients benefit from treatment

and an even smaller fraction achieve long-term disease control.

Despite hundreds of clinical trials of ICI therapies in cancer,

there is paucity of robust biomarker models to predict response

(2, 3). Furthermore, ICIs are not without risk, and improved

predictive biomarkers will help to limit exposure in patients

unlikely to benefit.

Several recent meta-analyses of immunotherapy clinical

trials have suggested a decreased magnitude of benefit for ICI

monotherapy in female patients as compared to male patients

across multiple cancer types, including non-small cell lung

cancer (NSCLC) (4–9). A meta-analysis by Conforti et al.

included six randomized trials with single- or dual-agent PD-

1/PD-L1 inhibitors in NSCLC, including 3482 patients, and

reported a greater magnitude of benefit in males with a pooled

hazard ratio (HR) of 0.72 (95% CI 0.61-0.86) compared to a lack

of significant benefit in females with a pooled HR of 0.89 (95%

CI (0.71-1.11) (4). In all trials the HR for death was lower for

males than females, and in three NSCLC trials (10–12) the HR

demonstrated a significant benefit only for male and not for

female patients. Interestingly, subsequent analysis has

demonstrated that females have significantly increased

magnitude of benefit from combinations of chemo-
02
immunotherapy (13), and females experience higher rates of

immune-related adverse events after immunotherapy for

NSCLC and melanoma, as compared to males (14, 15).

Together, the data highlight the significant yet incompletely

understood impact of sex on outcomes following ICI therapy in

multiple tumor types and treatment settings. These findings

have spurred interest in investigating the underlying

mechanisms potentially mediating this sex dimorphism in

therapeutic response in the context of immunotherapy.

Inherent differences in the male and female immune

response are likely central to the observed sex dimorphism in

ICI response. Females demonstrate increased humoral and cell-

mediated responses to antigenic stimulation, vaccination, and

infection, and there exists a strong female predominance of

autoimmune diseases (16, 17). Females demonstrate increased

CD8+ T lymphocyte activity and IFNg production as compared

to males, and tumors in females demonstrate enrichment of

nearly all T cell subpopulations in the tumor microenvironment

(18, 19). Furthermore, estrogen signaling has been demonstrated

to modulate the tumor immune microenvironment, tumor

antigen presentation, immune checkpoint expression, and

intratumoral lymphocyte infiltration (20, 21). Given these

well-established differences in immune responses of males and

females, we hypothesized that there are sex-based differences in

tumor-intrinsic features that have been shaped by the immune

system during tumor evolution and immunoediting, which are

reflected in differential clinical outcomes following ICI therapy.

The therapeutic efficacy of ICIs relies on augmentation of the

anti-tumor immune response, mediated by presentation of tumor-
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specific neoantigens primarily by major histocompatibility complex

(MHC) class I proteins, along with multiple co-stimulatory signals,

and resultant CD8+ effector cell activation. We recently developed

MHCnuggets, a deep neural network method to predict peptide-

MHC binding that incorporates HLA genotype and whole exome

sequencing to quantify immunogenic missense mutations (IMM)

(22). Utilizing these approaches, we have subsequently shown that

tumors with high HLA class II restricted IMM loads are more likely

to regress with immune checkpoint blockade (23). Considering

IMM load in the context of HLA class I and II zygosity is important,

as decreased HLA genetic variationmay lead to immune escape and

suboptimal responses to ICI therapy (24, 25).

Functional differences in anti-tumor immune activity

between males and females likely contribute to the differential

response to ICI therapy and may be driven by tumor intrinsic

and host-related features. Here, we first evaluated the

background association between immunogenic mutation load

and HLA zygosity in a sex-dependent manner in NSCLC tumors

from TCGA. To explore sex-specific genomic features linked

with ICI response, we analyzed whole exome sequence data of

two independent cohorts of patients with NSCLC treated with

ICIs and assessed differences in the MHC I and II-restricted

immunogenic mutation repertoire combined with the germline

and somatic HLA class I and II zygosity. Our findings highlight

sex-specific differences in immunogenomic determinants of

response to ICI that may impact clinical decision making.

