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Novel investigation of perovskite 
membrane based electrochemical 
nitric oxide control phenomenon
Thomas S. Welles* & Jeongmin Ahn

The combustion of hydrocarbon fuels within the automotive industry results in harmful and reactive 
incomplete combustion byproducts. Specifically, nitric oxide emissions (NO) lead to increased smog, 
acid rain, climate change, and respiratory inflammation within the population [Nitrogen Dioxide | 
American Lung Association]. Current methods for treating combustion exhaust include the catalytic 
converter in conjunction with nitrogen oxide traps. However, there is no active, continuous reduction 
method that does not require restrictions on the combustion environment (Hirata in Catal Surv 
Asia 18:128–133, 2014). Here, a small voltage potential oscillation across a newly designed electro-
chemical catalytic membrane significantly reduces NO emissions. A ceramic membrane consisting of 
two dissimilar metal electrodes, sandwiching a dielectric layer, is able to achieve an NO reduction in 
excess of 2X that of a platinum group metal (PGM) three way catalytic converter. An analysis of the 
exhaust effluent from the membranes indicates N2O as a precursor to N2 and O2 formation, without 
the introduction of ammonia (NH3), during the reaction of NO indicating a divergence from current 
literature. Our results demonstrate how an oscillatory electric potential on a catalytic surface may 
alter anticipated reaction chemistry and interaction between the catalytic surface and fluid flow.

Increased concern over climate change, harmful combustion emissions and poor air quality has created a greater 
need for efficient catalytic emission processing systems1–3. Traditionally, three-way catalysts, such as those found 
in automobiles, and nitrogen oxide traps have been employed to reduce pollutants such as hydrocarbons, carbon 
monoxide and nitric oxide (NO). However, the performance of these devices is highly dependent upon the equiv-
alence ratio of the exhaust. Three-way catalysts require that the exhaust remain at stoichiometric conditions4–6. 
If the exhaust becomes fuel lean, a nitrogen oxide trap is required, which will eventually become clogged with 
NO emission, calling for the direct injection of a fuel into the trap in order to react the stored gas6–16. A new 
technology must be developed that can more efficiently reduce harmful emissions while continuously operating 
in any exhaust condition. Therefore the potential of a layered perovskite membrane is investigated as an alterna-
tive catalyst to platinum group metals (PGM). The electrochemical catalytic membrane stack will be placed just 
downstream of the exhaust manifold of the engine. If needed, additional air may be injected into the housing 
canister in the case of a rich combustion environment during startup. The combustion engine’s exhaust gases will 
then flow through the first tubular support layer of the membrane stack, as illustrated by Fig. 1.

The tubular support layer is tuned to primarily convert unburned hydrocarbons, H2, and CO into water and 
carbon dioxide. The exhaust gas, upon exiting the tubular first layer, will be recycled to the outer perovskite layer 
of the membrane. This layer will then be primarily focused on the reaction of NO into N2 and O2. The support 
and outer layer will be separated by a dielectric ceramic layer. The exhaust gas will then leave the electrochemical 
catalytic stack, continuing within the automotive exhaust system.

The initial work was designed to directly compare the potential of the electrochemical-catalytic membrane 
for emission control against a traditional PGM catalytic converter. The PGM based catalytic converter is a 
commercially available catalytic converter purchased from the Volkswagen-Audi Group (VAG). It is a modern 
three-way catalyst, with an internal honeycomb structure consisting of a platinum combined with palladium 
and rhodium. Each specimen was held at 600 °C and subjected to 10 ml/min of two extremely lean (excessive 
O2 and limited hydrocarbon presence) model combustion exhausts, creating the most challenging environment 
for the electrochemical-catalytic membrane, and one stoichiometric exhaust, utilizing CH4 as a model hydro-
carbon component of the exhaust. Although modern internal combustion engine control systems would not 
allow for such extreme conditions, the test is of academic interest to investigate how catalysts perform beyond 
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normal operating conditions. The model exhausts were created by combining O2, CH4, CO, CO2, N2, and NO 
via benchtop flow meters.

The results shown below in Table 1 represent the time averaged results of each specimen. The specimen was 
introduced into the furnace 60 min prior to the collection of any effluent, for analysis to allow each sample to 
obtain steady state operation. The effluent of each sample specimen was then collected, analyzed, and recorded 
by the E-Instruments emission analyzer and gas chromatography-mass spectroscopy (GC–MS). The results were 
averaged over a constant 3 h test for each specimen.

