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The intestinal tract is an ecosystem in which the resident microbiota lives in

symbiosis with its host. This symbiotic relationship is key to maintaining overall

health, with dietary habits of the host representing one of the main external

factors shaping the microbiome-host relationship. Diets high in fiber and low in

fat and sugars, as opposed to Western and high-fat diets, have been shown to

have a beneficial effect on intestinal health by promoting the growth of

beneficial bacteria, improve mucus barrier function and immune tolerance,

while inhibiting pro-inflammatory responses and their downstream effects. On

the contrary, diets low in fiber and high in fat and sugars have been associated

with alterations in microbiota composition/functionality and the subsequent

development of chronic diseases such as food allergies, inflammatory bowel

disease, and metabolic disease. In this review, we provided an updated

overview of the current understanding of the connection between diet,

microbiota, and health, with a special focus on the role of Western and high-

fat diets in shaping intestinal homeostasis by modulating the gut microbiota.
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Introduction

The gastrointestinal (GI) tract is covered by a single layer of

epithelial cells that act as a selectively permeable barrier allowing the

absorption of dietary nutrients, microbial metabolites, electrolytes,

and water from the lumen into the circulation, while maintaining

an effective defense barrier against luminal microorganisms (1, 2).

The GI tract harbors a complex and dynamic population of

microbes encompassing bacteria, archaea, eukarya and viruses,

collectively referred to as the gut microbiota, which has co-

evolved with its host in a symbiotic relationship (3, 4). Although

the gut microbiota comprises trillions of microbes, the relative

sterility of blood and host tissue relies on an intact gut barrier, which

acts as the gatekeeper of our health (5). Additionally, apart from

acting as a selective barrier, the intestinal epithelium orchestrates

the communication between intestinal microbes and the mucosal

innate and adaptive immune system (1, 6). The microbiota and its

metabolites regulate various aspects of gut immunity, and is thus

critical for maintaining mucosal homeostasis (7, 8). The intestinal

epithelial cells (IECs) protect the underlying tissues from

commensal microbes and/or invading pathogenic microorganisms

by secretion of a mucus layer which acts as an additional layer of

physical defense of the host, and a habitat for bacteria providing

binding sites and energy sources (9). The mucus also acts as a

diffusion barrier for anti-microbial peptides (AMPs) released by

Paneth cells and other epithelial cells, and immunoglobulin A (IgA)

derived from mucosal B cells that prevents microbes from reaching

the epithelium (10). Diet is one of the primary factors that

influences gut microbiota composition, diversity, and

functionality, which in turn have a strong impact on mucus

properties, mucosal immunity, and thereby intestinal homeostasis

(11, 12). The aim of this review is to summarize the current

knowledge regarding the interplay between the diet, microbiota,

mucus, and the intestinal immune system with a particular focus on

the impact of Western and high-fat (HF) diets on the gut

microbiota, and how shifts in the composition and functionality

of the microbiota can compromise intestinal homeostasis.
Gut microbial ecosystem and
its composition

The primary colonization of the GI tract begins at birth with

the acquisition of microbes from the environment, mainly from

the maternal vagina and the skin. The number of

microorganisms that reside in the human gastrointestinal tract

has been estimated to be 1013, a number that is similar to the

number of human cells (13). However, the genes encoded by the

human gut microbiota, known as the microbiome, are 100-fold

more abundant than the genes of the human genome (14). 16S

rRNA and metagenomics studies have revealed that the majority
Frontiers in Immunology 02
of gut microbiota sequences belong to the Bacteria, which is the

predominant kingdom in the human adult gut microbiota

(15–17). The human gut microbiota is mainly composed by

two dominant bacterial phyla: gram-positive Firmicutes and

gram-negative Bacteroidetes representing 85-90% of the

total microbiota, whereas Actinobacteria, Proteobacteria,

Fusobacteria, and Verrucomicrobia are minor costituents (15,

18, 19). Microbial density and diversity increase steadily along

the GI tract from the proximal to the distal intestine, a process

affected by host features and microbial community dynamics

(20). The duodenum harbors 103 microbial cells per gram of

intestinal content, and increasing densities/diversities are found

in the jejunum (104 cells per gram), ileum (107 cells per gram),

and colon (1012 cells per gram) (21). Gut microbiota

composition also differs transversally from the lumen to the

mucosa as demonstrated in both mice and human studies (15,

22, 23). In physiological conditions, the microbiota offers

many benefits to the host, which include fortifying the

intestinal epithelium, harvesting energy from undigested

and unabsorbed nutrients, defending against pathogens,

and regulating host immunity (24). However, several

environmental (e.g., dietary patterns, antibiotics) and intrinsic

(e.g., breast feeding, genetic background) factors can impact the

gut microbiota composition and its structural, protective and

metabolic functions (11). Additionally, other factors such as

oxygen gradients, mucus properties, and the host immune

system influence the transversal distribution pattern of the

microbiota (23, 25, 26). Over the last years, the microbiota has

emerged as a key regulator of host metabolism and health (25).