Methods

Cohort characteristics

The primary NSCLC cohort consisted of 89 patients treated

with ICI therapy at Johns Hopkins Sidney Kimmel Cancer

Center and the Nederlands Kanker Instituut; whole exome

sequence and clinical metadata were retrieved from the

original publication (25). In addition to sequence annotation

of activating EGFR mutations, review of clinical next generation

sequencing data was performed to identify ALK, ROS1, and RET

rearrangements. ALK rearrangement status was not available for

7 of 89 tumors, ROS1 and RET rearrangement status was not

available for 13 tumors, including 2 in patients with no history of

tobacco exposure (1 male and 1 female). Whole exome sequence

data from a published cohort of 34 NSCLC patients treated with

PD-1 blockade (NSCLC validation cohort) were obtained and

analyzed to validate key findings from the primary NSCLC

cohort (26). Driver gene fusion analyses were not available for

this cohort. Genomic and demographic information of 286 lung

adenocarcinoma (LUAD) and 196 lung squamous cell

carcinoma (LUSC) samples from The Cancer Genome Atlas

(TCGA) were retrieved from the NCI Genomic Data Commons

(https://gdc.cancer.gov/about-data/publications/mc3-2017).

Clinical annotations of tumors and structural variants including
Frontiers in Oncology 03
gene fusions were accessed using the TCGA clinical data

resource (27).
Assessment of clinical response
following ICI therapy

All patients in each cohort were treated with anti-PD-1 or

anti-PD-L1 therapy alone or in combination with anti-CTLA-4

therapy or chemotherapy. Given the challenges with

conventional radiologic response assessments that may

underestimate the unique patterns and timing of response to

immune targeted therapies, we defined response as durable

clinical benefit if complete response, partial response, or stable

disease was achieved with a duration of >6 months. Responding

and non-responding tumors, therefore refer to patients attaining

durable clinical benefit (DCB) and non-durable clinical benefit

(NDB), respectively. Overall survival was used to determine

long-term outcome for the primary NSCLC cohort.

Progression free survival only was available for the NSCLC

validation cohort.
Somatic mutation extraction and
identification of putative immunogenic
mutations

Missense somatic mutation calls for both primary and

validation cohorts were extracted from the original

publications (25, 28). Missense somatic mutation calls for the

TCGA samples were obtained from Multi-Center Mutation

Calling in Multiple Cancers (MC3; https://gdc.cancer.gov/

about-data/publications/mc3-2017). The burdens of

immunogenic mutations (IMM) were computed as previously

described (23). In brief, using varcode (https://github.com/

openvax/varcode), silent and nonsense mutations were filtered

out of each patient’s mutation profiles, and mutant peptide

sequences surrounding the affected amino acid for all missense

mutations were extracted. Windowing around the affected

amino acid, 8-11mers were extracted for HLA class I analyses,

and 12-20mers, HLA class II analyses. Next, we employed

MHCnuggets (22) to obtain the ranks of the binding affinities

of all the mutation containing peptides against the respective

HLA class I and II haplotypes of the patients (23). Each

candidate peptide’s predicted MHC binding affinities were

compared against the MHC binding affinities of a list of

100,000 human proteome peptides (23). Using a rank

threshold of 0.01, we considered all the epitopes with

predicted binding affinity over this rank immunogenic

neoantigens. A putative IMM was thus defined as a missense

mutation that contain as least one predicted mutation-associated

neoantigens (MANA) fulfilling these criteria.
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Mutational signatures

The contribution of smoking-related mutational signatures

in the mutational spectra of NSCLC tumors in the primary and

validation cohorts were extracted from the original publication

(25). In brief, the deconstructSigs R package was utilized (29) to

calculate the contribution of COSMIC smoking signature 4 from

all the coding point mutations in their trinucleotide context (30).
HLA genotyping

