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A resource to explore the discovery 
of rare diseases and their causative 
genes
Friederike Ehrhart   1,2 ✉, Egon L. Willighagen   1, Martina Kutmon   1,3, Max van Hoften1, 
Leopold M. G. Curfs   2 & Chris T. Evelo   1,2,3

Here, we describe a dataset with information about monogenic, rare diseases with a known genetic 
background, supplemented with manually extracted provenance for the disease itself and the discovery 
of the underlying genetic cause. We assembled a collection of 4166 rare monogenic diseases and linked 
them to 3163 causative genes, annotated with OMIM and Ensembl identifiers and HGNC symbols. The 
PubMed identifiers of the scientific publications, which for the first time described the rare diseases, and 
the publications, which found the genes causing the diseases were added using information from OMIM, 
PubMed, Wikipedia, whonamedit.com, and Google Scholar. The data are available under CC0 license 
as spreadsheet and as RDF in a semantic model modified from DisGeNET, and was added to Wikidata. 
This dataset relies on publicly available data and publications with a PubMed identifier, but by our effort 
to make the data interoperable and linked, we can now analyse this data. Our analysis revealed the 
timeline of rare disease and causative gene discovery and links them to developments in methods.

Background & Summary
Descriptions of unusual diseases date back until the ancients, but rare genetic diseases are a relatively new chapter 
in the history of medicine as genes as carriers of hereditary diseases were only discovered in the middle of the last 
century (see e.g. Reflections on medicine and art).

Identification of the disease-causing mutation in the plethora of genetic variation an individual human car-
ries is a difficult task in the diagnosis of rare diseases. A typical human individual has about 4.1–5 Mio variants 
compared to the reference genome1. For the identification of the disease-causing variant, experts cross-check with 
variant databases and use variant pathogenicity prediction algorithms. There are several bioinformatics work-
flows available to go from the raw data to the detection of the causative mutation, see e.g. Gilisen et al.2. Within 
this process mapping of genetic data, identifiers and information is required in several ways.

Many genotype-phenotype databases link information about rare diseases, their causative genes, and gene var-
iants, respectively3. Some well-known databases like OMIM (www.omim.org), Orphanet (http://www.orpha.net),  
and DisGeNET4 include provenance - e.g. in the form of manually curated or text mining derived literature lists. 
DisGeNET provides an extensive collection of linked data including a semantic model. Orphanet does as well 
but focuses more on patient care related information. OMIM is the online version of the genetic (Mendelian) 
disease encyclopaedia that provides information in the form of a literature list for a disease or a gene and provides 
gene-disease mapping spreadsheets, e.g. a morbid map5. The given literature lists, which support gene-disease 
associations, are useful to provide accumulated provenance for this association. However, none of these databases 
provides a list or a dataset that links the unique publication, which described the link between the gene and the 
disease first. This information is very useful for historic perspectives on genetic and rare disease research.

We produced a mapping dataset, which links rare, monogenic diseases to their causative genes (and vice versa), 
backed up by the publication which proves the genetic cause for a disease for the first time, or historic provenance. 
The data are annotated with OMIM identifiers for the disease, gene identifiers (HGNC6 and Ensembl7) for the 
gene, and PubMed identifiers (PMIDs) for the literature. In order to describe the content on this spreadsheet and 
to provide it in a structured way we developed a dedicated version of the DisGeNET semantic model to produce a 
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resource description framework (RDF) file and a set of nanopublications. Nanopublications are short information 
sequences built from identifiers and ontologies with embedded provenance, that especially allow data mining and 
automated read-out8. Nanopublications are usually accompanied by a meta data header, and if correctly formed 
and made available they are automatically FAIR (Findable, Accessible, Interoperable and Re-usable9). There are 
not many tools yet that can process and use nanopublications, but due to their structure, they can be implemented 
in graph based databases (e.g. Wikidata, as was done in this study) and can be used in graph based applications.

We produced a linkset based on this data that was formatted to be used directly with the Cytoscape app 
CyTargetLinker10. Cytoscape is a popular network analysis software11. The linkset can be used for instance for 
genetic variants or gene expression analysis linking genetic variants to genes or pathways12.

