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Recent advances in metabolomics provide tools to investigate human metabolome in order to establish
new parameters to study different approaches towards diagnostics, diseases and their treatment. The
present study focused on the untargeted identification of metabolites in serum of patients with coronary
artery disease who were under treatment at the time of sample collection. AUCs (Area Under the Curves)
from different peaks were considered for the analysis and comparison purposes. The metabolome was
studied using GC–MS (Gas Chromatography Mass Spectrometry) and the metabolites were identified
with NIST (The National Institute of Standards and Technology) and Wiley library matches. A total of
17 metabolites were identified and focused on to compare with the metabolome of healthy individuals.
T test analysis found significant differences in alanine, malonic acid, ribitol, D-glucose, mannose
(P < 0.001), acetohydroxamic acid, N-carboxyglycine, and aminobutyrate (P < 0.05). Principal
Component Analysis of serum metabolites data found three components out of 17 metabolites; RC1
(Acetohydroxamic acid, alanine, D-glucose, malonic acid, mannose, N-carboxy glycine and ribitol), RC2
(Heptadecanoic acid, hexadecanoic acid, octadecanoic acid and Trans-9-octadecanoic acid), RC3
(Aminobutyrate, D-sorbit, gamma lactone, valine, benzene propanoic acid and lactic acid). No correlation
was found among the components.
� 2020 The Authors. Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

During the recent past, metabolomics has emerged as a new
investigation tool in the areas including, but not limited to, health
and diseases. Collective investigation of metabolites in different
body fluids allows identification of novel biomarkers of diseases,
metabolomics fingerprints associated with diseased conditions,
drug toxicity, diagnostics, etc. (Spratlin et al., 2009; Patel and
Ahmed, 2015; Rzeznik et al., 2017).

Cerebrospinal fluid, blood, saliva and urine are the common
biofluids in case of human metabolomics studies. Serum metabo-
lome has been studied in detail and several methods and tools to
study the same has been proposed by the researchers globally
(Psychogios et al., 2011; Lau et al., 2018). Published reports indi-
cate the possibility to identify acute metabolomics changes in
human serum (Rachakonda et al., 2014; Stander et al., 2018) that
also extends to chronic metabolomics changes in certain condi-
tions (Joseloff et al. 2014). Biomarker identification through meta-
bolomics has gained recognition not only in diagnostics but in
therapeutics (Lanznaster et al. 2018) and forensic toxicology as
well (Steuer, Brockbals, and Kraemer 2019).

Coronary artery disease (CAD) is one of the most common dis-
eases and the leading cause of death globally (Consortium et al.,
2013). Several risk factors have been associated with the increase
risk of CAD including high cholesterol levels, hypertension, dia-
betes, aging, and smoking (Jensen et al. 2014). The relationship
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between CAD and some metabolites such as cysteine, cholesterol,
and triglycerides, have already been established (Jensen et al.
2014). Other studies investigated several metabolites that could
be a source of potential biomarkers of CAD (Li et al., 2017;
Gottdiener et al., 2000; Koeth et al., 2013; Mente et al., 2015). Nev-
ertheless, yet there is no specific and definitive metabolite biomar-
ker for CAD.

Present investigation focused on untargeted serum metabolite
profile of patients with coronary artery disease who are under
treatment, by GC–MS and comparison was made with healthy indi-
viduals’ metabolite profile. The main objective was to highlight the
differences in the profiles in order to identify signature changes
associated with the patients’ condition.
Table 1
Metabolites detected by GC–MS (matches
within GC–MS libraries) in serum samples
from healthy individuals and coronary
artery disease patients.

S. No. Metabolites

1 Alanine
2 Valine
3 lactic acid
4 Acetohydroxamic acid
5 benzenepropanoic acid
6 N-carboxy glycine
7 Gamma lactone
8 Aminobutyrate
9 Malonic acid
10 Ribitol
11 D-glucose
12 Mannose
13 D-sorbitol
14 Hexadecanoic
15 Trans-9-octadecanoic acid
16 Octadecanoic acid
17 Heptadecanoic acid
2. Materials and methods

2.1. Chemicals and reagents

Methanol, hexane, N, O-bis-trimethyl tri-fluoroacetamide
(BSTFA), and acetone were purchased from Merck, Germany. All
other chemicals used were of highest purity grade.