HLA class I and class II germline genotypes for both primary

and validation cohorts were identified as previously described

(23, 25). In brief, using whole exome sequencing, each samples’

HLA class I germline haplotype (HLA-A, HLA-B, and HLA-C)

were identified with OptiType (31). For HLA class II haplotypes,

an ensemble approach utilizing SOAP-HLA (32) and xHLA (33)

was employed such that xHLA was used to determine HLA-

DPB1, HLA-DQB1 and HLA-DRB1 haplotypes while SOAP-

HLA was used to determine HLA-DPA1 and HLA-DQA1

haplotypes. HLA class I germline genotypes for TCGA NSCLC

samples were obtained from the TCGA landscape publication

(34) that utilized OptiType (31), while HLA class II germline

genotypes were retrieved from the publication of Marty-Pyke et

al., 2018 (35).
HLA loss of heterozygosity

For the primary and validation cohorts, loss of HLA class I

germline molecules in the tumors were determined by LOHHLA

(36), for which allele specific copy numbers of HLA class I locus

were realigned to patient specific reference sequences and corrected

by tumor purity and ploidy. Tumor purity and ploidy were assessed

in each sample analyzed as described previously (25). In brief,

somatic copy number profiles were first determined by mapping

reads to exonic and intronic regions (bins) of the genome while

correcting for region size, CG content and sequence complexity

(37). Next, tumor copy number profiles were compared to a

reference panel of matched normal samples to derive copy ratio

values. Circular binary segmentation (38) was next applied to copy

ratio profiles to determine genomic segment boundaries. Segmental

copy ratio values and minor allele frequency of heterozygous single

nucleotide polymorphisms (SNPs) overlapping the segment were

used to estimate tumor purity and ploidy throughout the genome;

all possible combination of tumor purity and ploidy were evaluated

for the optimal combination based on maximum likelihood

estimation. For HLA class II germline molecule loss in the

tumors and all HLA molecule loss in the TCGA samples, the

minor allele copy numbers were utilized as previously described

(25). Briefly, loss of heterozygosity (LOH) occurred when minor
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allele copy number of the overlapping genomic region equaled zero.

HLA allele specific copy number information of the TCGA samples

were obtained from analyses of SNP6 copy number array data on

Synapse (https://www.synapse.org/#!Synapse:syn1710464).
Statistical analysis

Differences between responding and non-responding tumors

were evaluated using chi-squared or Fisher’s exact test for

categorical variables and the Mann-Whitney (MW) test for

continuous variables. Where noted, tumors were classified based

on their missense tumor mutational burden (TMB) or IMM load

as high or low using the second tertile as a cut-off point. Median

point estimate and 95% confidence interval (CI) for overall

survival and progression free survival were estimated by the

Kaplan-Meier method and survival curves were compared

through the nonparametric log-rank test. Univariate Cox

proportional hazards regression analysis was used to determine

the impact of individual parameters on survival outcomes. All p

values were based on two-sided testing and differences were

considered significant at p < 0.05.
Results

Sex-dependent association between
immunogenic mutation load and HLA
zygosity

Cancer immunoediting selects tumor clones that escape

immune control throughout tumorigenesis and cancer

evolution likely in a sex-specific immune context (39, 40). To

investigate sex-based background differences in the

immunogenomic landscape of NSCLC tumors independent of

therapy, we analyzed HLA zygosity and IMM load in 482 lung

cancer tumors from TCGA, including 279 males and 203

females. In males, we did not detect an association between

tumor IMM load and germline HLA class I or class II

homozygosity (HLA class I MW p=0.64, HLA class II MW

p=0.64; Figures 1A, B).