Using the semantic web linksets provided for our dataset, different interesting facts can be retrieved, e.g. a 
timeline of discovery of genes responsible for rare diseases, the links between different diseases caused by the 
same gene or between a disease that is known to be caused by different genes independently. It can also be used as 
a starting point for more extensive analyses about the landscape of diseases present in the underlying databases.

Methods
Workflow.  In short, we first collected, extracted, and reviewed the information to create the dataset. 
Second, the dataset was created and made accessible in three different ways: spreadsheet, RDF, and linkset (for 
CyTargetLinker). Third, the information from the dataset was used to retrieve information about the discovery 
of rare disease causing genes and, fourth, applied in different analysis use cases. The workflow is shown in Fig. 1.

Creation of the dataset.  The OMIM database was accessed to generate a list of all known gene-disease 
relationships that contained the OMIM ID and the disease labels for the diseases and the gene names. From this, 
rare monogenic diseases were manually identified and extracted. Wherever possible we compared with Orphanet 
to determine the abundance of a disease with a cut-off of 1:1000, which is less exclusive than the EU definition13. 
In some cases, we had to use our own judgement for diseases that are described as uncommon. The first descrip-
tion of the disease was manually retrieved by literature research using different resources like OMIM, PubMed, 
Whonamedit [https://www.whonamedit.com/], and Wikipedia. If no clear first description publication could be 
identified, the oldest publication found was used, which was typically the oldest reference in the literature list on 
OMIM. This step was also done by manual curation. Publications were annotated in the dataset with PMIDs. For 
the causative gene for the disease we replaced the gene name from OMIM with the stable gene identifier from 
Ensembl and the appropriate HGNC symbol using Ensembl BioMart mapping. Provenance for the first publica-
tion proving that a particular disease is caused by a specific gene was manually identified based on the literature 
provided on OMIM and other sources (PubMed, Wikipedia, Google Scholar). The PMID of this publication was 
added. Table 1 shows the structure of the final dataset.

The dataset (version 2) contains 4565 gene-disease associations with provenance, of which 4292 are unique 
gene-disease associations. The difference is due to multiple PubMed identifiers for provenance of some diseases, 
and in a few cases, it was not possible to identify which publication was published first. There are 3154 unique genes 
(according to their Ensembl identifiers) and 4166 unique diseases (based on OMIM identifiers) in the dataset.

Creation of RDF/nanopublications.  To create an RDF file (according to standards as stated here: https://
www.w3.org/TR/hcls-dataset/) a modified version of the DisGeNET RDF model was developed. The code to 
create the RDF is available at: https://github.com/BiGCAT-UM/raredisease-omim/tree/master/rdf. All data files 
are available in this Figshare collection, and the actual version discussed here is version 314.

Nanopublications were generated from spreadsheets in tab delimited (TSV) format available from Figshare 
using a custom Groovy script that makes use of nanopub-java15, available at https://github.com/BiGCAT-UM/
raredisease-omim/tree/master/nanopub. The nanopublications make use of the Semantic science Integrated 
Ontology (SIO)16, identifiers.org17, VoID18, Dublin Core19, and the NCI Thesaurus20.

Fig. 1  Workflow of information acquisition, creation of dataset and downstream analysis.

Gene information
Gene - disease 
association provenance Disease information

ENSEMBL Gene ID 
ENSID

HGNC 
symbol

PMID Gene-disease 
association

Disease 
OMIM ID Disease name

PMID 
Disease

ENSG00000188536 HBA2 1115799 604131 Thalassemia, alpha- 1115799

Table 1.  The spreadsheet data content and structure.
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Creation of linkset for CyTargetLinker.  CyTargetLinker is a Cytoscape app, which facilitates network 
extension using information given in linksets. These linksets are usually derived from external databases and 
contain e.g. gene-microRNA or drug-drug target relationships. The gene-rare disease linkset for CyTargetLinker 
was created as described in Kutmon et al.10,21. It includes the PMIDs for the first description as the annotation of 
the edges. We used a Java program (available here https://github.com/CyTargetLinker/linksetCreator) to convert 
tab delimited text files into an XGMML formatted linkset, which is also available from the CyTargetLinker linkset 
repository (https://cytargetlinker.github.io/pages/linksets).

