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Abstract: We focus on macromolecules which are modeled as sequentially growing dual scale-free
networks. The dual networks are built by replacing star-like units of the primal treelike scale-free
networks through rings, which are then transformed in a small-world manner up to the complete
graphs. In this respect, the parameter γ describing the degree distribution in the primal treelike
scale-free networks regulates the size of the dual units. The transition towards the networks of
complete graphs is controlled by the probability p of adding a link between non-neighboring nodes
of the same initial ring. The relaxation dynamics of the polymer networks is studied in the framework
of generalized Gaussian structures by using the full eigenvalue spectrum of the Laplacian matrix.
The dynamical quantities on which we focus here are the averaged monomer displacement and
the mechanical relaxation moduli. For several intermediate values of the parameters’ set (γ, p),
we encounter for these dynamical properties regions of constant in-between slope.
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1. Introduction

Nowadays, in different areas of science, such as physics, chemistry, biology, economics, the study
of complex networks becomes of huge significance. In particular, the concept of scale-free networks was
applied with great success to the World Wide Web [1,2], metabolic networks in biological organisms [3],
reaction–diffusion processes [4], financial networks [5], and transport networks [6,7], to name only
a few, but also to model hyperbranched polymers [8,9]. Inspired by recent experimental techniques
allowing chemical transformations to be made from hyperbranched polymers to functional core–shell
nanogel systems [10], and due to our interest in the fundamental role of the presence of loops in
polymer networks (e.g., in crosslinked systems [11], elastomers [12], and porous materials [13,14]),
we study in this article a new kind of polymer network—the dual scale-free networks.

Here we construct dual scale-free polymers by using the procedure implemented in reference [15].
Being the dual structures [16] of treelike scale-free networks, which have a power-law distribution
for their degrees [4,9,17,18], our networks contain dual units with their sizes following the same
power-law decay. The limiting topologies that one can get as a function of this power-law exponent,
γ, are networks made of huge dual units for very low values of γ and linear chains for very high values
of γ. For intermediate values, we obtain networks composed of dual units of diverse sizes, coupled one
to another. In our model, the minimum allowed size corresponds to a line (or two connected nodes),
which guarantees that the construction procedure never stops by itself, but only when the desired
network’s size is reached. The dual units considered in this article range from rings to complete graphs.
The transition between these units is implemented by adding, with probability p, links between nodes
from the same ring. In this way, we get the ring limit for p = 0 and for p = 1 we obtain complete
graphs. The relaxation dynamics of these networks is studied in the framework of generalized Gaussian
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structures (GGSs) [9,19–27], which concentrates on the role of structure connectivity. In the model,
the monomers are visualized as beads experiencing viscous friction connected only to their nearest
neighbours by means of elastic springs. The relaxation dynamics of polymers is completely determined
by knowing all eigenvalues and eigenvectors of the connectivity (Laplacian) matrix, which allows one
to study very large systems.

The paper is structured as follows: In Section 2 we briefly describe the algorithm used to construct
the dual scale-free networks. In Section 3 we recall the general formalism of GGS and we review
the basic equations which govern monomer displacement under a constant force and the mechanical
relaxation of polymers. In Section 4 we study the relaxation dynamics of polymers modeled in Section 2.
Here, we study the eigenvalues spectrum of our networks and then we focus on their dynamics by
exploring the parameter set (γ, p). Section 5 concludes this paper.

2. Sequentially Growing Dual Scale-Free Networks

The original model of scale-free networks proposed by Barabási and Albert [17] attracted a lot of
interest from the scientific community, also proved by the continuously increasing number of scale-free
models (e.g., [4,8,9,18,28], to cite only a few). In this article we extend these works by studying the
dual structures of treelike scale-free networks, making use of the model developed in reference [15] for
the study of quantum transport.

The scale-free network models consider a power-law for the distribution of functionalities
(or degrees):

pk ∝ k−γ, (1)

where pk is the probability that the functionality of a node is k and γ is the parameter which controls
how densely a network is connected. In this article, we construct scale-free networks by following
the algorithm developed elsewhere [9], but differently from this reference here we consider their dual
structures. This means that instead of adding a node with functionality k we construct a ring or a ring
with additional bonds (à la small-world network [23,29,30]) consisting of k nodes. Equation (1) holds
starting only from k = 2, assuming that p1 = 0. Thus, the probability of having an object with k nodes
(for k = 2 it is a bond connecting two beads, for k = 3 it is a ring of three bonds) is given by

pk =
k−γ

∑N−1
j=2 j−γ

, (2)

where N is the total number of nodes and the sum on the denominator is used to keep the total
probability equal to 1.