Interestingly, and in contrast with previous findings pointing

towards a lack of association between HLA germline diversity

and TMB (25), the tumor IMM load in females was positively

correlated with germline HLA allele diversity, particularly for

HLA class II associated IMMs. Among female patients with

germline homozygosity in two or more HLA class II alleles, the

median predicted class II IMM load was 68.5 as compared to 95

among tumors in females with the most diverse HLA class II

repertoire (MW p=0.01; Figure 1B). In contrast, the median class

II IMM load among males with germline HLA-II homozygosity

was 90, as compared to 94 among those with more diverse HLA-
frontiersin.org
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II alleles (MW p=0.64). When excluding 45 patients (15 male, 30

female) with activating EGFR mutations or ALK, ROS1, or RET

gene fusions, this trend persisted in females, with median tumor

class II IMM load of 103 in patients with at least 9 unique

germline HLA-II alleles, as compared to 88 in patients with a

higher degree of germline HLA homozygosity (MW p=0.06;

Supplementary Figure 1).

While germline HLA repertoire contributes to tumor-

immune recognition and immunoediting, tumors with high

neoantigen burdens may escape immune surveillance by

somatic loss of heterozygosity of HLA alleles (36). In

considering the role of somatic loss of heterozygosity in tumor

evolution as a means of immune evasion, we next classified

tumors with at least one fewer unique HLA allele in tumor as

compared to germline, and observed that loss of heterozygosity

at the HLA-II locus was associated with high class II IMM load

only in females (MW p=0.014; Figures 1C, D). Again, this
Frontiers in Oncology 05
association persisted when tumors with EGFR, ALK, ROS1, or

RET driver mutations were excluded (MW p=0.02;

Supplementary Figure 1).
ICI-treated cohorts description

The primary NSCLC cohort (Anagnostou) included 89 adults

with NSCLC treated with ICI therapy, consisting of 46 male and 43

female patients with a median age at ICI treatment initiation of 64

years. The NSCLC validation cohort (Rizvi) included 34 adults with

NSCLC treated with pembrolizumab, consisting of 16 male and 18

female patients with a median age of 62.5 years. Demographic,

tumor, and treatment information for both cohorts have been

previously published (25, 26) and are summarized in

Supplementary Table 1. Two patients in the primary NSCLC

cohort were not evaluable for the durable clinical benefit endpoint.
B

C D

A

FIGURE 1

Background immunogenic mutation association with HLA diversity in TCGA-NSCLC cohort. (A) No association between class I IMM loads and
tumor HLA I diversities was found in either males (MW p=0.64) or females (MW p=0.24). (B) Female tumors with high germline HLA II diversity
had significantly higher class II IMM loads (MW p=0.01). Male tumors did not show class II IMM load difference between the high germline HLA II
diversity and the low germline HLA II diversity groups (MW p=0.64). (C) No association between loss of heterozygosity (LOH) of HLA I alleles and
class I IMM loads were identified in either males (MW p=0.43) or females (MW p=0.89). (D) Female tumors lost ≥1 HLA II alleles had higher class
II IMM loads than those with no LOH (MW p=0.01). LOH for HLA II alleles did not associate with class II IMM load difference in male tumors (MW
p=0.20).
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HLA class I and II immunogenic mutation
load predict ICI response in females

No significant baseline differences were observed between

NSCLC tumors of males and females with respect to TMB, class

I IMM load, class II IMM load, or mutational smoking signature

(for all comparisons MW p≥0.8). Similarly, there was no

significant difference in rate of durable clinical benefit (DCB;

Fisher’s Exact p=1.0), progression free survival (log-rank p=0.94,

HR=1.02, 95% CI 0.62-1.68) or overall survival (log-rank p=0.39,

HR=1.31, 95% CI 0.7-2.42) between males and females following

ICI therapy.