The electrochemical-catalytic membrane is able to significantly outperform the PGM catalytic converter in 
the reduction of NO and CO, and closely matches the PGM catalytic converter in the reduction of hydrocar-
bons. Additionally, the electrochemical-catalytic membrane is able to maintain function in the presence of high 
concentrations of oxygen. The ability of the electrochemical-catalytic converter to maintain reactivity of NO at 
varying levels of NO has been previously reported17.

The novel electrochemical-catalytic membrane is able to consistently outperform traditional catalytic mem-
branes for continuous NO reduction across multiple operation conditions. However, during testing, a minute 
oscillatory electrical voltage was seen to develop across the membrane.

Therefore, this work is designed to investigate the fundamental relation between electrical activity and reac-
tion mechanism by which the novel electrochemical-catalytic membrane is able to react NO.

Catalytic perovskite materials are arranged such that two metal-based catalytic layers are separated by and 
in contact with a dielectric membrane for the study of NO reduction. The resulting electrochemical catalytic 
membrane is subjected to model exhaust flows within a controlled laboratory to serve as an initial investigation 
into the emission control potential.

Figure 1.   Schematic of electrochemical catalytic membrane integration into automotive exhaust. Patent 
Pending: US 2020–0,052,316 A1.
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Materials and methods
The support layer is comprised of nickel oxide-gadolinium doped ceria (48.9 vol% NiO 51.1 vol% Gd0.10Ce0.90O2-x 
(NiO-GDC)), the dielectric material of gadolinium doped ceria (Gd0.10Ce0.90O1.95 (GDC)) and the outer layer of 
lanthanum strontium cobalt ferrite-gadolinium doped ceria (52.4 vol% (La0.60Sr0.40)0.95Co0.20Fe0.80O3-X 47.6 vol% 
Gd0.10Ce0.90O1.95 (LSCF-GDC))18–23. Although these materials are commonly utilized in the production of high 
temperature solid oxide fuel cells, their purpose here is to act only as a catalytic membrane. As such, the nickel 
oxide was not reduced to nickel prior to testing. Pure silver wire electrodes were then added to both the support 
and outer layers via silver paste at the edge of the layer.

A test was constructed in order to investigate the fundamental mechanism by which the cathode layer of the 
electrochemical-catalytic membrane was able to significantly breakdown NO. The new electrochemical-catalytic 
membrane, with 0.81 cm2 of reactive surface area, is tested for NO reduction against: 1. VAG catalytic converter 
with 0.81 cm2 of reactive surface area; 2. The same electrochemical-catalytic membrane with the anode and 
cathode wired together to resemble a short circuit condition (hereafter referred to as an external short circuit 
or short circuited); and 3. The same electrochemical-catalytic membrane with an external 3 V, 8000 μs (4% duty 
cycle) pulse width modulation (PWM) signal with 0.81 cm2 of reactive surface area.

Each specimen was held at 600 °C and subject to 5 ml/min flow of a certified premixed gas cylinder of 10 vol% 
NO and 90 vol% N2. All testing equipment was cleaned, dried, and flushed with Ar for 1 h within the furnace 
at 600 °C prior to testing, to ensure no contamination of results. Only N2 and NO were supplied to the testing 
apparatus. During each test, the internal furnace environment surrounding the testing equipment was flooded 
with Ar, in order to ensure an external inert environment and to detect any leakage. For the electro-chemical 
catalyst, the NO flow was sent to the cathode side of the membrane. The voltage signal for both the electro-
chemical catalytic membrane and the short-circuited membrane were recorded with a 100 MHz oscilloscope.

For both of the experimental setups, the effluent of each specimen, recorded with a Hiden Analytic QGA MS 
with a 100 ppb detection limit, verified via GC by a SRI 8610C and an E-instruments E-8500 emission analyzer, 
is compared to the baseline effluent. The experimental setup for the second, one sided test is depicted below 
in Fig. 2. The experimental setup for the initial study is the same, except before the effluent leaves the testing 
chamber it is recycled over the opposite side of the test specimen and then is exhausted.

Results and discussion
Experimental results of NO reduction phenomenon.  The electro-chemical catalytic membrane, con-
sisting of two metal electrode surfaces separated by a dielectric electrolyte, was able to achieve a reduction in NO 
concentration greater than 2X that of a traditional PGM catalyst as seen in Table 2 above. Additionally, wiring 
an external oscillating voltage signal between the two metal electrodes of the membrane increased reduction 
potential by an additional 10%. This behavior is in stark contrast to that of the electro-chemical catalytic mem-
brane with the addition of an external short circuit, which was only able to convert an amount of NO similar to 
a traditional PGM catalyst.