2.2. Blood samples

All the procedures to collect blood from the subjects were done
according to ethical guidelines. Fresh blood samples were obtained
from King Khalid University Hospital. Ethical approval was granted
for these experiments by the Institutional Review Board at King
Saud University Medical City, with approval number (Research
Project No. E-16-1844). Blood samples were collected from
patients as well as healthy individuals in serum vacutainers. Serum
was collected and stored at �80 �C for further investigations. Col-
lected samples were processed for metabolomics analysis by GC–
MS.

A total 76 samples were analyzed in the present investigation.
71 samples were from patients and five samples were from healthy
individuals for comparison.

2.3. Sample preparation for GC–MS analysis

Serum samples were thawed and vortexed at room tempera-
ture. In 100 lL of plasma sample, 300 lL of methanol and
100 lL of distilled water were added and the mixture was vortexed
properly for 2 min. The total mixture was centrifuged at
10,000 rpm for 10 min at 4 �C. 200-ll of supernatant sample was
transferred to GC vial and evaporated under nitrogen stream. Into
this vial, 100 lL of methoxylamine HCl/pyridine (20 mg/mL) was
added and vortexed the mixture for 5 min. The sample vial was
kept at room temperature overnight to complete the methoxyma-
tion reaction. After overnight incubation at room temperature,
100 lL N, O-bis-trimethyl tri-fluoroacetamide (BSTFA) was added
and vortex for 5 min and kept for 30 min at 50 �C to complete
the derivatization procedure. Finally 100 lL of hexane was added
in the mixture. This final mixture was subjected to qualitative
analysis by GC–MS.

2.4. Instrumentation

All the samples were analyzed using Clarus 600 T, Perkin Elmer
that was combined with single quadrupole mass spectrometer.
Elite 5MS column (30 m � 0.25 mm � 0.25 mm film thickness),
were used for the separation and the carrier gas used was ultra-
pure helium at a flow rate of 1 mL/min. a splitless injector at
20:1 was used at a temperature of 280 �C. The temperature was
set initially to 40 �C (held for 2 min), was increased to 150 �C at
5� C min�1 (held for 2 min), then increased further to 280 �C at
10 �C min�1 for 2 min. The MS ion source temperature was
220 �C and inlet line temperature at 240 �C. The scan range was
set at 40 to 600 mass ranges at 70 ev electron energy and the sol-
vent delay of 4 min. Finally, unknown compounds were identified
by comparing the spectra with that of the NIST 2005 (National Insti-
tute of Standard and Technology library) and Wiley 2006 library.
The total time required for analyzing a single sample was 41 min.

2.5. Statistical analysis

Statistical analysis of data was done using JASP statistical soft-
ware (JASP Team (2019). JASP (Version 0.10.2)[Computer soft-
ware]. The statistics included descriptive statistics, student T test,
Pearson’s correlation and Principal Component Analysis (PCA).
PCA included parallel analysis with orthogonal, varimax rotation
method. Numerical values from AUCs were used for the analysis.
3. Results

GC–MS investigation identified 17 metabolites in serum sam-
ples (Table 1). The peaks were identified by NIST and Wiley library
and the numerical data was collected in form of AUCs. Statistical
analyses were done using this data.

Descriptive statistical analysis revealed that the data from con-
trol samples was found to be normally distributed (Shapiro-Wilk
test) among all the samples for all the metabolites except ribitol
(Table 2), however it was not found to be normally distributed in
patient samples with Acetohydroxamic acid as an exception
(Table 3). Boxplots in Figs. 1 and 2 show data distribution among
control and patient samples respectively.

Student’s T-test reveals that AUCs of patient group’s alanine,
malonic acid, ribitol, D-glucose, mannose (P < 0.001), acetohydrox-
amic acid, N-carboxyglycine, and aminobutyrate (P < 0.05) are sig-
nificantly smaller than in control group (Table 4). The differences
in AUCs of other metabolites were not found to be significant
(Table 4).

Pearson Correlation Analysis was performed to seek out correla-
tions among different metabolites detected in serum samples from
healthy individuals and patients. Table 5 shows the correlation
matrix obtained after the analysis of the metabolite data from dif-
ferent metabolites. It indicates that correlation exist among almost
all the metabolites. However, some of them show highly significant



Table 3
Descriptive statistics of metabolites detected in coronary artery disease patients’ serum samples.

