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Abstract 

Objectives:  Immune microenvironment was closely related to the occurrence and 
progression of colorectal cancer (CRC). The objective of the current research was to 
develop and verify a Machine learning survival predictive system for CRC based on 
immune gene expression data and machine learning algorithms.

Methods:  The current study performed differentially expressed analyses between nor-
mal tissues and tumor tissues. Univariate Cox regression was used to screen prognostic 
markers for CRC. Prognostic immune genes and transcription factors were used to con-
struct an immune-related regulatory network. Three machine learning algorithms were 
used to create an Machine learning survival predictive system for CRC. Concordance 
indexes, calibration curves, and Brier scores were used to evaluate the performance of 
prognostic model.

Results:  Twenty immune genes (BCL2L12, FKBP10, XKRX, WFS1, TESC, CCR7, SPACA3, 
LY6G6C, L1CAM, OSM, EXTL1, LY6D, FCRL5, MYEOV, FOXD1, REG3G, HAPLN1, MAOB, 
TNFSF11, and AMIGO3) were recognized as independent risk factors for CRC. A prog-
nostic nomogram was developed based on the previous immune genes. Concord-
ance indexes were 0.852, 0.778, and 0.818 for 1-, 3- and 5-year survival. This prognostic 
model could discriminate high risk patients with poor prognosis from low risk patients 
with favorable prognosis.

Conclusions:  The current study identified twenty prognostic immune genes for CRC 
patients and constructed an immune-related regulatory network. Based on three 
machine learning algorithms, the current research provided three individual mortal-
ity predictive curves. The Machine learning survival predictive system was available 
at: https://​zhang​zhiqi​ao8.​shiny​apps.​io/​Artif​icial_​Intel​ligen​ce_​Survi​val_​Predi​ction_​
for_​CRC_​B1005_1/, which was valuable for individualized treatment decision before 
surgery.
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Introduction
The latest research showed that colorectal cancer (CRC) was the fourth most com-
mon cancer in the world, resulting in 1,096,601 new cases and 551,269 deaths in 
2018 [1]. Although great progress has been made in diagnosis and treatment of 
CRC, global data demonstrated that the mortality was still unsatisfactory for CRC 
patients [2]. Alterations of chromosomal copy number, gene methylation, and gene 
expression were involved in the occurrence and progress of CRC, leading to huge 
heterogeneity of prognosis in CRC patients [3, 4]. Due to the huge demand for pre-
dicting the prognosis of patients with colorectal cancer, different research teams 
have established prognostic models for patients with colorectal cancer based on dif-
ferent prognostic markers [5–7]. However, the calculation formulas of these exqui-
site prognostic models are complex, which seriously restricts the popularization and 
application of clinical practice. Due to the huge heterogeneity of prognosis in CRC 
patients, a single biomarker was not enough to provide accurate prognostic infor-
mation for CRC patients. More importantly, most of the current prognostic models 
could only predict the prognosis for a special group, but could not predict the prog-
nosis for an individual patient [8, 9]. From the patient’s point of view, mortality risk 
predicted percentage for an individual patient is more valuable and important than 
that for a special group. Therefore, it is necessary and valuable to construct predic-
tive models for providing individual mortality risk prediction.

A large number of molecular biological evidences have confirmed that genes 
played important roles in the endogenous regulation of tumorigenesis and progres-
sion [10–13]. Immune microenvironment was closely related to tumor development, 
progression and prognosis [14, 15]. Several studies have explored the potential roles 
of immune genes in the prognosis of CRC [16–18]. Two immune-related prognostic 
models were developed for predicting prognosis of CRC patients [19, 20]. Hu et  al. 
established a prognostic model of colorectal cancer through CEACAM8+ neutro-
phils, CD3+, CD8+ T lymphocytes and FOXP3 + regulatory T cells [19]. Zhou et al. 
established a prognostic immune risk score for stage I–III colon cancer patients with 
an area Under the receiver operating characteristic curve of 0.741 in train dataset for 
5-year mortality [20]. However, these two models failed to provide individual mortal-
ity risk prediction for a specific patient.

Machine learning has been applied to medical image recognition, diagnosis and 
prognosis [21, 22]. Kawakami et al. used different machine learning algorithms to pre-
dict the clinical stage and pathological type for ovarian cancer patients [23]. Enshaei 
et al. created an machine learning model to predict the prognosis of ovarian cancer 
patients [24]. These studies provided new insights for the applications of machine 
learning in diagnosis and prediction. However, to date, there is no clinical study on 
machine learning model for predicting the individualized mortality risk for various 
tumors.