Figure 3 shows the comparison of the voltage signal generated by the electro-chemical catalytic membrane and 
the electro-chemical catalytic membrane with an external short circuit during the NO reduction. The externally 
short-circuited membrane is centered on a voltage potential of 0, whereas the membrane without a short circuit is 
centered around -6.0 mV, under the standard convention of the cathode being the electrically positive electrode.

Additionally, the oscillations of the membrane without a short circuit are 2X the magnitude of those seen in 
the short-circuited membrane. Amplification of voltage oscillations within the membrane, as with the addition of 
a PWM external source, increases the total amount of NO reduction. Therefore, the ability of the electro-chemical 
catalytic membrane to charge and discharge while interacting with an external flow is the key difference allowing 
for significantly increased reaction rates.

The charge, discharge behavior of the electro-chemical catalytic membrane significantly differs from the 
reaction pathway previously accepted in literature.

Table 1.   Lean Emission Reduction Comparison of the Electrochemical-Catalytic Membrane and the Catalytic 
Converter at 600 °C17.

O2% CO % CO2% NO ppm NO2 ppm CxHy ppm

Lean Mixture A

Baseline 8 2.2 22.9 46 0 6725

Catalytic Converter 7.57 1.36 23.6 39.17 1.83 6550

Electrochemical-Catalytic Membrane 7.11 0.59 24.6 34.5 0 6656

Lean Mixture B

Baseline 11.3 3 22.1 125 0 3200

Catalytic Converter 10.9 2.79 23 122.8 0 3141

Electrochemical-Catalytic Membrane 6.15 2.44 26.1 72.25 3 2615

Stoichiometric Mixture C

Baseline 18.31 3.05 0 760 0 9.14

Catalytic Converter 17.21 1.64 1.67 705 0 8.84

Electrochemical-Catalytic Membrane 16.89 2.01 1.24 601 2 8.91
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The electro-chemical catalytic membrane shows significant deviations from all other specimens in the mass 
spectrum at 17, 18, 30, 32 and 44 amu, as shown in Fig. 4. The difference at 30 and 32 amu represent a reduc-
tion in NO and production of O2, respectively. The large peak at 18 amu, followed by sub-peaks at 17 and 16 
amu indicates lone and charged oxygen. The peak at 44 amu indicates a concentration of N2O. The decrease in 
magnitude at 18 amu and the substantial peak at 44 amu represents a significant deviation from the majority of 
literature for NO breakdown. NO reduction has traditionally been separated into two categories: 1. Chemical 
gradient and equilibrium with or without a catalyst present24,28; 2. Combustion reaction29–32.

A high concentration of NO will drive an equilibrium reaction given sufficient energy and/or the presence 
of a catalyst31–33.

NO may also undergo a combustion reaction with ammonia (NH3), air and/or hydrocarbons (CxHy) in which 
NO will typically pass through an intermediary of NO2

29,34–38.
In this study, there is clear formation of N2O without additional reactants being sourced to aid the reduction 

of NO. Previously, an intermediary of N2O during the breakdown of NO had only been recorded while supplying 
ammonia to a platinum catalyst at 850 °C29,31–37. It is therefore believed that the electrical oscillation activity of 
the electro-chemical membrane is the reason for an altered reaction pathway and significant reduction of NO. 
This hypothesis is primarily investigated through a Gibbs free energy analysis. The following table lists potential 
reactions and respective changes in Gibbs free energy for a temperature range near the testing point of 600 °C 
in the breakdown of NO and eventual formation of N2 and O2.

N2 + O2 ↔ N2O2 ↔ 2NO

Figure 2.   Schematic of membrane testing apparatus.

Table 2.   Experimental Results: NO Reduction Comparison of the Electro-chemical Catalytic Membranes and 
Traditional Catalyst Specimens.

Specimen Sample NO Concentration in Effluent (vol %) Percent Reduction from Baseline (%)

Baseline 10.0 –

PGM Catalytic Converter 7.08 29.2

Short Circuited Electro-chemical Catalytic Membrane 7.01 29.9

Electro-chemical Catalytic Membrane 3.10 69.0

Electro-chemical Catalytic Membrane with 3 V PWM 
Signal 2.07 79.3
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For simplicity of analysis, it is assumed that the first step in the breakdown of NO is the formation of N2O2, 
as has been reported previously in literature17–27,31–42. Therefore, the key equations to investigate in Table 3, given 
sufficient concentration of N2O2, are reaction equations numbers 8 and 10. It is clear that at 600 °C the formation 
of NO2 is energetically favorable to the formation of NO2, reaction 10, if the Gibbs free energy minimization is 
the only driving factor. However, it also indicates that the formation of N2O, reaction 8, could also be spontane-
ous but is less probable to occur than reaction 10. Therefore, it is reasonable to assume that an electrochemical 
manipulation/influence could drive the likelihood of occurrence toward reaction 8 and the formation of N2O.