Data Records
The tab separated spreadsheet data (TSV) collection of the gene rare disease provenance data (gene-RD-provenance_
v2.1.txt) is available in this Figshare collection14. The application specific versions of the gene-RD-provenance data-
set are available on these resources: the linkset for CyTargetLinker in the CyTargetLinker repository under disease 
related linksets, the current version is 2, the nanopublications in RDF format are also available from the above 
mentioned Figshare collection. To support the use of the data on Wikidata22 we checked the availability of all rare 
diseases, genes and publications there. All genes were already available and we therefore could easily add the pub-
lications using the PMIDs. Provenance of the first description of the disease was added to the disease statement in 
Wikidata. All diseases that had an associated PMID were also included; the others will gradually be added over time. 
Provenance of the first description of the causative gene was added to the genetic association statement of the disease. 
About 800 publications were added to Wikidata. All additions to Wikidata mentioned here were uploaded using 
QuickStatements (https://tools.wmflabs.org/quickstatements/#/).

For importing in R we recommend to disable quoting and enabling headers (read.table(file = “Gene- 
RD-Provenance_V2.1.txt”, quote = “”, sep = ‘\t’, header = TRUE).

Technical Validation
Quality of the data.  The original data in tabular format can be uploaded as a Google Spreadsheet, Google 
provides an API to access the data, as used below. The data uses common database identifiers provided by the 
underlying resources to identify biological entities, such as the Ensembl gene identifier, HGNC symbol, PMID, and 
OMIM identifier of the disease. In the RDF we support open standards for these identifiers using identifiers.org,  
URIs that are unique, persistent and resolvable. The technical quality of the data further follows from the ability 
for error free conversion into nanopublications.

Validity of the nanopublications.  The RDF nanopublication format was selected as one of the formats 
to share the data, a format with a clear open standard and the ability to use ontologies. The generation of the 
nanopublications catches many technical errors in the original data, such as incorrect identifiers, which result in 
incorrectly formatted RDF content. The used nanopub-java library performs further validation of the correctness 
of the nanopublications. The resulting TRIG file with nanopublications was technically validated with the rapper 
tool (http://librdf.org/). The RDF uses various ontologies, ensuring that data can be expressed using common 
terminology and making it interoperable. The data has been deposited in the nanopublications network23.

Usage Notes
Bibliographic information.  As an example, we looked up the publication dates and other relevant informa-
tion for the two different lists of PMIDs, extracted from the TSV file. To do this, we used these PMIDs to query 
for the first descriptions of rare disease and the first descriptions of gene-disease relationships in Wikidata. The 
SPARQL queries can be found here: https://github.com/BiGCAT-UM/pubmedWikidata.

Timeline of first descriptions of rare diseases.  To illustrate the use of our dataset we used the results of the 
SPARQL queries to find that the first description of a rare disease was from 1788 (Olof Ekman) about osteogen-
esis imperfecta (Fig. 2A). Later in 1988 and 1989, mutations in two collagen genes, COL1A124 and COL1A225, 
were identified as responsible for this disease. Several first descriptions of related phenotypes were later classi-
fied as separate diseases and were associated with different genetic causes. In 1817 James Parkinson wrote “An 
Essay on the Shaking Palsy” describing the disease which was later named after himself. By now, there are 19 
different entries in OMIM named Parkinson’s disease (or a variety of) with different genetic causes (not to be 
mixed up with Wolf-Parkinson syndrome, which was named after Sir John Parkinson). A remarkable peak in 
discoveries occurred in 1886, when Charcot-Marie-Tooth disease was described, which was later sub classified 
in about 58 different subtypes and responsible genes. Additionally, in this year first descriptions were made about 
Pheochromocytoma and Multiple endocrine neoplasia (each with about 5 different subtypes and responsible 
genes). After 1901 there was no year passing without at least one new description of a rare disease.