Our research team was committed to develop precision medical predictive tools for 
predicting the individualized mortality risk for different tumors [25–32]. Inspired by the 
above machine learning researches, we planned to build and verify an machine learn-
ing survival predictive system to predict the individual mortality risk based on machine 
learning algorithms and immune genes for CRC patients.
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Methods
Study datasets

TCGA dataset involved 20,236 mRNAs and 521 CRC patients. The original expres-
sion values were log2 transformed. GSE39582 dataset involved 556 CRC patients and 
23,494 mRNAs [33]. Probe IDs were generated on GPL570 platform and gene symbols 
were determined by Gencode.v29. Flow chart (Additional file 5: Fig. S1) displayed the 
flow chart of the current study. For survival analysis, GSE39582 dataset was used as 
model dataset and TCGA dataset was used as validation dataset.

Differentially expressed analyses

Differentially expressed analyses were performed between 480 tumor samples and 
41 normal samples. Log2 |fold change|> 1 and P value < 0.05 were defined as cut off 
values. Package “edgeR” was used to normalize the original expression values with 
Trimmed mean of M values method [34].

Immune gene

Immune genes were determined in Immunology Database and Analysis Portal data-
base [35]. Cistrome Cancer database was used to search transcription factors [36]. 
To screen transcription factors highly related with immune genes, |correlation coeffi-
cient|> 0.5 and P value < 0.01 were defined as cut-off values. Gene biological processes 
were identified through TISIDB database. Tumor immune infiltration indexes were 
calculated through single sample gene set enrichment analysis [37, 38].

Introduction of regression algorithms

The prediction of mortality risk based on individual level is helpful to optimize the 
level of individualized treatment for cancer patients. In order to provide the mortality 
probability of a special individual patient at all time points, some extended regression 
algorithms, including Cox proportional hazard regression model, Random Survival 
Forest model, and Multi-Task Logistic Regression model, were used to provide indi-
vidual mortality risk curves of cancer patients [39].

Cox proportional hazard regression algorithm

Cox proportional hazard regression model was carried out according to the original 
articles [40, 41]. The advantage of Cox proportional hazards regression analysis is that 
it can be applied to both measurement variables and classification variables. Mean-
while, Cox proportional hazards model can simultaneously show the impact of multi-
ple independent variables on survival outcome.

Random survival forest algorithm

Random survival forest is an integrated algorithm based on the combination of mul-
tiple decision trees with the following advantages: handling capacity of non-linear 
effect; evaluation of variable relative importance and selection of important variables 
according to the given threshold; exploration of the relationship between included 
variables and study outcomes [42, 43]. Based on the samples in original cohort, 
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bootstrap method was used to construct a lot of new trees for training the random 
survival forest [44]. For each branch node, the best combination of variables used 
to split the branch is generated based on the principle of maximizing the difference 
between the next branch groups. Random survival forest has been used in clinical 
research and showed good application ability in variable selection and outcome pre-
diction [43–46].

Multi‑task logistic regression algorithm

Multi-task logistic regression (MTLR) has been proposed for clinical medicine through 
combining multiple logistic regression models in a dependent way to establish a pre-
dictive function [47]. MTLR model can be used to predict the survival probability of 
an individual in a certain time range. MTLR model was superior to logistic regression 
model in goodness of fit and prediction performance [48]. Other details of machine 
learning algorithms could be found in our previous studies [25, 27–32, 49].

Statistical analyses

Statistical analyses were carried out by SPSS Statistics 19.0 (SPSS Inc., USA). Machine 
learning and bioinformatics analyses were performed by Python language and R soft-
ware language with appropriate packages and corresponding algorithms [25, 27–32, 49]. 
The top important packages included pec, rms, survival, rmda, ggplot2, GOplot, tim-
ereg, randomForestSRC, and riskRegression.

Results
Study datasets

Table  1 displayed clinical features of CRC patients. Ninety-eight patients out of 428 
patients died in TCGA dataset (validation) and 187 patients out of 556 patients died in 
GSE39582 dataset (model dataset).