There are several mechanisms by which the microbiota can

regulate host metabolism and health, many of which can be

ascribed to microbial metabolites (27). Among these bacterial

metabolites, the most studied are the short-chain fatty acids

(SCFAs) that are produced by bacterial fermentation of

indigestible nutrients (i.e., dietary fibers and complex

carbohydrates). The role of SCFAs in the regulation of

metabolic function and intestinal homeostasis will be detailed

in the next sections of this review. In addition to bacteria,

another intricate kingdom that co-colonizes the human GI

tract is composed of a substantial quantity of viruses

collectively referred to as the gut virome (28). Viruses of

bacteria, called bacteriophages (phages), are significantly more

abundant than eukaryotic viruses, and the estimated phage-

bacterial ratio in the human gut is believed to be 1:1 (29).

Emerging studies have shown that phage-driven alterations of

the microbiota composition by direct interactions or potentially

via the human immune system have been associated with several

diseases (e.g., inflammatory bowel disease, cancer, obesity)

(28–30). However, little is known about the phage-mucus

interactions, and therefore the present review only covers the

mucus-bacteria feedback system of the gut.
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Diet and gut microbiota: Learning
from human and murine models
Diet is a key discriminant in shaping health and aging

trajectories with these effects being also mediated by the ability

of nutrient quality and quantity to modulate gut microbiota

composition and metabolic function (31). Indeed, in addition to

providing the energy and the nutrients needed to sustain the

cellular processes required for daily life (31), dietary components

are also instrumental factors in modulating the microbial

communities in the gut (32). In addition to the plethora of the

effects exploited by the gut microbiota on host health, the

intestinal microbiota community also regulates the mucus

barrier function (12, 33). In light of this, dietary-driven

modulations of the gut microbiota will also be reflected upon

the gut mucus barrier function and the overall intestinal health

(34) (Figures 1A, B). However, not all diets are equal, and it is

established that different dietary patterns exert distinct effects on

the gut microbiota. In agreement with this, a diet rich in fiber

including galacto- and fructo-oligosaccharides (two important

groups of prebiotics) and resistant starch strongly impacts the

composition, diversity and metabolic function of the microbiota

(35). To this end, dietary fiber provides a plethora of substrates

for fermentation reactions carried out by specific species of
Frontiers in Immunology 03
microbes (e.g., Bifidobacterium, Faecalibacterium) that express

the adequate enzymatic machinery to break down these complex

carbohydrates and to produce SCFAs (e.g., acetate, butyrate,

propionate). The SCFAs in turn exert beneficial effects on

cardio-metabolic (36) and gut health (37), including

promoting mucus barrier function (38, 39) (Figure 1A).

Prompted by these evidences, a move towards a diet high in

dietary fiber, low in glycemic index carbohydrates, long-chain

saturated fatty acids, animal protein (i.e., red and processed

meat), and sugar referred to as the Mediterranean diet (hereafter,

MD), has been associated with the prevention of cardiovascular

and metabolic diseases, and many other diseases (40, 41). The

consumption of a MD has been shown to increase the levels of

the fiber-degrading Faecalibacterium prausnitzii and genes

associated with microbial carbohydrate degradation and

butyrate metabolism in a population at risk for cardio-

metabolic disease (42). An increased levels of fecal SCFAs,

Prevotella and fiber degrading Firmicutes was also observed in

healthy overweight and obese subjects with a high-level

adherence to a MD (43). The importance of the dietary fiber

(referred to as microbiota accessible carbohydrates, MACs)

intake was also demonstrated in mice colonized with a human

microbiota and showed that a low-MAC diet resulted in a

reduction in microbial diversity in just three generations,

which could not be brought back when mice were fed a
FIGURE 1

The impact of dietary patterns on gut microbiota and intestinal health. A schematic overview depicting the importance of diet and dietary
constituents in discriminating between a healthy (A) or an unhealthy (B) state of the gut barrier function by modulating the composition and
functionality of the gut microbiota.
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normal MAC diet (44). Additionally, deprivation of dietary fiber

was also associated with deleterious effects on the intestinal

mucus layer by the gut microbiota (45–47), further highlighting

the importance of dietary fiber for our health and gut

microbiota ecosystem.

In contrast to a fiber-rich diet, hypercaloric diets high in long-

chain saturated fatty acids and w-6, sugar and low in dietary fiber,

referred to as the Western diet (WD) and HF diet in the case of

animal models have not only been widely recognised for their

detrimental effects on cardio-metabolic health, but also negatively

affect the gut microbiota composition and functionality (11, 48–

50) (Figure 1B). A key feature of both the WD and the HF-diet, is

the high intake of dietary lipids especially in the form of

triglycerides. Of note, dietary triglycerides differ in terms of

their fatty acid composition (saturated vs unsaturated), which in

turn represents a further discriminant dictating the effects of lipids

on the gut microbiota. In mice, lard, which is rich in long-chain

saturated fatty acids, promotes an increase in Bacteroides and

Bilophila as compared to fish oil which is rich in unsaturated fatty

acids and particularly w-3 which promotes an increase in

Bifidobacterium, Lactobacillus and Akkermansia muciniphila

(51). Despite the majority of the lipids being digested and

absorbed in the upper intestine, a high lipid intake, as in the

case of HF-diets, in animal models promoted a decrease in

bacteria count and a shift in microbiota species abundance (52).