Figure 3.   Electrical Signal Recording Overlays of the Novel Electrochemical Catalytic Membrane with (shown 
in orange) and without (shown in blue) an External Electrical Short Circuit at 600 °C and Subjected to 5 ml/min 
Flow of a Certified Premixed Gas Cylinder of 10 vol% NO and 90 vol% N2. Signal Noise Amplitude of ~ 35 mV 
with Electrical Short (orange) and ~ 50 mV without the Short Circuit (blue).

Figure 4.   Mass Spectrum Analysis Comparison of Exhaust Effluent after Interacting with Each Specimen at 
600 °C and Subject to 5 ml/min Flow of a Certified Premixed Gas Cylinder of 10 vol% NO and 90 vol% N2. 
Baseline Represents the Effluent of the Same Gas through the Testing Apparatus at Temperature without Any 
Reactive Membrane in Place. **The electro-chemical catalytic membrane with external short circuit is not 
shown, as it nearly coincides with the traditional PGM catalytic converter, reducing the clarity of the plot.
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Additionally, the transfer efficiency from NO to N2 is considered in conjunction with the Gibbs free energy 
analysis. Table 3 indicates in reactions 12 and 14 that N2O as an intermediary species should result in a higher 
yield of N2 when compared to NO2.

Table 4 above calculates the transfer efficiency factor from NO reduction to N2 production. The ideal increase 
in N2 is calculated from the reduction of NO reported in Table 2, and represents the amount of N2 that could be 
produced if the transfer efficiency were equal to 1. That is, if all NO reduction resulted in the formation of N2. It 
is clear to see that the electrochemical catalytic membrane with enhanced electrical activity has a significantly 
better transfer efficiency at 0.94. There is a direct correlation between N2O production and increased N2 transfer 
efficiency. The negative factor for the PGM catalytic converter is not considered to be abnormal for catalytic 
converter operation. It has been reported that commercial PGM catalytic converters do have limited N2, NO 
storage capability, which would account for the discrepancy in N2 concentration in the exhaust4–12.

Formation of N2O is seen in the mass spectrum analysis of the electrochemical catalytic membrane and more 
predominately in the electrochemical catalytic membrane with forced electrical oscillations. It is not as evident 
in the effluent of the traditional PGM catalyst, nor the electrochemical catalytic membrane with an electrical 
connection between the anode and cathode. Therefore, when the electrical activity on the membrane is not 
present, the formation of N2O is significantly diminished.

The deposition, removal, and rearrangement of electrons from/on the catalytic surface is believed to be the 
key in altering the probability of reaction pathways. Traditional catalytic reaction chemistry with a solid, non-
consumable catalyst without the presence or possibility of water formation or the presence of a proton acceptor/
donor, assumes that the catalytic surface, after absorbing the reactant, acts primarily as an electron transport 
mechanism around the reactant molecule43,44. For the above experimental results, the apparatus was free of 
any water vapor, as described in the methods section, and the test flow consisted of only nitrogen and oxygen, 

Table 3.   Gibbs free energy of reaction analysis summary of potential chemical reaction equations.

Gibbs Free Energy Analysis of Reaction (kJ)

Chemical Reaction

Temperature of Reaction (°C)