Alanine Valine Lactic acid Acetohydroxamic
acid

Benzene
propanoic
acid

N-carboxy
glycine

Gamma
lactone

Aminobutyrate Malonic
acid

Ribitol D-glucose Mannose D-sorbitol Hexadecanoic Trans-9-
octadecanoic
acid

Octadecanoica
cid

Heptadecanoica
cid

N 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71
Mean AUC 14127.831 50981.577 63218.141 1652.127 35760.479 16594.465 1398.437 57965.718 4541.310 7079.127 1.030e+6 122401.239 1.120e+6 39272.225 487055.014 28763.789 6869.521
Std. Error

of
Mean

1369.521 5352.018 11935.439 133.976 3351.816 2572.510 280.822 5515.977 1654.704 706.974 134987.955 25317.485 243275.069 14119.328 147037.069 11002.108 2214.685

Median 13180.000 53502.000 32223.000 1772.000 45251.000 13626.000 603.000 65295.000 1177.000 5608.000 801606.000 80298.000 105557.000 14189.000 173619.000 7510.000 3553.000
Std. Deviation 11539.785 45096.902 100569.799 1128.900 28242.907 21676.357 2366.247 46478.449 13942.780 5957.071 1.137e+6

213328.924 2.050e+6 118971.570 1.239e+6 92705.408 18661.264
Shapiro-

Wilk
0.769 0.851 0.573 0.954 0.855 0.580 0.575 0.891 0.315 0.833 0.692 0.393 0.611 0.271 0.353 0.290 0.272

P-value of Shapiro-
Wilk

<0.001 <0.001 <0.001 0.011 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

<0.001 <0.001 <0.001 <0.001
Minimum 22.000 38.000 29.000 24.000 15.000 26.000 31.000 25.000 39.000 32.000 158.000 174.000 123.000 155.000 1600.000 71.000 127.000
Maximum 80619.000 133606.000 695536.000 4657.000 81795.000 159100.000 11936.000 244594.000 88062.000 30205.000 8.002e+6 1.751e+6 8.702e+6 832394.000 7.550e+6 558134.000 153099.000

Table 2
Descriptive statistics of metabolites detected in control serum samples.

Alanine Valine Lactic acid Acetohydroxamic
acid

Benzene
propanoic
acid

N-carboxy
glycine

Gamma
lactone

Aminobutyrate Malonic
acid

Ribitol D-
glucose

Mannose D-sorbitol Hexadecanoic Trans-9-
octadecanoic
acid

Octadecanoica
cid

Heptadecanoica
cid

N 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
Mean AUC 40469.000 71234.600 96466.200 3014.000 54430.400 49777.200 599.200 114991.800 4.199e+6 121718.600 7.166e

+6
1.365e+6 732504.000 41821.000 347485.600 11742.200 5702.400

Std. Error
of
Mean

7429.759 25449.302 39849.121 794.683 9528.149 5776.830 255.298 16129.113 388601.163 49798.281 1.096e
+6

96527.731 294740.344 19335.912 126592.726 3353.931 1286.016

Median 45154.000 92066.000 50394.000 2416.000 60616.000 51096.000 287.000 124582.000 4.281e+6 71198.000 6.610e
+6

1.481e+6 1.028e+6 20831.000 206622.000 12891.000 5679.000

Std. Deviation 16613.447 56906.370 89105.343 1776.965 21305.589 12917.385 570.863 36065.792 868938.617 111352.342 2.450e+6
215842.568 659059.445 43236.415 283069.940 7499.618 2875.619

Shapiro-
Wilk

0.747 0.880 0.806 0.879 0.773 0.944 0.799 0.838 0.959 0.609 0.788 0.842 0.784 0.616 0.695 0.950 0.985

P-value of Shapiro-Wilk 0.028 0.308 0.091 0.305 0.047 0.695 0.079 0.160 0.803 <0.001 0.064 0.171 0.059
0.001 0.008 0.736 0.961
Minimum 11575.000 203.000 30030.000 1397.000 17486.000 31002.000 198.000 54815.000 3.163e+6 64730.000 5.194e

+6
1.028e+6 20062.000 19931.000 179615.000 165.000 2195.000

Maximum 51664.000 126910.000 244896.000 5942.000 70078.000 67213.000 1527.000 143457.000 5.498e+6 320486.000 1.140e
+7

1.538e+6 1.322e+6 118867.000 844542.000 20742.000 9885.000

W
.Q

am
ar

et
al./Saudi

Journal
of

Biological
Sciences

27
(2020)

3727–
3734

3729



Fig. 1. Boxplots showing distribution of metabolites data among control serum samples.