Timeline of rare disease-gene relationship discovery.  Using the PMIDs of the publications stating for the first 
time that a certain disease is caused by a specific gene, Wikidata was queried with the same query as described 
above but this time with the PMIDs of the gene-disease association provenance. In Fig. 2B we plotted the number 
of publications about gene-disease relationships that appeared per year. In this dataset, the earliest gene-disease 
link is from 1967 when Seegmiller et al.26 found that a neurological disorder (which was described first three 
years earlier and only later the name Lesch-Nyhan Syndrome was established27) was caused by the absence of 
hypoxanthine-guanine phosphoribosyltransferase. The discovery rate increased following the invention of both 
Sanger sequencing and PCR, reached a plateau between about 1996 and 2006 and increased again after develop-
ment of next generation sequencing. The decline of the discovery rates after 2013 can easily be explained because 
at that time causative genes for all known genetic diseases had already been found and new causal relationships 
could only be identified for newly found diseases.
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In parallel, the time difference since a disease was described first until the causative gene was identified was 
at maximum in the early 90s with 37 years and declined since then to almost zero after 2014 (Fig. 2B, rolling 
median). The data before 1990 is very scattered as the discovery of genes was rare and had just started. After 
establishing next generation sequencing in 2007, by about 2013 it became a common standard that together 
with the description of a new genetic disease the genetic cause is also identified and published in the same 
document. The time span does not drop to zero because new rare genetic causes of long known diseases (e.g. 
Charcot-Marie-Tooth disease) are still occasionally discovered. This is reflected in the data; the mean and the 
median drift apart after about 2004 indicating increasing scattering of the data.

In which journals are newly discovered diseases or genes published.  Here, we demonstrate how to query in which 
journals newly discovered diseases or new causative genes for rare diseases are preferably published. First descrip-
tions of rare diseases had a PMID in 3144 cases; for new genes causing a rare disease 4263 of in total 4565. To get 
the journals in which these papers have been published, the SPARQL endpoint of Wikidata was accessed using 
the queries mentioned above. Table 2 lists the top 10 journals in which new diseases and new causative genes have 
been described. According to the data, the most important journals for publishing both, new rare diseases and 
newly identified genes for rare diseases, are the American Journal of Human Genetics (14.9% for diseases and 
26.7% for genes) and Nature Genetics (4.7% for diseases and 18.4% for genes). In total, for new rare diseases we 
identified 364 different journals, and 197 journals for genes. This may be due to the broader spectrum of medical 
disciplines, and therefore journals in which the first observation of a now rare disease was described, as well as the 
broader timeframe in which these were published.

Citation counts.  The citation count of the publications was retrieved indirectly by querying Wikidata. Next to 
direct entries, citation information in Wikidata is supplemented with information from PubMed and CrossRef via 
the WikiCite project28, which at this moment covers about 59% of publishers (Open Citations, https://i4oc.org/,  
status Sep 2019) and Wikidata has about 12.5% of all citations (status Aug 2018).

Figure 2C shows the citation count distribution across the publication year for the first description of a causative 
gene for a rare disease. The mean citation count for such a paper is 56. Among the top 10 of most cited papers are 

Fig. 2  (A) Number of first descriptions of rare diseases per year. (B) Number of publications identifying new 
disease description (orange bars) and new gene-disease links per year (blue bars). The black dots indicate the 
(rolling) median number of years the diseases had been known before the causative gene was identified in that 
year. The data are displayed from the year 1984, from which there were constantly more than four genes per year 
discovered. (C) Total current citation counts for the papers shown for gene-disease relationship papers shown as 
blue bars in panel B shown for the year these were published. One dot represents one publication from our dataset.
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several, which identified rare, genetic causes for Alzheimer’s and Parkinson’s disease, Huntington’s disease, macular 
degeneration, Rett syndrome, Crohn’s disease, amyotrophic lateral sclerosis, and chromosome 9p-linked frontotem-
poral dementia. High citation numbers indicate that there is a lot of research done for these diseases. Low citation 
numbers or none at all may be due to the newness of the finding (less than 5 years), disagreement among research-
ers, non-reproducibility of the result or no “interest” in terms of grants and research capacity investment. Among 
the true “neglected” diseases, diseases for which the genetic cause has been identified before 2013 but had been cited 
only once by now are e.g. 3-ketothiolase deficiency, glucose 6-phosphate isomerase deficiency, Leber congenital 
amaurosis, sarcosinemia or nonsyndromic oculocutaneous albinism. Additionally, there are many disorders, which 
do not have a name and are described by their phenotype appearance (e.g. “Manifestations of X-linked congenital 
stationary night blindness in three daughters of an affected male: demonstration of homozygosity”). Apart from 
these, about 1000 gene-rare disease discoveries have not been cited yet (according to the available data).