In the left column of Figure 1 we display two particular realizations of the algorithm for creating
ring-based dual scale-free networks (rDSFNs) containing N = 50 nodes and γ = 2.5 and 4.0, from top
to bottom. In order to help the reader to distinguish how the parameters’ set (γ, p) influences the
topology of the network, we display by red colour the bonds (links) appearing with probability p2

and by green colour the bonds that compose a ring of length 3. In the following, we describe the
construction algorithm using Figure 1a, γ = 2.5, as toy-model. In this subfigure, the numbering
is according to the chronological order in which the nodes were created. The algorithm starts by
randomly choosing the size of the ring from the degree-distribution (2). In this case, the first chosen
size was k = 5; thus, we create five nodes, labeled 1, 2, 3, 4, 5. Then, we pick at random one of the open
vertices; in this case, all five nodes are still available. It turned out to be node 2, and its size was again
obtained from the degree-distribution pk. For this particular realization, the size was chosen to be
k = 2; thus, we have to add a line connecting node 2 with a new node, labeled by 6. This procedure is
iterated until the desired network’s size is reached (N = 50 for this example). The minimum allowed
size is two; thus, the construction will never stop by itself since we will always have at least one open
node. Additionally, by comparing Figure 1a,b one can clearly notice a transition from networks with
few but large rings (low γs), to networks with many linear spacers and small rings (high γs).
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Figure 1. Some realizations of sequentially growing dual scale-free networks with N = 50 nodes and
(a,b) p = 0 (ring-based dual scale-free network, rDSFN), (c,d) p = 0.1 (partially dual scale-free network,
pDSFN), and (e,f) p = 1 (complete-graph based dual scale-free network, cDSFN). The upper row (a,c,e)
corresponds to networks with γ = 2.5, and the lower row (b,d,f) is for γ = 4.0.

In this article we focus particularly on a transition from rDSFNs to complete-graph based dual
scale-free networks (cDSFNs) by performing bond percolation between non-neighboring beads of each
ring inside an rDSFN. For this we introduce a new parameter, p, which is the probability of adding an
internal bond between two non-neighboring nodes from a ring. Being a probability, the parameter
p takes values from 0 to 1. In Figure 1c,d we show realizations of sequentially growing partially
dual scale-free networks (pDSFNs) with p = 0.1. The construction of these networks starts from an
rDSFN with a given γ and where we add links between non-neighboring nodes of the same ring
with probability p = 0.1. These additional internal links are displayed by blue colour in Figure 1.
In Figure 1e,f we show the complete-graph-based dual scale-free networks (cDSFNs), for which all
possible internal links were added, p = 1.0. We observe that by increasing γ the number of possible
additional links diminishes, due to a higher amount of rings with sizes smaller than 4. This fact has a
tremendous influence on the results, as will be shown in Section 4.

3. Theoretical Model

In this paper we study the relaxation dynamics of polymers constructed by implementing an
algorithm described in the previous section. The dynamics is solved using the concept of generalized
Gaussian structures (GGSs) [19,20,27,31,32], which are extensions to complex topologies of the Rouse
model initially developed for linear polymer chains [33]. This model allows many features related
to polymer dynamics to be studied with a very good performance, although it neglects important
interactions (e.g., the hydrodynamic interactions) or sometimes essential effects (e.g., the excluded
volume, the entanglements, or the stiffness). The GGS consists of N beads, attached to each other
by Gaussian elastic springs (i.e., obeying a Gaussian statistics) with elasticity constant K. Here we
consider the simplest case; namely, a homogeneous situation in which all the beads experience the
same friction constant ζ with respect to the surrounding medium. The configuration of the GGS is
given by a set of position vectors {Rn}, where Rn(t) = (Xn(t), Yn(t), Zn(t)) is the position vector of
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the nth bead at time t. The linear Langevin equation for the dynamics of bead i written only for one
component reads [27,31]:

ζ
∂Yi(t)