Fig. 2. Boxplots showing distribution of metabolites data among coronary artery disease patients’ serum samples.
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(P < 0.001) correlation. These include alanine showing high corre-
lation with melonicacid, ribitol, D-glucose, and mannose; valine
with benzenepropanoic acid, and aminobutyrate; acetohydrox-
amic acid with N-carboxy glycine, aminobutyrate, ribitol and
D-glucose; benzenepropanoic acid with aminobutyrate;
N-carboxyglycine with D-glucose, and mannose; gamma lactone
with D-sorbit; malonic acid with ribitol, D-glucose, and mannose;
ribitol with D-glucose, and mannose; D-glucose with mannose;
hexadecanoic acid with trans-9-octadecanoic acid, octadecanoic
acid (Stearic acid), and heptadecanoic acid; trans-9-octadecanoic
acid with octadecanoic; octadecanoic with heptadecanoic acid. It
clearly appears that most of the metabolites belonging to same



Table 4
Shows outcomes of T-test analysis of metabolites data comparing individual
metabolites in control samples with coronary artery disease patient samples.

Metabolites t df p

Alanine 4.796 74.000 <0.001
Valine 0.955 74.000 0.342
lactic acid 0.719 74.000 0.475
Acetohydroxamic acid 2.509 74.000 0.014
benzenepropanoic acid 1.446 74.000 0.153
N-carboxyglycine 3.368 74.000 0.001
Gamma lactone �0.749 74.000 0.456
Aminobutyrate 2.681 74.000 0.009
Malonic acid 44.773 74.000 <0.001
Ribitol 9.339 74.000 <0.001
D-glucose 10.658 74.000 <0.001
Mannose 12.583 74.000 <0.001
D-sorbitol �0.419 74.000 0.676
Hexadecanoic acid 0.047 74.000 0.962
Trans-9-octadecanoic acid �0.250 74.000 0.803
Octadecanoic acid �0.408 74.000 0.685
Heptadecanoic acid �0.139 74.000 0.890

Note. Student’s t-test.
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class of chemicals are highly correlated with each other for exam-
ple fatty acids and sugars indicated above. Principal component
analysis (PCA) reveals more about different variables having corre-
lations with one another.

Principal Component Analysis was done to identify the cluster
of metabolites showing similar trends. The Analysis of serum
metabolites data found three components out of 17 metabolites;
RC1 (Acetohydroxamic acid, alanine, D-glucose, malonic acid, man-
nose, N-carboxy glycine and ribitol), RC2 (Heptadecanoic acid, hex-
adecanoic acid, octadecanoic acid and Trans-9-octadecanoic acid),
RC3 (Aminobutyrate, D-sorbit, gamma lactone, valine, benzene
propanoic acid and lactic acid) (Table 6). All the fatty acids consti-
tuted RC2 and appear to be strictly correlating with one another as
became apparent in Pearson correlation analysis as well. Fig. 3
shows the path diagram indicating interactions among different
components of the metabolites data. Fig. 4, a scree plot, is showing
eigenvalues of the different components. The horizontal line, in
Fig. 4, at eigenvalue 1 indicates ‘‘Kaiser rule” criteria.
4. Discussion

Metabolites identification and quantification as an endpoint
parameter has served as a significant tool in diagnostics, pharma-
cology, toxicology and therapeutics, etc. However, investigation
of single metabolite has limited scope and scarce chances of find-
ing novel biomarkers of diseases and toxicant exposures. Metabo-
lomics profiling of the metabolites on the other side comes with
several advantages including identification of several (up to hun-
dreds) metabolites in fewer experiments, increased chances of
finding novel biomarkers of diseases and exposures and possibility
of using the metabolomics profile as a unique fingerprint associ-
ated with a particular condition.

Present investigation involved metabolomics profiling of serum
samples from patients with coronary artery disease and healthy
subjects. GC–MS technique, which was selected over the more
robust NMR due to its higher sensitivity, identified 17 major peaks.
Library matches yielded 17 metabolites listed in Table 1. Human
serum is reported to contain larger number of metabolites than
identified in the present study, but the number of detected
metabolites depends on adopted methods and a combination of
several methods may be needed to achieve that.