The most cited first disease descriptions are about Inflammatory bowel disease 25, early onset, autosomal 
recessive (4080 citations), D-2-hydroxyglutaric aciduria 2 (1598 citations), Macular degeneration, age-related, 4 
(1498 citations), and Osteogenesis imperfecta, type XII (1031 citations).

Authors.  2641 (co)authors of papers, which first described a causative gene for a rare disease have an ORCID, 
which is about 15% of all these authors (https://github.com/BiGCAT-UM/literatureSummary). Table 3 gives the 
top ten authors with the most causal gene discoveries. 993 first rare disease description paper (co)authors (19.7%) 
have an ORCID. The lower number may in part be due to the fact that the description of rare disease ranges fur-
ther to the past in which ORCID was not available.

journal count %

First description of a new disease (100% = 3144)

American Journal of Human Genetics 457 14.9

Nature Genetics 145 4.7

American Journal of Medical Genetics Part A 137 4.5

Journal of Medical Genetics 136 4.4

Human Molecular Genetics 122 4.0

The New England Journal of Medicine 121 3.9

Journal of Clinical Investigation 78 2.5

Neurology 77 2.5

The Journal of Pediatrics 68 2.2

Proceedings of the National Academy of Sciences of the United States of America 59 1.9

First description of new genes causing a rare disease (100% = 4263)

American Journal of Human Genetics 1137 26.7

Nature Genetics 786 18.4

Human Molecular Genetics 266 6.2

Journal of Medical Genetics 175 4.1

The New England Journal of Medicine 148 3.5

Journal of Clinical Investigation 136 3.2

Proceedings of the National Academy of Sciences of the United States of America 129 3

Science 121 2.8

Nature 99 2.3

Human Mutation 94 2.2

Table 2.  Journals, in which the new discovered diseases or genes causing a rare disease were published.

Author name count

Arnold Munnich 58

Gudrun Nürnberg 44

Peter Nürnberg 38

Thomas Meitinger 35

Nicholas Katsanis 32

Friedhelm Hildebrandt 31

Jean-Laurent Casanova 31

Alexis Brice 30

Edgar A Otto 19

Bruno Dallapiccola 28

Table 3.  Top ten of authors with most gene discoveries in this dataset.
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Application of the dataset for analysis.  Network of genes causing diseases.  To investigate the dataset, 
a network of gene-disease relationships was created using Cytoscape software. The network analysis shows 2357 
gene-disease causative relationships in which one gene causes one disease (Fig. 3A upper left). Provenance can 
be by one or more publications depicted in one or more edges connecting the nodes. 446 triplets of two genes 
causing one disease, or one gene causing two diseases, are found, whereas in the majority of these triplets there is 
one gene causing two diseases. This may be explained from the fact that disease phenotypes can be different, often 
leading to the description of two varieties of one disease, which were given separate identifiers in OMIM. 1226 
genes and diseases are linked in more complex patterns (Fig. 3A bottom). Again, in the majority of these cases, 
there is one gene responsible for multiple diseases or varieties of disease. The largest complex contains mainly 
mitochondrial disorders and their associated diseases. Here, a lot of overlap between the diseases and causative 
genes is observed, possibly because several genes are contributing to the functionality of one complex.