∂t
+ K

N

∑
j=1

AijYj(t) = fyi(t) + Fyi(t). (3)

In the last equation, the friction constant can be written as ζ = 6πρa, where a is the effective radius
and ρ is the viscosity of the solvent, and the elasticity constant of any spring K = 3kBT/l2 is related to
the temperature T, the Boltzmann constant kB, and to the mean square bond length l2 (we note that
loop closure leads to a shrinking of bonds [34], hence l2 is the parameter of a spanning tree of the
network). Here fyi and Fyi are the y-components of the stochastic forces and the external forces acting
on the ith bead, respectively. Making use of the fluctuation–dissipation theorem, the random forces fi
are connected with the dissipative friction and they are considered to be a Gaussian process, which has
its first two moments written as 〈 fαi(t)〉 = 0 and 〈 fαi(t) fβj(t′)〉 = 2kBTζδijδαβδ(t− t′) (with α and β

denoting the x, y, and z directions). All the information about the topology of the GGS are stored in
the connectivity matrix A = Aij, which is also called the Laplacian (or Rouse) matrix [19]. This matrix
is an N × N symmetric matrix, having its nondiagonal elements Aij equal to −1 if the the ith and jth
beads are directly connected and 0 otherwise; while the diagonal elements Ajj are equal to the number
of bonds adjacent to bead j.

Being encouraged by the experimental techniques in [35–39] we study the motion of the GGS
under a constant external force F = F ·Θ(t) · ey (where Θ(t) is the Heaviside step function), switched
on at t = 0 and acting on a single bead in the y-direction. After averaging over the random forces fi(t)
and over all the beads in the GGS, the displacement is given by [20,23,27,31]

〈〈Y(t)〉〉 = Ft
Nζ

+
F

σNζ

N

∑
n=2

1− exp(−σλnt)
λn

, (4)

where σ = K
ζ is the bond rate constant. In this model, the average displacement depends only on

the eigenvalues λn of the connectivity matrix A, but not on its eigenvectors. In the case of more
complex force configurations (e.g., as used for layered flows [40]), the eigenvectors are indispensable.
From Equation (4), the behavior of the averaged displacement for extremely short times and for
very long times becomes evident. In the limit of very short times and sufficiently large N one gets
〈〈Y(t)〉〉 = Ft/ζ, and for very long times one obtains 〈〈Y(t)〉〉 = Ft/Nζ. Thus, for very short times
one observes only the motion of single beads that do not yet feel their neighbors, whereas for very
long times the whole GGS diffuses, resulting in an increase of the friction from ζ to Nζ. However,
in the intermediate time region there is a strong dependence on the particular topology of the GGS;
the behavior of the averaged displacement will indeed depend on the eigenvalues of the matrix A.
Since in this article we are mainly interested in the characteristic behavior of 〈〈Y(t)〉〉, we consider
F/ζ = 1 and σ = 1.

In this article we are also interested in the viscoelastic properties of the polymeric structures,
and we calculate the mechanical relaxation form; namely, the complex dynamic modulus G∗(ω) or,
more exactly, its real G′(ω) and imaginary G′′(ω) components (known as the storage and the loss
moduli) [41,42]. For very dilute solutions, the storage and loss moduli are given by [20]

G′(ω) = νkBT
1
N

N

∑
i=2

ω2

ω2 + (2σλi)2 (5)

and

G′′(ω) = νkBT
1
N

N

∑
i=2

2σωλi
ω2 + (2σλi)2 . (6)

In (5) and (6) ν is the number of polymer segments (beads) per unit volume and, as in Equation (4),
λi are the eigenvalues of the connectivity matrix A. In these equations only the non-vanishing
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eigenvalues are considered, because λ1 = 0 corresponds to the translation of the system as a whole
and does not contribute to the moduli. The factor 2 in the relaxation times τi = 1/2σλi appears
from the stress–stress correlations, leading to a product of two bond autocorrelation functions [43].
As in the case of monomer displacement, we are mostly interested in the slopes of G′(ω) and G′′(ω),
and therefore choose νkBT/N = 1 and σ = 1 in (5) and (6).