To investigate the difference in immunogenomic features

predicting ICI response between males and females, we

measured TMB, class I and II IMM load, and mutational

smoking signature (Methods) in responding and non-

responding tumors by each sex. In female patients, DCB

following ICI therapy was significantly associated with higher

TMB (MW p=0.005), class I IMM load (MW p=0.005), class II

IMM load (MW p=0.004), and mutational smoking signature

(MW p=0.0006), while none of these features were significantly

different between responding and non-responding tumors in

male patients (Figures 2A–D).

In order to incorporate the effect of gender- or sex-biased

differences like tobacco exposure and prevalence of tumors with

driver mutations that typically do not respond to ICI therapy (41,
Frontiers in Oncology 06
42), we further stratified the primary cohort by tobacco history and

driver gene mutation status. Six tumors harbored activating EGFR

mutations, while no fusions of ALK, ROS1, or RET were detected in

those with available testing. As expected, none of the six tumors

harboring activating EGFR alterations (5 female, 1 male)

demonstrated DCB in response to ICI therapy. Excluding these

six patients from the cohort, the somatic mutational features

remained predictive of DCB for NSCLC in females but not in

males, including TMB (females MW p=0.03, males MW p=0.13),

class I IMM load (females MW p=0.03, males MW p=0.10), class II

IMM load (females MW p=0.02, males MW p=0.10), and

mutational smoking signature (females MW p=0.005, males MW

p=0.26; Supplementary Table 2). Among patients with a self-

reported history of smoking (35 males, 33 females), the

mutational smoking signature trended toward association of ICI

response only in tumors in females (median signature contribution

of 0.57 in the DCB group versus 0.38 for the NDB group, p=0.06).

In contrast, there was no difference inmutational smoking signature

in male tumors by therapeutic response (median signature

contribution of 0.47 in the DCB group versus median signature

contribution of 0.46 in the NDB group, p=0.95).

These findings were corroborated in an independent

validation cohort (Rizvi) of 34 patients with ICI-treated

NSCLC (26). Among tumors of 18 female patients in the

cohort, TMB, class I IMM load, class II IMM load and

mutational smoking signature were significantly higher in
B C D

E F G H

A

FIGURE 2

Immunogenic mutation load distinguishes responding from non-responding tumors in females who received immune checkpoint blockade. In
the primary NSCLC cohort (Anagnostou), (A) female responding tumors harbored significantly higher TMB than female non-responding tumors
(MW p=0.005). Similarly, (B) Class I and (C) class II IMM loads separated female response groups (Class I IMM loads MW p=0.005; Class II IMM
loads MW p=0.004), but not male response groups (Class I IMM loads: MW p=0.09; Class II IMM loads: MW p=0.08). (D) Smoking mutational
signature levels also only differed in female response groups (MW p=0.0006), but not male response groups (MW p=0.21). These results were
corroborated in the validation cohort (Rizvi) with immunogenomic features, (E) TMB, (F) Class I IMM loads, (G) Class II IMM loads, and (H)
mutational smoking signature.
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those attaining DCB as compared to NDB following ICI therapy,

including TMB (MW p=0.0009), class I IMM load (MW

p=0.003), class II IMM load (MW p=0.0009), and mutational

smoking signature (MW p=0.04; Figures 2E–H). Among 16 male

patients in the cohort, there was no significant difference in these

features between responding and non-responding tumors.

Similar to the primary cohort, these differences persisted when

excluding three patients with tumors harboring EGFR

alterations (Supplementary Table 2).
Combined HLA zygosity with
immunogenic mutation load predicts ICI
response in males

Next, we considered the contribution of antigen presentation

capacity in addition to IMM load as associated with differential

clinical responses to ICI in males and females. We assessed HLA

genetic variation as an indicator of neoantigen presentation

capacity and its impact on outcomes by sex. Patient germline

and tumor HLA haplotypes were classified as high HLA diversity

(≥5 unique alleles for HLA class I and ≥9 unique alleles for HLA

class II) or low HLA diversity groups (≤4 unique HLA I class
Frontiers in Oncology 07
alleles or ≤8 HLA class II alleles). There was no significant

correlation with germline or tumor HLA zygosity alone and ICI

benefit in either sex (Supplementary Table 3).