Integration in network analysis.  Based on this dataset we created a linkset for the Cytoscape plugin 
CyTargetLinker (see here how to use and create these linksets https://github.com/CyTargetLinker/linksetCreator).  
In Fig. 3B, the result of such a network extension is shown. The basic network is a rare disease pathway imported 
to Cytoscape from WikiPathways [https://www.wikipathways.org/instance/WP4312]. The expression data shown 
in the network was taken from Miller et al.29, and the data was originally produced by Lin et al.30. The network was 
then extended using the Gene-RD-Provenance_V2 linkset (available here: https://cytargetlinker.github.io/pages/
linksets) to show which genes in the network may cause other rare genetic diseases. Examples for the identified 
diseases are SESAME syndrome, Glass syndrome, Mental retardation X-linked, etc. This linkset can in general be 
used to explore associated disease phenotypes for mis-regulated genes or deleterious genetic variants in networks.

Linking data and information with other datasets, mappings and RDF based databases.  
DisGeNET provides mapping datasets (available at https://www.disgenet.org/downloads - Mappings) which 

Fig. 3  (A) Network of gene-rare disease relationships. Blue nodes are genes (HGNC symbols), orange nodes 
are diseases (OMIM disease names). (B) The Rett syndrome causing genes pathway from WikiPathways, 
https://www.wikipathways.org/instance/WP4312 was imported as a network to Cytoscape environment using 
the WikiPathways app of Cytoscape. Using CyTargetLinker app, the MECP2 network was extended to predict 
and visualize overlap of pathway genes causing other rare diseases provided by the gene-RD-Provenance_V2 
linkset. The expression data was taken from Miller et al.29 and the data was originally produced by Lin et al.30. 
(C) Timeline of rare disease superclass descriptions in blocks of 20 years. The numbers are normalized to 
percentages of the maximum number of diseases in each disease superclass discovered (Table 4).
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allow mapping of OMIM identifiers to Concept Unique Identifiers (CUI) and Orphanet identifiers (ORPHA). 
Using our list of rare disease OMIM identifiers, it was possible to map 99.2% of them to CUI and 58.0% to 
ORPHA. With these mappings, it is possible to retrieve and integrate the specific information from different 
resources.

It is worth noting that the definitions of a disease vary between the different databases and thesaurus systems 
so there is a discrepancy in reported data output. E.g. OMIM disease identifiers can map to multiple ORPHA and 
vice versa.

DisGeNET RDF and database - identification of disease superclasses.  Querying the DisGeNET database and RDF 
we found that 58.7% of the rare diseases are annotated with a disease superclass term from MeSH (medical subject 
headings). The top ten of superclass terms are listed in Table 4. The majority of rare diseases are annotated with 
“congenital, hereditary, and neonatal diseases and abnormalities”, “nervous system disease”, and “musculoskeletal 
diseases”. The dominance of nervous system diseases as consequences of genetic mutations was documented 
before with data from OMIM31.

What classes of disorders have been discovered when.  Linking publishing date of a rare disease description with 
MeSH disease superclass information from DisGeNET reveals trends in which class of diseases have been identi-
fied. Figure 3C shows a timeline in blocks of 20 years, showing for each block how many rare diseases belonging 
to the respective superclass have been described.

For most disease superclasses the discovery rate increases slowly, and they see the majority of discovery 
between 1961–2000. Some disease superclasses were discovered relatively early or late, probably due to the avail-
ability of diagnostic methods. Metabolic and endocrinological diseases for instance have their peak in 1961–1980 
while mental disorders peak in 2001–2017. The latter might in part be due to increasing differentiation and defi-
nition of neuronal, mental and behavioural disorders.

Code availability
The code to create the RDF from a Google spreadsheet that can be created from the TSV file is available at: https://
github.com/BiGCAT-UM/raredisease-omim/. The code to create the Linkset for CyTargetLinker is available at: 
https://github.com/CyTargetLinker/linksetCreator. The queries to retrieve information about the publications 
using the PMIDs in Wikidata can be found here: https://github.com/BiGCAT-UM/pubmedWikidata.
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