Indeed, when given to mice, HF-diets have been reported to

increase the Firmicutes to Bacteroidetes ratio (52–54).

Additionally, HF-diets have been shown to reduce gut bacteria

promoting intestinal health, such as Akkermansia muciniphila,

Bifidobacterium spp., Bacteroidetes spp., Lactobacillus spp. and

Clostridiales spp., while increasing gut bacteria associated with

defective gut barrier function, such as Oscillibacter spp. and

Desulfovibrio spp (48) (Figure 1B). Disrupted gut barrier

integrity results in increased gut permeability to luminal

bacterial components such as lipopolysaccharide (LPS) resulting

in chronic low-grade inflammation typical of obesity and related

metabolic comorbidities (55–57). In addition to microbial

activation of the intestinal immune system, the inflammation is

also fuelled by saturated fatty acids overload, which by themselves

are able to elicit pro-inflammatory responses (58). These effects

translated in the development of metabolic aberrations,

particularly given the role of low-grade chronic inflammation in

impairing insulin sensitivity (59). Nevertheless, as already

mentioned, WD and HF-diets are generally low in dietary fiber,

therefore it is difficult to discern whether the observed effects on

the gut microbiota are due to the deprivation of dietary fiber, or

the high sugar and fat intake. In response to this conundrum, the

effects of a WD and HF-diets on the gut microbiota were

mitigated by the supplementation of dietary fibers, further

supporting their prominent role in gut health (39, 60–62).

The metabolic activity and composition of the gut

microbiota can also be modulated by dietary protein. Diets

with a high protein/carbohydrate ratio may exert promising
Frontiers in Immunology 04
effects in preventing obesity and improving glycemic control as

described in animal models (63, 64) and humans (65, 66), even

though the effects of these dietary patterns on metabolic health

in human remain controversial (67, 68). However, proteins,

especially if consumed in excess are able to negatively

influence the microbiota. In humans, a high-protein diet was

found to decrease butyrate-producing bacteria and fecal butyrate

levels (69), and decrease the abundance of beneficial bacteria like

Bifidobacterium, Roseburia and Eubacterium rectale (70, 71).

Despite these findings, it must be taken into consideration that

the impact of protein on the gut microbiota is dictated by the

amino acid composition and their relative abundance. Amino

acids can in fact be metabolised by the microbiota resulting in

the production of a wide array of metabolites which, in turn,

affect the health of the host. In line with this, different amino

acids exert different effects on the gut microbiota. For example,

methionine restriction in mice results in an increase in SCFA-

producing bacteria and inflammation-inhibiting bacteria with a

concomitant decrease in inflammation-promoting bacteria (72).

To the same extent, the protein source represents another

variable underpinning the effects of dietary proteins on the gut

microbiota. Indeed, vegetable proteins have been shown to

increase Bifidobacterium and Lactobacillus, an effect which

may also be dependent on the fact that vegetable source of

proteins also represent a source of dietary fiber, as opposed to

some animal proteins which combine a lack of fibers with high-

levels saturated fatty acids (73).

Besides the role of nutrients, other food ingredients are also

emerging as potent modulators of the gut microbiota. Of these,

dietary emulsifiers like carboxymethylcellulose and polysorbate-

80 have been shown to impact the gut microbiota composition

increasing the susceptibility to colitis and the metabolic

syndrome in animal models (74). Overall, the changes in the

gut microbiota elicited by emulsifiers produced a shift in gut

bacteria in a manner to promote and sustain intestinal

inflammation (75) (Figure 1B). However, although numerous

emulsifiers increased the pro-inflammatory potential of the gut

microbiota ex vivo, these effects were not induced by all

commonly used emulsifiers (76). In this regard, carrageenans

and gums were shown to alter microbiota density, composition

as well as the expression of pro-inflammatory molecules (76).

Altogether, findings from both pre-clinical and clinical studies

highlight the importance of diet, nutrients, and food ingredients

in the modulation of the gut microbiota, resulting in either

beneficial or detrimental health outcomes.
The intestinal barrier

The intestinal barrier is multi-tiered, including the mucus

layer, the epithelial layer and the underlying immune system

(Figures 2A, B). At this interface, appropriate host-microbiome

interactions play an important role in maintaining intestinal
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homeostasis throughout life (77). Disturbance to any of these

layers by several factors such as dietary-driven changes in the gut

microbiota composition, antibiotics usage, and genetic

susceptibility, is associated with the onset of chronic disease

including inflammatory bowel disease, extra intestinal

autoimmune disease, metabolic disorders such as diabetes and

obesity and allergic disease (78, 79). This section of the review will

focus on the organization and composition of the different parts of

the intestinal barrier in the steady state.
The mucus layer

The mucus layer, produced by specialised secretory goblet

cells (GCs) in the epithelium covers the intestinal tissue to

provide lubrication and protection against the luminal

material, especially the microbiota. Mucus homeostasis is

crucial for health and its dysregulation in either the small

intestine or the colon causes or correlates with various

diseases. Indeed, mucus accumulation and bacterial

overgrowth due to loss of bicarbonate secretion is evident in

cystic fibrosis, and lost mucus barrier properties and increased
Frontiers in Immunology 05
bacterial burden at the epithelium in the colon correlate with the

inflammatory bowel disease ulcerative colitis (UC) (80–83).