Even in tumors with maximal HLA heterozygosity, the

potential immunogenicity of mutation-associated neoantigens

depends on effective presentation by the patient’s unique

inherited MHC repertoire. In contrast to TMB, the predicted

IMM load incorporates MHC affinity to estimate the number of

neoantigens likely to stimulate an anti-tumor immune response

(22). In the primary ICI-treated cohort (Anagnostou), response

to ICI correlated with combined high IMM load and high HLA

diversity in tumors in both males and females (Figures 3A, B).

Interestingly, significantly improved OS was only observed in

males with high IMM load and high HLA diversity, particularly

for HLA class II (log-rank p=0.017; Figures 3C, D). This finding

in males is consistent with our hypothesis that more highly

mutated tumors with intact antigen presentation capacity will

benefit from improved outcomes following ICI therapy. In

females, HLA diversity did not have a combinatorial effect on

IMM load for predicting survival after ICI therapy (Figures 3C,

D); these findings suggest that alternative mechanisms of

immune escape likely contribute to the differential sex-

dependent response and outcome following ICI therapy.
B

C

D

A

FIGURE 3

HLA heterozygosity combined with immunogenic mutation loads predicted ICI response and survival in males. (A) Male and female tumors with high
IMM-I loads and high tumor HLA I diversity (tHLA I ≥5) co-occurred with response to ICI treatments (male Fisher’s Exact p=0.02, female Fisher’s Exact
p=0.05). (B) Both male and female tumors with high HLA II restricted IMMs and high germline HLA II diversity (gHLA II ≥9) co-occurred with ICI response
(male: Fisher’s Exact p=0.003; female: Fisher’s Exact p=0.03). (C) Male patients with high tumor IMM-I loads and high tumor HLA I diversity trended
towards longer overall survival (OS) (log-rank p=0.1), while their female counterparts did not (log-rank p=0.33). (D) Combined high tumor IMM-II loads and
high germline HLA II diversity was associated with significantly longer OS among males (log-rank p=0.02) but not females (log-rank p=0.12). Hazard ratio
(HR) shown with 95% confidence interval.
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Discussion

Growing evidence points to a sexual dimorphism in

response to immunotherapy across multiple tumors that likely

arises from differences in immune surveillance in males and

females. During tumorigenesis, immune surveillance shapes

tumor evolution and selection pressure drives tumor immune

escape. We sought to elucidate the immunogenomic features

pointing towards mechanisms by which biologic sex influences

the tumor-immune interaction that is central to ICI

therapy response.

We demonstrate that somatic mutational features, including

class I and II predicted IMM load as well as TMB, are associated

with durable clinical benefit following ICI therapy in females but

not in males. This finding is consistent with recent reports

demonstrating that as a predictive biomarker for ICI response,

TMB performed better in females than in males, an effect that

appears to be independent of smoking signature and oncogenic-

driver mutations like EGFR (19, 43). Furthermore, in NSCLC,

there is no consistent difference in TMB between tumors in

males and females, whereas increased TMB is associated with

male tumors in melanoma and other tumor types where a sex

dimorphism in ICI response has been observed (43–47).

While TMB is a predictive biomarker of response, clinical

benefit, and survival after immunotherapy in a variety of

cancers, including NSCLC and melanoma (26, 48–52), it is an

imperfect biomarker with multiple technical limitations.

Utilizing neoantigen predictions to identify somatic mutations

with immunogenicity potential has been an effective way to

indicate tumor infiltrating leukocyte (TIL) infiltration and

survival in multiple solid tumors (22, 23, 34). Combining this

approach to estimate tumor immunogenicity with observations

of sexual dimorphism in the immune response, we found that

higher class I and II IMM load were predictive of ICI response in

females with NSCLC.