4. Results

4.1. Eigenvalues Spectrum

In Figure 2 we display the eigenvalues’ density, ρ(λ), in double logarithmic scale, for pDSFNs
with N = 10,000 nodes and S = 100 realizations (the Laplacian matrices A are diagonalized using
subroutines of the LAPACK package [44] in FORTRAN). Here, we vary the parameter p, which controls
bond addition to the rings, from p = 0.0 (rDSFN consisting of rings) to p = 1.0 (cDSFN consisting
of complete graphs) for an intermediate value of the parameter γ = 2.5. We note that for pDSFNs
with very high γ the parameter p does not play an important role, since the number of rings with
more than three nodes gets low. In Figure 2a one can notice a weak interplay between a single ring
or chain’s spectrum, namely a continuous spectrum until λ ≈ 4, and traces of a collection of coupled
rings. Increasing the parameter p we get nodes with higher functionalities, which provide an increase
in the magnitude of the highest eigenvalues, enlarging the width of the spectrum. This enlargement
can also be understood by employing some considerations to the number of links. By increasing the
parameter p, the number of additional links will increase; thus, the sum of all the eigenvalues will
also increase: ∑i λi = 2L, where L stands for the total number of links. However, the total number of
eigenvalues keeps the same, N, and as a consequence we expect higher eigenvalues when p gets higher.
Even for very small values of p, which correspond to a small amount of additional links, we observe a
clear difference from the rDSFNs (no additional internal links). This fact was also observed for another
type of network: small-world networks [45]. In the region of high eigenvalues, the appearance of a
power-law behaviour occurs even for very low p, namely p = 0.01. For a higher value of the parameter
(p = 0.1), this behaviour gets more pronounced and the appearance of a fat tail gets more visible;
see Figure 2c. For cDSFNs, which corresponds to p = 1.0, the higher eigenvalues get larger and we
also notice an increase in their degeneracy, as shown in Figure 2d. Notwithstanding the rich behavior
of the eigenvalues’ density ρ(λ) at large λ (especially for higher p), the structural relaxation is related
to rather low eigenvalues λ < 1. In the region of low eigenvalues we obtain a power-law behavior
with the exponent δ that varies from −0.4 for p = 0.0 to −0.18 for p = 1.0. We remark that one can
define the spectral dimension ds based on the exponent δ by the relation δ = ds

2 − 1, following the
pioneering work of reference [46].

4.2. Relaxation Dynamics

Now we consider the relaxation dynamics of pDSFNs, starting with the components of the
complex dynamic modulus—the storage and the loss moduli.

In Figure 3 we plot in double logarithmic scale the storage modulus, Equation (5), with νkBT/N = 1
and σ = 1, for rDSFNs (i.e., pDSFNs with p = 0.0) with a fixed number of monomers, N = 10,000.
Here we varied the parameter γ from 1.0 to 4.0, and for a better visualization we also display as inset
figure the local derivative α′ = d(log10G′)

d(log10ω)
for all the curves. Immediately apparent are the limiting

behaviors for very low and very high frequencies, namely power-laws with slopes 2 and 0, respectively,
as it follows directly from Equation (5). In the intermediate range one notices the influence of the
topology of the networks. For the studied case, p = 0.0, we observe regions with almost constant slope
for γ ≤ 2.5, ranging for more than three orders of magnitude, which is due to the linear spacers of the
rDSFNs. These slopes are a little bit different than the standard value of 0.5 of the linear chains [41]:
α′ ≈ 0.52 for γ = 1.0, α′ ≈ 0.54 for γ = 1.5, α′ ≈ 0.59 for γ = 2.0, and α′ ≈ 0.64 for γ = 2.5
(the latter value is closely related to the spectral dimension observed in Figure 2a, bearing in mind
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that α′ ≈ ds
2 [20,47]). For larger values, γ ≥ 3.0, the region of constant slopes observed in the region

10−2 ≤ ω ≤ 100 disappears. This finding can be related to a growth of the number of the branches;
in this case, there are nodes only with functionalities 3 and 4.
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Figure 2. Spectral density of S = 100 realizations of pDSFNs with N = 10,000 and γ = 2.5 for different
values of p: (a) 0.0, (b) 0.01, (c) 0.1, and (d) 1.0.
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Figure 3. Storage modulus and the corresponding derivative (inset) for rDSFNs (p = 0.0) with
N = 10,000 and various values of γ. The frequency ω has units of σ = K/ζ.