Thus, an understanding of factors that impact mucus

homeostasis is needed in order to maintain a good “gut

health”. External factors can alter mucus-related properties

and as the major external factor affecting the intestine, diet

can have profound effects on the mucus barrier. Mucus

associated effects induced by the diet can be direct on the

mucus or the epithelium (84–87) but perhaps more

importantly indirect by influencing the microbiota which in

turn can have strong effects on the intestinal mucus, which will

be further discussed in the last part of this review (39, 45, 88–91).

The properties and thickness of the mucus layer varies along

the GI tract to facilitate the physiological function in each

location (33, 92, 93). The small intestinal mucus has been

described as loosely organized to allow for efficient nutrient

absorption along the full length of the villi protrusions (92, 94)

(Figure 2A). To maintain a protective barrier against luminal

bacteria and digestive enzymes, the small intestinal mucus is

fortified by AMPs secreted from crypt-base residing Paneth cells

and enterocytes at the base of the villi, IgA secreted by plasma B

cells, and endogenous enzyme inhibitors (94–96) (Figure 2A). In
BA

FIGURE 2

A general overview of the mucus layer in the small and large intestine. The mucus layer is a key component of the intestinal barrier. It is mainly
composed of mucin glycoproteins produced and secreted by the intestinal goblet cells. The small intestine is characterized by a loose and
unattached mucus layer containing antimicrobial products that limit penetration by bacteria (A), whereas the large intestine presents a dense and
firmly attached mucus layer converted to a looser structure at the luminal side via endogenous proteolysis (B). AMPs, anti-microbial peptides.
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the small intestine, the thickness of mucus layer covering the

follicle associated epithelium of Peyer’s patches has been shown

to be thinner as compared to the surrounding epithelium, which

likely facilitates antigen and particle uptake by small intestinal M

cells (97). Only a thin separating mucus layer covers the

proximal colon of mice, and bacteria can be seen in close

contact with the epithelium, as evident by histology (92, 98,

99). However, the mechanisms allowing the close proximity of

bacteria to the epithelium in the proximal colon remains to be

defined (100). As the luminal material solidifies during its distal

transport, a separating mucus barrier is formed, distancing the

fecal matter and the microbiota from the underlying tissue (98,

99). Thus, in the distal parts of the colon of both human and

rodents, the epithelium is protected by a mucus barrier which

physically separates the luminal microbiota from the tissue

surface (93, 101, 102). However, mucus material can also be

seen intermixed with the microbiota in the outer regions of fecal

pellets, where it is thought to provide a nutrient rich ecological

niche for some bacteria (20, 22, 101). This “inner” and “outer”

mucus thus creates a two-layered mucus structure in the distal

colon (80, 92, 93, 101) (Figure 2B). The conversion from the

inner to the outer mucus layer is dependent on endogenous

proteolytic activity, but bacterial proteolysis could play an

additional role (101, 103) (Figure 2B).
Mucus composition

The mucus is composed by a core set of about 30 proteins,

most of which are produced by GCs, including mucin 2

(MUC2), chloride channel accessory-1 (CLCA1), Fc fragment

of IgG binding protein (FCGBP) and zymogen granule protein

16 (ZG16) (83), as well as lipids, ions, and water (which makes

up for approximately 95%) (104). The MUC2 glycoprotein is the

main structural component and creates a net-like scaffolding

backbone of the mucus along the GI-tract by oligomerization of

its terminal ends (105, 106). MUC2 is a very large protein (>5000

amino acids) with two mucin characteristic PTS-domains, rich

in proline, serine and threonine, which becomes heavily O-

glycosylated by glycosyltransferases in the secretory pathway.

The added glycans makes up for approximately 80% of the

molecular weight in the mature protein (107). More than 100

different glycan structures have been identified in intestinal

MUC2 (108). The distribution of different glycans is region

and species specific, adding additional layers of complexity to the

mucus barrier (109, 110). Apart from protecting the MUC2

protein backbone from proteolysis and giving MUC2 its gel

properties by binding water, the glycans attached to MUC2

provide microbial adhesion sites and a nutritional source in the

outer mucus layer (111–114). The glycan composition on MUC2

can thus provide a strategy for the host to select commensal

bacteria, but can also be utilized by both commensal and

pathogenic bacteria (115–117). Microbiota dependent
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degradation of mucin glycans induced by a low-fiber diet