450 500 550 600 650 700 750 800

1 N2 + O2 → N2O2 219.5 225.0 230.4 235.9 241.3 246.8 252.3 257.7

2 N2 + O2 → 2NO 169.4 168.2 166.9 165.7 164.4 163.2 161.9 160.7

3 2NO → N2O2 50.1 56.8 63.5 70.2 76.9 83.6 90.3 97.0

4 N2 + O2 → NO2 + N 507.4 507.6 507.7 507.9 508.0 508.2 508.4 508.5

5 N2 + O2 → N2O + O 338.4 339.2 339.9 340.7 341.5 342.3 343.1 343.9

6 N2 + O2 → NO2 +
1

2
N2 60.6 63.6 66.6 69.7 72.7 75.8 78.8 81.8

7 N2 + O2 → N2O +
1

2
O2 115.5 119.2 122.9 126.7 130.4 134.1 137.8 141.5

8 N2O2 → N2O +
1

2
O2 − 104.0 − 105.7 − 107.5 − 109.2 − 111.0 − 112.7 − 114.5 − 116.2

9 N2O2 → N2O + O 118.9 114.2 109.5 104.8 100.2 95.5 90.8 86.1

10 N2O2 → NO2 +
1

2
N2 − 158.9 − 161.4 − 163.8 − 166.2 − 168.6 − 171.0 − 173.5 − 175.9

11 N2O2 → NO2 + N 287.9 282.6 277.3 272.0 266.7 261.4 256.1 250.8

12 2N2O → 2N2 + O2 − 231.0 − 238.5 − 245.9 − 253.3 − 260.7 − 268.2 − 275.6 − 283.0

13 N2O + NO →
3

2
N2 + O2 − 200.2 − 203.3 − 206.4 − 209.5 − 212.6 − 215.7 − 218.8 − 221.8

14 2NO2 → N2 + 2O2 − 121.1 − 127.2 − 133.3 − 139.4 − 145.4 − 151.5 − 157.6 − 163.7

15 NO2 + NO → N2 +
3

2
O2 − 145.3 − 147.7 − 150.1 − 152.5 − 154.9 − 157.3 − 159.8 − 162.2

16 N2O + NO → N2 + N + O2 246.6 240.7 234.7 228.7 222.8 216.8 210.8 204.9

17 NO2 + NO → N2 + O2 + O 77.6 72.3 66.9 61.6 56.2 50.9 45.5 40.2

Table 4.   Experimental Results: N2 Production Comparison of the Electrochemical Catalytic Membranes and 
Traditional Catalyst Specimens with Transfer Efficiency Factors Calculated.

Specimen
Sample N2 Concentration in Effluent (vol %)

Change from Baseline
(vol %)

Ideal N2 Increase from Baseline based 
on NO Reduction
(vol %) Transfer Efficiency Factor

Baseline 90.0 – – –

PGM Catalytic Converter 84.62 − 5.38 1.46 − 3.69

Electro-chemical Catalytic Membrane 
with short circuit 90.88 0.88 1.50 0.59

Electro-chemical Catalytic Membrane 92.51 2.51 3.45 0.73

Electro-chemical Catalytic Membrane 
with 3 V PWM Signal 93.72 3.72 3.97 0.94
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eliminating the possibility of acid–base catalysis. Within any catalyst in which there is electron movement around 
the reactant, there must be an ohmic like resistance. However, if the charge on the catalytic surface is forced to 
vary, i.e. the surface is forced to charge and discharge, electron movement to and from the surface is established 
prior to the absorption of the reactant molecule. The addition and removal behavior of electrons that is estab-
lished on the surface is believed to manipulate the natural reaction pathways increasing the overall reactivity of 
the system. In addition, this alternating voltage potential creates a fluctuating external electric field capable of 
doing work and exciting any incoming polar molecule. The external field may also manipulate the collisions of 
the incoming reacting species by forcing varying molecular alignment as the flow approaches the catalytic surface.

Conclusions
The unique configuration of a metal-based catalytic surface connected through a dielectric membrane to another 
metal-based electrode allows for the potential of surface charging and charge communication without significant 
internal current flow or internal charge balancing. This charging and discharging of the catalytic surface allows 
for the altered chemical reaction pathways demonstrated in this work. When the two metal electrodes of the 
electro-chemical catalytic membrane are electrically connected, the reactivity decreased by a factor of ~ 2. Any 
charge that began to develop on the surface was able to relax back into equilibrium via current flow. Therefore, the 
surface charge was no longer capable of reacting with the incoming flow, decreasing efficacy of NO conversion.

Further investigation into this phenomenon has led to the consideration of CO and CO2 conversion to par-
ticulate carbon and gaseous oxygen. Although this exploration is in its infancy, it does indicate potential for the 
electrochemical manipulation of carbon based emissions through electric potential oscillation. However, unlike 
the work described in the background of this work17, initial testing has shown significant carbon deposition and 
carbon coking of the electrode layer during prolonged operation in a purely CO and CO2 environment, decreas-
ing reactivity over time. Additional work is required to develop a technology capable of continually reacting CO 
and CO2 into particulate carbon and gaseous oxygen without the addition of other reactants to prevent coking.

Received: 15 June 2020; Accepted: 5 October 2020
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