In Figure 4 we display the storage modulus, G′(ω), for pDSFNs with N = 10,000 monomers and
γ fixed to 2.0 (top row) and 2.5 (bottom row). In the right column we plot the local derivative α′ for
all the curves from the left column. The two chosen values of γ correspond to pDSFNs that show in
Figure 3a scaling behavior in the intermediate frequency domain. For these γs one obtains rDSFNs
with medium-size rings, which are not as large as in the case of γ = 1.0 and not as small as for γ ≥ 3.0.
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In Figure 4 we monitor the influence of the parameter p, which was varied from 0.0 to 1.0, on the
relaxation dynamics. Again, the limiting behaviors for very low and very high frequencies are well
recovered. In the intermediate frequency domain one can easily notice that even for very small values
of p (i.e., for a small amount of additional internal links between nodes from the same ring), the scaling
behavior observed for rDSFNs (p = 0) vanishes. It is replaced with a nonmonotonous behavior, which
was also observed for some fractal polymers [48], or with another slope. In particular, for γ = 2.0 and
p = 0.01 we notice an almost constant slope α′ ≈ 0.77 in the frequency range 10−3.0 ≤ ω ≤ 10−1.5.
For γ = 2.5 the constant slope is maintained for all the values of p, but with slightly different values
for the exponent α′, varying between 0.77 and 0.82. For γ = 2.5 the difference between curves with
different non-zero p is less prominent, due to a smaller amount of possible additional internal links
(the differences are more visible in semi-logarithmic scales; see the insets of Figure 4). This statement
will become more evident when the loss modulus is considered.
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Figure 4. Storage modulus G′ and its derivative α′ for pDSFNs with N = 10,000 and various values of
p and γ, as indicated. The frequency ω has units of σ = K/ζ.

Now we turn our attention to the influence of p on the loss modulus, Equation (6). In Figure 5
we display in double logarithmic scale the modulus and its the derivative α′′ = d(log10G′′)

d(log10ω)
for γ = 2.0

and 2.5. Here we set νkBT/N = 1 and σ = 1. The universal structure-independent limiting behaviors
for very low and very high frequencies (namely power-laws with slopes −1 and 1, respectively) follow
directly from Equation (6). For each value of γ we choose the same p-values as in Figure 4, from 0.0 to 1.0.
As previously observed, even for small values of p the behavior changes drastically when the parameter
p is switched on. Additionally, for higher γ the size of the rings gets smaller, meaning that the number of
possible additional links decreases; thus, there are only slight differences between various p > 0.01-values.
For pDSFNs with γ = 2.5 we observe scaling in the intermediate frequency region for all the values of p,
while for γ = 2.0 we get a region of constant slope α′′ ≈ 0.75 for pDSFNs with the parameter p equal to
0.01. From Figure 5 a shift towards a higher frequency region is evident when p gets higher, which fades
away by increasing the parameter γ. These findings can be understood by considering the average
number of rings, which can be written as < g > = (N− 1)/(< n > −1), where < n > is the average size
of rings. The last quantity follows from Equation (2), and it can be written in the thermodynamic limit
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(N → ∞) based on the Riemann zeta function [49] as < n > = (ζ(γ− 1)− 1)/(ζ(γ)− 1). This equation
provides a finite and relatively small value of < n > ≈ 4.72 for γ = 2.5, but for γ = 2.0 the average size
of rings < n > grows logarithmically with N. Thus, for γ = 2.5 there is a high number of connected
small-size rings, whereas for γ = 2.0 one has a collection of rather large rings. Hence, in the case of
large rings (γ = 2.0) more bonds to them can be added, leading to a more significant variation of the
structures’ size, which is reflected in the more significant shift of the moduli by varying p.
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Figure 5. Loss modulus and its derivative for pDSFNs with N = 10,000 and various values of p, having
γ = 2.0 and 2.5. The frequency ω has units of σ = K/ζ.