Comparison of patient sample profile with control samples
found that eight metabolites exhibit significant differences in
AUCs. These include alanine, malonic acid, ribitol, D-glucose,
mannose, acetohydroxamic acid, N-carboxyglycine, and aminobu-
tyrate. The AUCs of these eight metabolites were found to be signif-
icantly smaller in patient samples. Interestingly, Principal
Component Analysis reveals that seven out of these eight metabo-
lites accumulate in principal component RC1, leaving aminobu-
tyrate an odd one which is in principal component RC2. It
indicates that the metabolites in RC1 probably are playing impor-
tant role associated with coronary artery disease (CAD) progres-
sion. Acetohydroxamic acid is known to be a synthetic drug that
is a urease inhibitor in plants and bacteria, and is used as adjunc-
tive therapy in urinary tract infections (Griffith and Musher, 1975;
Lake and Brown, 1985). However, the presence of the acetohydrox-
amic acid is not fully understood in the present investigation as no
patient reported taking this drug, similar finding was reported by
Titan et al. in chronic kidney disease patients (Titan et al. 2019)
where the same metabolite was detected in the sample of patients
who were not on a therapy with acetohydroxamic. More investiga-
tions are needed to understand presence of acetohydroxamic acid
in human metabolome. Analysis of the data by MetaboAnalyst 4.0
(data not given) reveal that the identified metabolites are associ-
ated with 29 different metabolic pathways, indicating pyruvate
metabolism pathways being the most impactful among them.
Other lesser impactful pathways included alanine, aspartate and
glutamate metabolism; tyrosine metabolism; fatty acid metabo-
lism; starch and sucrose metabolism; fructose and mannose meta-
bolism; taurine and hypotaurine metabolism; beta-alanine
metabolism; valine, leucine and isoleucine biosynthesis, and
phenylalanine, tyrosine and tryptophan biosynthesis.

All the four fatty acids detected were clustered in principal
component RC2. In T-test analysis, it was observed that AUCs of
trans-9-octadecanoic acid, octadecanoic acid and heptadecanoic
acid were found to be increased in patient samples but it was
not found to be statistically significant. However, this increase is
expected in coronary heart diseases and researchers has reported
an increase in total saturated fatty acids, including stearic acid/oc-
tadecanoic acid in plasma of coronary heart diseases patients
(Wang et al. 2003). D-sorbitol, gamma-lactone and lactic acid,
which were clustered together in principal component RC3 with
other three metabolites, also appear to be important as there AUCs
were noted to be larger when compared with control samples, but
found to be statistically insignificant.

All the data from metabolites analysis was in form of AUCs
which was used for the statistical analysis. Similar approaches
has been used by researches elsewhere in the past (Huan et al.,
2016; Sato et al., 2019). Previously published reports elsewhere
and the findings of the present investigation strongly indicate that
using AUCs of metabolites’ peaks can be a cost effective approach
in comparison to quantitative analyses.

An untargeted approach for GC–MS analysis and found eight
metabolites that are showing significant variation in AUCs in com-
parison to control samples. These findings highlight these metabo-
lites (alanine, malonic acid, ribitol, D-glucose, mannose,
acetohydroxamic acid, N-carboxyglycine, and aminobutyrate) for
further investigation in case of the CAD diagnosis and its treat-
ment. Based on principal component analysis fatty acids including
Trans-9-octadecanoic acid, heptadecanoic acid and octadecanoic
acid are also important in association with CAD condition.
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Table 5
Correlation among different metabolites (Pearson’s correlation) detected in serum samples of healthy individuals and coronary artery disease patients.

Alanine Valine Lactic
acid

Acetohydroxamic
acid

Benzene
propanoic acid

N-carboxy
glycine

Gamma
lactone

Aminobutyrate Malonic
acid

Ribitol D-
glucose

Mannose D-
sorbit

Hexadecanoic Trans-9-
octadecanoic
acid

Octadecanoica
cid

Heptadecanoica
cid

Alanine Pearson’s
r

–

p-value –
Valine Pearson’s

r
�0.049 –

p-value 0.675 –
lactic acid Pearson’s

r
0.101 �0.094 –

p-value 0.385 0.421 –
Acetohydroxamic

acid
Pearson’s
r

0.304 0.151 0.138 –

p-value 0.008 0.194 0.234 –
benzene

propanoic
acid

Pearson’s
r

�0.037 0.820 �0.153 0.259 –

p-value 0.749 <0.001 0.186 0.024 –
N-carboxy glycine Pearson’s

r
0.279 0.106 0.123 0.398 0.173 –

p-value 0.015 0.364 0.291 <0.001 0.134 –
Gamma lactone Pearson’s

r
�0.043 �0.096 0.117 �0.008 �0.110 �0.066 –

p-value 0.715 0.411 0.316 0.945 0.346 0.569 –
Aminobutyrate Pearson’s

r
0.176 0.640 �0.145 0.438 0.758 0.202 �0.128 –

p-value 0.129 <0.001 0.210 <0.001 <0.001 0.080 0.271 –
Malonic acid Pearson’s

r
0.482 0.097 0.106 0.330 0.135 0.367 �0.093 0.261 –

p-value <0.001 0.405 0.363 0.004 0.246 0.001 0.426 0.023 –
Ribitol Pearson’s

r
0.495 �0.072 0.212 0.481 �0.010 0.311 �0.026 0.132 0.825 –

p-value <0.001 0.534 0.066 <0.001 0.930 0.006 0.823 0.255 <0.001 –
D-glucose Pearson’s