increases the susceptibility to Citrobacter rodentium infection

in mice (45), indicating the importance of Muc2 glycosylation in

protection against pathogenic bacteria. Shortened and less

complex glycans have been identified in patients with active

ulcerative colitis (118). It does, however, remain unknown

whether the observed alterations are a cause, or an effect of the

inflammation, and further investigations are needed to elucidate

these mechanisms.
Mucosa and mucus-associated microbiota

The bacterial diversity of the mucosa-associated bacteria is on

par with that of the luminal microbiota, but the composition

differs (39, 119). In general, mucosa-associated bacteria have a

higher abundance of the phylum Firmicutes compared to

Bacteroides both in humans and rodents (120). Although the

inner mucus layer appears mostly sterile by histological

examination, Bergström et al., detected appreciable levels of

bacterial 16S in mucus collected in inter-pellet regions,

indicating that some bacteria, especially so called mucus

specialists, indeed can colonize this barrier, which was also

evident by ex vivo imaging (119). Additionally, bacterial

analyses of mucosal samples from laxative treated patients

indicate their presence in mucus from the different sampling

sites in the large intestine, as well as in the distal ileum (121). A

couple of studies have demonstrated the presence of a crypt-

specific microbiota in both mouse and human colon characterized

by a low density of bacterial community dominated by

Acinetobacter spp. in mouse and generally enriched for

Proteobacteria capable of aerobic metabolism in both human

and mouse (122, 123). It should however be noted that this was

restricted to the proximal colon in mouse, and only affected a

small number of colonic crypts in human. It is possible that the

number of bacteria in the inner mucus layer and colonic crypts

differ between strains/vivariums, reflecting differences in mucus

quality controlled by the gut microbiota. Furthermore, in

physiological conditions, mucin-degrading specialists (e.g.,

Akkermansia muciniphila and, Bacteroides thetaiotaomicron)

live in mutual coexistence with host, and the rate of mucus

degradation is balanced with the rate of mucus synthesis,

resulting in a dynamic and stable mucus structure that is of

fundamental importance for our “gut health”. Only few bacterial

species have the enzymatic machinery for initiating partial or full

mucin degradation, including A. muciniphila, Bacteroides

thetaiotaomicron, B. bifidum, Bacteroides fragilis, Ruminococcus

gnavus, and Ruminococcus torques (120). These mucin-specialist

degrade the mucin protein, which possibly leads to the availability

of oligosaccharides for other bacteria that do not harbour the

correct enzymes for this process allowing bacterial cross-feeding

and mucosal health (47, 120). An example is the interaction

between the B . thetaiotaomicron (B.theta) and the
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Faecalibacterium prausnitzii. Wrzosek et al., have shown that B.

theta, an acetate producer, increased goblet cell differentiation,

expression of mucus-related genes, and mucus glycosylation in

mono-colonized rats. In contrast when B.theta-mono-colonized

rats were supplemented with Faecalibacterium prausnitzii, an

acetate consumer and butyrate producer, the increase in goblet

cell differentiation and the alteration in mucus glycan profile was

reduced, thus maintaining an appropriate structure and

composition on the gut epithelium (124). Moreover, additional

studies are needed to elucidate the role of the mucosa-associated

microbiota in regulation of intestinal homeostasis as this

microbial community is located closely to the host.
The intestinal immune system

Although the intestinal epithelium with its mucus layer act

as the first layers of defense against the potentially harmful

agents that pass through our GI tract, this is not an absolute

barrier. Indeed, dietary and microbial antigens, and metabolites

readily pass the mucus layer and epithelium and enter the

lamina propria (LP) where they are sampled and sensed by the

intestinal immune system (125, 126). In the intestine, the

immunological challenge lies in how to accurately discriminate

between harmless and harmful foreign antigens, and failure to

respond adequately to the large variety of antigens that pass

through the GI tract results in chronic inflammatory conditions

such as food allergy and inflammatory bowel diseases (127, 128).

The ability of the immune system to mount appropriate

responses to the luminal content is to a large extent regulated

by the composition of the content itself which influences the

immune status of the host. The intestinal immune system can be

divided into innate and adaptive immunity, where dendritic cells

(DCs), macrophages, neutrophils, mast cells, eosinophils,

basophils, natural killer T cells (NKT) and innate lymphoid

cells (ILCs) make up the innate arm of immunity, and T and B

cells make up the adaptive arm. During steady state, adaptive

and innate immune responses in both the small intestine and

colon promote tolerance and inhibit pro-inflammatory

responses allowing us to live in symbiosis with our microbiota

and tolerate the food we eat. Tolerance to the luminal content is

to a large extent dependent on induction and maintenance of T

regulatory cells (Tregs), a subset of CD4+ T helper cells (Th) that

suppresses effector T cell responses, and by plasma cells that

secrete large quantities of IgA directed towards luminal antigens

(129). Innate immune cells such as macrophages and DCs

contribute to maintaining a local environment promoting

tolerance and induce adaptive immune responses. Tissue

resident LP macrophages produce the anti-inflammatory

interleukin (IL)-10, and prostaglandins that promote local

tolerance in the LP, and migratory LP-DCs traffic to small

intestine and colon draining lymph nodes following antigen

acquisition where they promote de novo Treg induction (130,
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131). Other innate cells such as eosinophils, more known for

their role in pathological conditions such and allergic disease

(132), were recently shown to contribute to intestinal

homeostasis by stimulating and maintaining IgA producing

plasma cells, and by regulating LP Treg and DC populations

as mice lacking eosinophils were shown to have reduced number

of LP Tregs and CD103+ tolerogenic DCs (133).
Microbial regulation of the intestinal
homeostasis, lessons from the use
of germ-free mice