In line with the predictive role of tumor IMM load in

females, mutational smoking signature was also predictive of

ICI response only in females. Though NSCLC arising with a

history of never-smoking is significantly more common in

females (53), there is evidence for a higher impact of tobacco-

mediated carcinogenesis in females as compared to males, with

increased deleterious effects and higher risk of lung cancer

despite a similar degree of tobacco exposure (54, 55). These

observations suggest that the interpretation of mutational load as

a biomarker for ICI response requires additional context.

Similarly, NSCLC with an EGFR, ALK, or other non-smoking

associated driver alteration is significantly overrepresented

among females and is associated with lower TMB and poor

ICI response (41, 56, 57). It is likely that observed sex

dimorphism in early ICI trials in NSCLC was enhanced by the

overrepresentation of never-smokers and select mutation-driven

tumors among females, however the decreased magnitude of in
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ICI response in females is also noted in non-smoking associated

tumors like melanoma, and in squamous NSCLC not associated

with these same oncogenic driver mutations (4, 11, 47).

Antigen presentation capacity in the form of a diverse

repertoire of HLA-encoded MHC molecules allows for

effective presentation of more tumor-associated neopeptide

candidates to stimulate an anti-tumor immune response. As a

predictor of response to ICI therapy, HLA-I germline

homozygosity in at least one locus and HLA-I loss of

heterozygosity have been associated with worse survival and

were significantly more negatively prognostic when combined

with low TMB (24, 25, 58, 59). We have previously shown that

fewer than five unique tumor HLA class I alleles combined with

low TMB was associated with lower CD8+ T cell infiltration and

was predictive of worse overall survival in this NSCLC cohort,

suggesting HLA loss is an adaptive mechanism for immune

evasion in tumors with high mutation burden (25). In further

examining these patterns by sex, we found that the combination

of diverse HLA alleles and high IMM load was predictive of

improved survival following ICI therapy in males but not in

females, and particularly with respect to HLA class II. This

pattern suggests that in females, more immunogenic tumors

with high neoantigen burden and intact antigen presentation

capacity are under selective pressure to develop alternative

mechanisms of immune evasion, favoring immune escape and

poor ICI response. In other words, females with already robust

tumor-specific immunity will have a lower potential for effect

with ICI therapy (i.e. a lower therapeutic index) (60), while

males with less baseline anti-tumor response may attain a greater

magnitude of therapeutic response.

In further exploring the immunogenomic landscape that

evolves in tumors in males and females, we found that maximal

HLA class II germline diversity is associated with higher IMM

load in females but not in males. This finding indicates that

tumors with intact antigen presentation capacity may acquire

more novel oncogenic mutations to survive in an environment

with more effective anti-tumor immune surveillance. Castro et

al. recently demonstrated that females are more likely to

accumulate driver mutations early in tumorigenesis that are

less effectively presented by their inherited HLA genotype,

particularly for HLA class II (40), and thus higher mutation

burden may not always reflect increased immunogenicity in

females. These data suggest that in an environment of stronger

immune selection pressure, tumors in females have developed

multiple mechanisms to evade tumor-specific T cell responses,

and support our finding that combined high IMM and HLA-II

heterozygosity were positive predictors of post-ICI survival in

males but not females.

Adaptive tumor alterations in antigen presentation

machinery, predominately through selection for loss of

heterozygosity of HLA alleles, also promotes immune escape

by decreased antigen presentation capacity (36). Loss of
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heterozygosity at HLA-I loci is common and has been noted in

30-40% of several published NSCLC cohorts (25, 36, 61).

Somatic HLA-I loss and low TMB has been associated with

poor ICI response (24), and correcting for mutation-associated

neoantigens presented by lost HLA alleles identified high TMB

tumors with poor response to ICI therapy (61). In analyzing this

relationship by sex, we found that HLA-II loss of heterozygosity

is also strongly associated with higher IMM load only in tumors

in females. Thus, loss of HLA expression as an adaptive

mechanism for immune evasion in tumors with high

mutational load may be a more prominent influence in females.