As we have observed in Figures 4 and 5, the value p = 0.01 leads to a transition to a new
characteristic behavior. Therefore, in Figure 6 we consider the loss modulus, Equation (6), for pDSFNs
with p = 0.01 and γ ranging from 1.0 to 4.0. In the intermediate range of frequencies, where the
topology of the networks plays an important role, we observe a region with almost constant slope for
γ = 2.0, which is less pronounced for other values of γ. The final important point in the discussion of
moduli is addressed to the error bars. As can be inferred from Figure 6, for γ equal to 2.0 and higher,
the standard errors for frequencies ω/σ > 1 are comparable with the line thickness, allowing for a
quite good estimation of the possible slopes in that region. On the other hand, for γ = 1.0 the error
bars are quite large. This observation corresponds to the (logarithmically) divergent behavior of the
normalization of distribution pk; see Equation (2). For the intrasegmental frequency region ω/σ� 1
we find higher standard deviations of the moduli, reflecting the rich behavior of the eigenvalues’
density ρ(λ) at large λ; see Figure 2. However, aiming to study here the structural relaxation of the
networks, this region is a minor focus of this work.

The characteristic behaviors observed in the mechanical relaxation are also reflected in other
dynamical properties, as we proceed to show by considering the average monomer displacement
〈〈Y(t)〉〉, Equation (4). In Figure 7 we show in double logarithmic scale 〈〈Y(t)〉〉 with F/ζ = 1 and
σ = 1, for pDSFNs of γ = 2.0 and 2.5. In the left panels we display the local derivative α = d(log10〈〈Y〉〉)

d(log10t)
of the curves plotted in the right panels. We fixed the parameters (N, S) to (10,000, 100) and we varied
the parameter p from 0.0 to 1.0. Immediately apparent for all panels are the limiting behaviors in the
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region of very short and very long times; namely, a linear time-dependence, 〈〈Y(t)〉〉 ∝ t, as discussed
in Equation (4). Already for small values of p > 0 a new scaling behavior (related to that observed in
the mechnical relaxation) was encountered; namely (γ, p) = (2.0, 0.01) with α ≈ 0.26. Remarkably,
for γ = 2.5 we observe a more pronounced slope region of almost two orders of magnitude, α ≈ 0.25.
The constant slope of 〈〈Y(t)〉〉 in the intermediate time region corresponds to the spectral dimension,
α = 1− ds/2; see [20] for more details. The dependence on p gets lower by increasing γ, because the
networks have a small amount of rings with more than three nodes, which do not have an internal
bond. For an illustration of this statement see the corresponding typical realization in Figure 1f.
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5. Conclusions

In this paper we have studied a new kind of polymeric networks that are the dual structures of
treelike scale-free networks. The dual patterns are realized based on sequentially connected rings
whose size follows a scale-free degree distribution [15]. Hence the topology of these networks varies
with the power-law exponent γ of the scale-free distribution. For small values of γ we get with high
probability some connected rings which have a very large size (similar to the hubs from treelike
scale-free networks) and for very high γs we obtain a large amount of linear segments and small
rings. Furthermore, we have also considered a small-world like [23,29,30] transition of the sequentially
attached rings towards complete graphs. In doing so, we have added links with probability p to
nodes from the same rings. In the limiting case, p = 1.0, we have obtained networks of sequentially
connected complete graphs.

The relaxation dynamics of these networks is studied on the mechanical relaxation moduli and
the average monomer displacement, employing the generalized Gaussian structures’ framework [20].
Addition of bonds into the sequentially growing rings plays a crucial role in the dynamical behavior of
the polymeric networks. Already for a low probability of having a bond, p = 0.01, we have encountered
a new scaling behavior which is persistent for several values of the tuple (γ, p). So, for the mechanical
relaxation moduli we find characteristic exponents with values between 0.75 and 0.82, which are then
reflected in the time behavior of the monomer displacement characterized by the exponents close to
the value 0.25. Thus, the addition of bonds leads to a slowing down on the dynamics.

Our findings can be helpful for studies of supramacromolecular complexes, such as core–shell
nanogel systems [10]. From the theoretical point of view, further extensions of the model through
inclusion of excluded volume and hydrodynamic interactions can be of much interest. Such extensions
will allow for a direct parametrization of the real polymeric network systems. Moreover, so far we
have considered structure-averaged global behavior of the networks that can be computed based only
on the eigenvalues of the connectivity matrices. In order to distinguish, for example, linear dangling
segments, consideration of the local re-orientation properties (that are captured, e.g., in the NMR
relaxation experiments [50,51]) will be of much help. Computation of the related characteristics will
additionally require knowledge of the eigenvectors of the connectivity matrices [52]. Additionally, not
only the averaged quantities, but their distributions will be an interesting topic for future work.
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