The role of the microbiota in regulation of the mucus layer is

an area of continuous research, and a large proportion of the

current knowledge comes from studies using germ free (GF) mice,

and mono-colonization or conventionalization of GFmice. In this

section we will describe how the absence or the re-introduction of

microbes in murine models affect development and regulation of

the mucus barrier, and intestinal immunity.
Mucus and microbes

The first evidence on the importance of microbes in the

regulation of the intestinal mucus layers was demonstrated in a

conventionalization experiment using GF mice. The authors

discovered that in the GF ileum, the mucus was attached to

the epithelial surface in contrast to conventionally raised

(Convr) mice in which the mucus is easily aspirated, a process

shown to be regulated by microbial activation of meprin b, an
enzyme involved in detachment and release of mucus in the

small intestine (90, 134). In the GF colon, the mucus was thinner

and more penetrable to bacterium sized fluorescent beads as

compared to Convr mice, and the amount of Muc2 was lower in

the GF colon as compared to Convr colon (90). Furthermore, the

glycosylation pattern of Muc2, the overall expression levels of

glycosyltransferases, and the length of the glycans were shown to

differ between the two groups (90, 110). It has also been shown

that single bacterial species (i.e., B. theta and Faecalibacterium

prausnitzii) can promote colonic epithelial homeostasis by

modifying goblet cell differentiation, expression of mucus-

related genes, and mucin glycosylation (124). Johansson at al.,

have also shown that gut microbiota colonization of GF mice,

and normalization of mucus properties is a slow process (90).

Their results showed that it takes about 6 weeks for the colon

inner mucus layer to become fully impenetrable to bacteria and

bacteria sized beads, and 8 weeks for the microbiota to reach the

composition of Convr mice (90). Noticeably, a normalizing

change in several mucus parameters correlated with a shift in

the ratio between Firmicutes and Bacteroides in the mucus (90).

The importance of the microbiota in modulating the mucus

phenotype was also illustrated in a comparison of two C57BL/6
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mouse colonies with the same genetic background housed in

different rooms of the same vivarium. The two colonies were

characterized by a divergence in their gut microbiota

composition as well as in their mucus phenotypes (88). One

colony had mucus that was impenetrable to bacteria or

bacterium sized fluorescent beads, whereas the other colony

had an inner mucus layer penetrable to bacteria and beads (88).

These divergences were traced back to the gut microbiota, since

transfer of cecal microbiota from the two colonies to GF mice,

was able to transfer the respective mucus properties. Analysis of

the gut microbiota composition demonstrated that mice with an

impenetrable mucus layer had increased amounts of the

Erysipelotrichi class (mainly the genus Allobaculum), whereas

mice with a penetrable mucus layer had increased levels of

Proteobacteria and TM7 bacteria in the distal colon mucus (88).

In a study of inflammasome-deficient mice, the mucus barrier

function in Il18-/- mice was found to be dependent of the

microbiota and could be either transferred or lost upon co-

housing with different wild-type mice. Two fecal bacteria strains:

the Bacteroidales family S24-7 (Muribaculaceae) and the genus

Adlercrutzia were identified to be consistently and positively

correlated with inner mucus layer function (89). Volk et al., have

also provided further detailed information regarding correlative

and causative relations between bacteria and mucus properties

when pooling public dataset of different experiments (89).

Additionally, feeding mice a WD induced a bloom of the

Proteobacteria Helicobacter and a lower relative abundance of

S24-7 family and Bifidobacteria, which correlated with a

microbiota-dependent loss of mucus barrier function (39). Re-

introduction of Bifidobacteria corrected certain aspects of the

mucus dysfunction, but did not completely restore the mucus

properties. These findings through a pre-clinical approach

highlight three important points: (i) it is the selective increase

in certain bacterial species and their specific functions rather

than changes to the entire microbial community that regulates

the properties of the inner colon mucus barrier, (ii) housing

conditions are critical cofounding factors when investigating

microbe-mucus interactions, and a standardized approach

should be considered when comparing animal studies, (iii)

time is of importance when analyzing bacterial-host

interaction in GF and Convr mice.