r
0.456 0.036 0.309 0.405 0.068 0.390 0.222 0.202 0.816 0.803 –

p-value <0.001 0.756 0.007 <0.001 0.557 <0.001 0.054 0.080 <0.001 <0.001 –
Mannose Pearson’s

r
0.438 0.051 0.256 0.309 0.066 0.413 0.219 0.190 0.831 0.673 0.937 –

p-value <0.001 0.663 0.026 0.007 0.569 <0.001 0.057 0.101 <0.001 <0.001 <0.001 –
D-sorbitol Pearson’s

r
�0.027 �0.095 0.321 0.083 �0.080 0.072 0.490 �0.166 �0.048 0.035 0.245 0.218 –

p-value 0.819 0.415 0.005 0.478 0.493 0.535 <0.001 0.152 0.678 0.766 0.033 0.059 –
Hexadecanoic Pearson’s

r
0.121 �0.211 �0.083 �0.093 �0.236 �0.008 0.063 �0.187 0.019 0.084 0.013 0.006 �0.045 –

p-value 0.297 0.067 0.478 0.426 0.040 0.948 0.587 0.105 0.869 0.468 0.910 0.956 0.698 –
Trans-9-

octadecanoic
acid

Pearson’s
r

0.136 �0.187 �0.095 �0.140 �0.238 �0.058 0.022 �0.178 �0.021 0.030 �0.051 �0.052 �0.102 0.914 –

p-value 0.242 0.106 0.415 0.228 0.038 0.616 0.849 0.124 0.860 0.796 0.663 0.657 0.382 <0.001 –
Octadecanoica cid Pearson’s

r
0.084 �0.169 �0.105 �0.179 �0.230 �0.062 0.041 �0.191 �0.050 �0.029 �0.073 �0.052 �0.076 0.924 0.972 –

p-value 0.472 0.144 0.368 0.123 0.045 0.597 0.725 0.098 0.670 0.800 0.532 0.657 0.517 <0.001 <0.001 –
Heptadecanoica

cid
Pearson’s
r

0.184 �0.157 �0.076 �0.055 �0.169 0.021 0.084 �0.099 �0.020 0.006 �0.002 0.015 �0.059 0.887 0.719 0.738 –

p-value 0.112 0.176 0.515 0.637 0.144 0.859 0.471 0.393 0.862 0.958 0.987 0.898 0.615 <0.001 <0.001 <0.001 –
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Table 6
Principal Component Analysis.

Component Loadings

RC 1 RC 2 RC 3 Uniqueness

Acetohydroxamic acid 0.574 . . 0.603
Alanine 0.611 . . 0.591
Aminobutyrate . . 0.789 0.231
D-glucose 0.931 . . 0.101
D-sorbitol . . �0.467 0.724
Gamma lactone . . �0.404 0.829
Heptadecanoic acid . 0.870 . 0.242
Hexadecanoic acid . 0.971 . 0.050
Malonic acid 0.879 . . 0.225
Mannose 0.891 . . 0.180
N-carboxyglycine 0.540 . . 0.694
Octadecanoic acid . 0.952 . 0.089
Ribitol 0.855 . . 0.253
Trans-9-octadecanoic acid . 0.951 . 0.095
Valine . . 0.781 0.333
benzene propanoic acid . . 0.829 0.222
lactic acid . . �0.423 0.710

Component Correlations

RC 1 RC 2 RC 3

RC 1 1.000 . .
RC 2 0.000 1.000 .
RC 3 0.000 0.000 1.000
Chi-squared Test

Value df p

Model 341.680 88 <0.001

Note. Applied rotation method is varimax.

Fig. 3. Path Diagram showing different components obtained after Principal Component
Analysis (PCA) of the data from 17 metabolites identified in different serum samples.

Fig. 4. Showing eigenvalues of different Principal Components.
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