The consistent signal in the MHC class II pathway is

interesting and highly relevant. While professional antigen

presenting cells expressing MHC-II are found in the tumor

microenvironment and stimulate CD4+ T cell costimulatory

pathways, the intrinsic expression of MHC-II in tumor cells is

increasingly recognized as a key pathway in anti-tumor immune

responses (62, 63). We recently demonstrated that class II IMM

load is associated with ICI response and survival in NSCLC and

melanoma (23). A recent prospective randomized phase III trial

of combination chemotherapy and anti-PD1 therapy also

identified MHC class-II related gene expression as a key factor

correlating with survival, especially in low PD-L1 expressing

tumors, and was significantly more predictive than MHC-I

related gene expression (64). NSCLC tumors in females have

increased infiltration of CD4+ T cell populations (19),

suggesting that MHC-II driven pathways are central to the

ant i - tumor immune response in females . Further

understanding of the role of the MHC-II and CD4+ T cells

will inform not only our understanding of the sex dimorphism in

ICI response, but mechanisms of ICI efficacy in all patients.

Future directions will include exploring the multiple sex-

based variables at play in cancer development and the immune

response, including consideration of cofactors related to

additional hormonal, environmental, and genetic influences.

Tumors included in each cohort represented a single time

point in tumorigenesis, and all ICI treated patients had

advanced disease. In light of recent incorporation of

immunotherapy in early stage and locally advanced NSCLC

(65, 66), it will be important to understand the evolution of these

sex-based immunogenomic features and their context in

different stages of disease. Similarly, continuing to examine

these features with consideration of sex-based differences in

response to combination chemotherapy and immunotherapy

will be an important next step. Finally, though this analysis

considered select driver mutations with known decreased

response to ICI and female predominance, a multitude of

additional targetable and non-targetable mutations have

unclear impact on ICI response, such as KRAS, BRAF, MET,

HER2, PI3K, PTEN, and DNA repair genes (42). The complexity

of the interaction of these drivers and other co-mutations with

sex, smoking exposure, mutational burden and ICI response
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requires further investigation and emphasizes the need for

intricate and individualized modeling for predictive biomarkers.

In summary, the dimorphic activity of the immune system in

males and females strongly influences tumorigenesis by immune

selection and has important implications in the growing field of

cancer immunotherapy. Our data highlight that the

interpretation of biomarkers and the mutational landscape of

tumors for prediction of ICI therapy response requires

consideration of the biological sex context in which the tumor

has evolved. Together, the growing clinical and translational

data support inclusion of sex as a biological variable in

multimodal models of ICI response prediction. This effort

requires deeper understanding of the mechanisms underlying

sex-driven differences in the tumor-immune interaction, as well

as adequate representation of females in prospective clinical

trials of immune therapeutic agents.
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SUPPLEMENTARY FIGURE 1

Background Immunogenic mutation-HLA diversity associations in TCGA-
NSCLC cohort excluding tumors with EGFR, ALK, ROS1, and RET

mutations. (A) No association between class I IMM loads and tumor HLA
I diversities were found in either males (MW p=0.65) or females (MW

p=0.19). (B) Female tumors with high germline HLA II diversity
demonstrated trend toward higher class II IMM load (MW p=0.06). Male

tumors did not show class II IMM load difference between the high

germline HLA II diversity group and the low germline HLA II diversity
group (MW p=0.26). (C) No association between loss of heterozygosity

(LOH) of HLA I alleles and class I IMM loads were identified in either males
(MW p=0.50) or females (MW p=0.94). (D) Female tumors that lost ≥1 HLA

II alleles had higher class II IMM loads than those with no LOH (MW
p=0.02). LOH for HLA II alleles did not associate with class II IMM load

difference in male tumors (MW p=0.36).
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