The mechanisms by which microorganisms regulate mucus

properties involve both bacterial metabolites such as SCFAs and

secondary bile acids, and microbial components that bind

pattern recognition receptors such as toll-like receptors (TLRs)

expressed by GCs (135). Among the several SCFAs, butyrate has

been shown to increase the production of MUC2 in cultured

intestinal epithelial cells (136), and stimulates mucus release

from the rat colon (86, 137). In addition to SCFAs, other classes

of bacterial metabolites involved in the regulation of the mucus

properties are the secondary bile acids. One example is

deoxycholic acid (DCA), which has been shown to induce

MUC2 expression in cultured colonic epithelial cells (138,
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139). However, there are many controversial results associating

bile acids with improvement of gut barrier function, and further

investigations are required to elucidate their role in regulation of

gut health (2). Like the bacteria metabolites, exposure of colonic

tissues to high concentrations of bacterial products such as LPS

and peptidoglycan (PGN), induces mucus secretion in both GF

and Convr mice (140). Furthermore, mice lacking the TLR

adaptor protein MyD88 present a decreased production of

mucus, impaired goblet cell responses and reduced

antimicrobial activity against Citrobacter rodentium infection

(141). To the same extent, mice lacking the flagellin receptor,

TLR5 deficient mice, have a disorganized mucus structure as

compared to wild-type mice and an increased abundance of

Proteobacteria in close contact with the epithelial surface (26).

Altogether, these in vitro and in vivo studies indicate the

importance of microbes or their metabolites and components,

and host TLRs in maintaining mucosal health.
Microbial regulation of
intestinal immunity

It is well established that adaptive immune responses are

immature in both the small and large intestine of GF as

compared to Convr mice. GF mice have reduced size of

Peyer’s patches and reduced numbers of IgA producing

plasma cells, LP T cells, and intra epithelial lymphocytes

(IELs) (142–144). With respect to innate immunity, less is

known about the role of the microbiota in regulation of the

respective cell types, and observations differ between studies,

possibly related to variations in the microbiota composition of

the Convr control group. Colonic macrophages, DCs, and mast

cells have been reported to be immature and reduced in numbers

in GF mice as compared to Convr mice, suggesting a stimulatory

role of the microbiota in driving proliferation and maturation of

these cell types (145, 146). In contrast, eosinophil and NKT cell

numbers have been reported to be increased in GF mice pointing

towards a suppressive role of the microbiota in regulation of

these cells (147). However, despite the observed increase in

eosinophil numbers in GF mice, the cells appear inactive as

they express less of eosinophil peroxidase (148, 149).

To further dissect the role of specific members of the

microbiota in regulation of gut immunity, mono-colonization

or colonization of GF mice with a limited consortium of bacteria

have been used to study the role of the microbiota in regulation

of both adaptive and innate immunity. In the context of

microbial regulation of tolerance to the luminal content,

studies have demonstrated that bacteria from the Clostridium

genus cluster IV and XIVa promote induction of FoxP3+ Tregs

in the colon (150). As mentioned previously, Clostridia species

are well known for their ability to metabolize dietary fibers into

SCFAs, and catabolize tryptophan into the ahryl carbon receptor

(AhR) ligands indole and indole derivates, and it is considered
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that most effects of Clostridia on regulation of intestinal

immunity is mediated via these metabolites. SCFAs regulate

immune cell function by two main pathways 1) by activating G

protein coupled receptors (GPRs): GPR41, 43 and 109A, and by

acting as histone deacetylase (HDAC) inhibitors. HDACs are

enzymes that regulate gene expression and thereby affect a

variety of functions including proliferation and differentiation

(151, 152). In the colon, SCFAs promote induction of Foxp3+

Tregs via HDAC inhibition, and by activation of GPR43 (153,

154). Feeding GF mice with SCFAs was shown to increase FoxP3

and Il10 expression, and increase the suppressive effect of Tregs

(155). Butyrate has also been shown to inhibit the Th17

transcription factor RoRgt, and IL-17 production in vitro

(156). Thus, in the colon, SCFAs promote tolerance via Treg

induction and inhibition of Th17 responses. In contrast, SCFAs

have not been shown to induce Treg responses in the small

intestine, however other bacterial metabolites such as secondary

bile acids (e.g., 3-oxolithocholic acid) and tryptophan catabolites

(e.g., indole) that bind the AhR stimulate Treg induction and

inhibit Th17 responses in both the small intestine and colon

(157–159). SCFAs have also been shown to stimulate IgA

production by intestinal B cells, and increase LP-DC

expression of indoleamine 2,3-dioxygenase 1 (IDO1) and

aldehyde dehydrogenase 1A2 (Aldh1A2) which promote

conversion of naïve T cells into Tregs, thus, further promoting

an environment favoring tolerance over inflammation

(160, 161). Collectively these findings underscored the

importance of the microbiota in regulation of maturation of

intestinal immunity and immune homeostasis.
Dietary patterns: The determining
factor for the intestinal homeostasis

It is now well established that early nutrition can influence

the development of the gut microbiota (162), and immediately

after birth, breast milk or infant formula or a combination of

both is our primary diet. Human milk oligosaccharides

(HMOs) which are the most abundant components in breast

milk cannot be digested by the human infant, but because of

their structural similarity to mucin-glycans, they can be used as

a primary carbon source by several bacterial strains (e.g.,

Bifidobacter ium species , members from the genus

Bacteroides) implicated in the initial colonization of our

intestine, with beneficial effect on our mucosal, immune, and

metabolic health during later life (163, 164). Both in vitro and

in vivo studies have highlighted the ability of HMOs and

HMO-compounds (i.e., 2′ -fucosyllactose) to modulate

mucins expression and the secretory function of GCs (165,

166). HMOs can directly control intestinal immunity by

decoying receptors of pathogenic bacteria and viruses,

thereby preventing their binding on intestinal cells and the
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onset of a disease (167). Transitioning from milk based to solid

food, and the introduction of fiber to our diet, the pivotal

metabolic substrate for the gut microbiota, induce the

production of SCFAs. As mentioned previously, these gut-

microbiota-derived metabolites and especially butyrate can

improve mucus barrier function via modulation of MUC2

production and expression (26) (Figure 1A). Moreover these

bacterial metabolites act as ligands for GPR43, GPR41, and

GPR109A that in addition to being expressed by immune cells

also are expressed by epithelial cell, primarily cells of the

secretory lineage (168). Activation of these receptors triggers

the release of enteric peptide hormones including glucagon-

like peptides 1 and 2 and peptide YY, which regulate several

metabolic functions such as improvement of the gut barrier,

metabolic inflammation, and gut transit time (25).

In contrast to diets high in dietary fiber that promote

intestinal health, WD and HF-diets that often are low in

dietary fiber, have been associated with loss of mucus barrier

function, impaired immune homeostasis, and increased

susceptibility to chronic inflammatory diseases including

inflammatory bowel diseases and food allergies (46, 169).

These effects have largely been related to loss of SCFAs

production, but studies have also demonstrated a direct toxic

effect of dietary fatty acids on T cells in vitro (170). As

mentioned previously, high intake of WD and HF diet, is

associated with an altered and less diverse gut microbiota

composition (48, 171), which in turn contribute to an

impaired mucus barrier (39, 172). Similar observations have

been made in mice treated with dietary emulsifiers (74, 173)

(Figure 1B). Lack of dietary fiber induces a shift in the gut

microbiota composition toward the utilization of host-glycans

such as those provided by mucins as energy source, with

deleterious consequences on the mucus barrier (174, 175), and

with an expansion and activity of colonic mucus degrading

bacteria (i.e., Akkermansia muciniphila and Bacteroides caccae)

and a decrease in fiber-degrading bacteria (i.e., Eubacterium

rectale and Bacteroides ovatus) both in fecal samples, the colonic

lumen, and the mucus layer, resulting in an increased

susceptibility to gastrointestinal pathogen infections in mice

(45) (Figure 1B). Nowadays, particular attention is given to the

mucin specialist Akkermansia muciniphila, whose abundance is

reduced in mice exposed to increased dietary fat content. This

observation is of interest, since Akkermansia muciniphila

supplementation in both mice and humans has been linked to

improved health outcomes and gut barrier function (176, 177),

further reinforcing the idea that the presence of certain bacteria

in our gut is of fundamental importance for our health. With

respect to the effect of WD and HF diets on intestinal immunity,

HF diet has been associated with loss of both Treg and Th17

populations in the small intestine, while in the colon HF diet has

been associated with Th2 skewing, and increased susceptibility

to allergic disease (178–180) (Figure 1B). Altogether, these
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findings emphasize that dietary patterns, bacteria and bacterial

components contribute to maintaining gut homeostasis.
Conclusions and future perspectives

In this review we have highlighted the importance of the

interplay between the resident microbiota and the host in

regulation of intestinal homeostasis, and how this interplay is

influenced by the dietary habits of the host. It is well established

that diets with a high fiber content, and low amounts of fat and

sugar promote a microbiota that has beneficial effect on

intestinal health by stimulating intestinal mucus barrier

function and promoting immune tolerance over inflammation.

On the contrary, diets low in fiber, and high in fat and sugar have

been shown to promote a microbiota associated with

development of intestinal and extra-intestinal diseases such as

food allergy, inflammatory bowel disease and metabolic disease.

Despite the established role of the diet and microbiota in

regulation of intestinal health, many fundamental questions

remain to be answered and the challenges ahead lies in 1)

identify the molecular mechanisms involved in mucus

impairment, 2) further characterization of the bacteria and

bacterial metabolites that influence goblet cell function and

mucus properties, 3) establish the importance of different type

of goblet cells in the control of mucus production and intestinal

immunity, 4) assessment of the role of peripheral organs such as

the liver in regulation of the mucus barrier via production of

bioactive compounds further metabolized by the microbiota, 5)

characterization of the mechanisms by which specific dietary

components influences intestinal homeostasis, and how diet

induced changes in the microbiota influences the ability of the

intestine to maintain tolerance to the luminal content, 6)

evaluation of the therapeutical potential of dietary fiber/

bacterial metabolite supplements in restoration of mucus

barrier defects and loss of oral tolerance, and 7) deeper

investigation of the phage-mucus interactions.
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