Differentially expressed analyses

There were 4087 mRNAs identified by differentially expressed analyses in TCGA cohort. 
Meanwhile, there were 3588 immune genes identified in TCGA cohort. A total of 1384 
differentially expressed immune genes were found after intersecting the datasets of dif-
ferentially expressed genes and immune genes. Volcano chart (Additional file  5: Fig. 
S2A) identified 1384 differentially expressed immune genes (779 up-regulation and 605 
down-regulation).

Functional enrichment analyses

Gene Ontology chord chart (Fig. 1) and Bar chart (Additional file 5: Fig. S2B) showed 
that biological processes of immune genes were mainly enriched in: positive regulation 
of MAPK cascade, regulation of apoptotic signaling pathway, regulation of DNA-binding 
transcription factor activity, positive regulation of establishment of protein localization, 
leukocyte differentiation, regulation of leukocyte activation, cell recognition, positive 
regulation of stress-activated MAPK cascade, positive regulation of stress-activated pro-
tein kinase signaling cascade, and regulation of intrinsic apoptotic signaling pathway.
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Immune regulatory network

The original gene expression values were translated into ’1’ (as high expression) and ’0’ 
(as low expression) according to median values for both GSE39582 dataset and TCGA 
dataset. Univariate Cox regression identified 119 immune genes as prognostic biomark-
ers for overall survival (OS). Transcription factors that highly related with prognostic 
immune genes were identified according to previous thresholds. The associations among 
immune mRNAs and transcription factors were determined in STRING database. The 
regulatory network among immune genes and transcription factors was depicted by 
cytoscape v3.6.1 (Fig. 2).

Variable selection process

The current study first explored the relative importance of different independent vari-
ables through the random survival forest package. The top 30 important prognostic 

Table 1  Clinical features of included patients

Continuous variables were presented as mean ± standard deviation

Continuous variables were compared by t-test or the Kruskal–Wallis H test. Categorical variables were compared by the chi-
squared test or Fisher’s exact test

NA, missing data; AJCC, American Joint Committee on Cancer

TCGA​ GSE39582 P value

Number (n) 428 556

Death [n(%)] 98(22.9) 187(33.6)  < 0.001

Total survival time (mean ± SD, month) 29.8 ± 25.6 57.5 ± 38.3  < 0.001

Survival time for dead patients (month) 23.3 ± 22.7 37.4 ± 28.9  < 0.001

Survival time for living patients (month) 31.7 ± 26.1 67.6 ± 38.4  < 0.001

Age (mean ± SD, year) 66.5 ± 13.0 66.7 ± 13.3 0.825

Male [(n)%] 230(53.7) 306(55.0) 0.686

Stage 4 [n(%)] 60(14.0) 59(10.6)  < 0.001

Stage 3 [n(%)] 124(28.9) 203(36.5)

Stage 2 [n(%)] 163(38.1) 258(46.4)

Stage 1 [n(%)] 70(16.4) 31(5.6)

Stage (NA) [n(%)] 11(2.6) 4(0.7)

AJCC PT (T4) [n(%)] 51(11.9) 117(21.0)  < 0.001

AJCC PT (T3) [n(%)] 294(68.7) 360(64.7)

AJCC PT (T2) [n(%)] 72(16.8) 43(7.7)

AJCC PT (T1) [n(%)] 11(2.6) 12(2.2)

AJCC PT (NA) [n(%)] 0 24(4.3)

AJCC PN (N2) [n(%)] 76(17.8) 104(18.7)  < 0.001

AJCC PN (N1) [n(%)] 103(24.1) 131(23.6)

AJCC PN (N0) [n(%)] 249(58.2) 294(52.9)

AJCC PN (NA) [n(%)] 0 27(4.9)

AJCC PM (M1) [n(%)] 107(25.0) 60(10.8)  < 0.001

AJCC PM (M0) [n(%)] 315(73.6) 473(85.1)

AJCC PM (NA) [n(%)] 6(1.4) 23(4.1)

Lymphovascular invasion (yes/no/NA) 148/237/43 NA

Vascular invasion (yes/no/NA) 89/281/58 NA

Residual tumor (3/2/1/0/NA) 23/21/4/307/73 NA

Perineural invasion (yes/no/NA) 45/126/257 NA
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immune genes were displayed in Fig. 3. We puted the genes with potential prognostic 
value found in the random survival forest into the multivariate Cox proportional hazard 
regression model to further investigate the independent prognostic risk factors of tumor 
patients. Through the step-by-step iterative method of multivariate COX proportional 
hazard regression, we explored and ascertained the optimal prognostic model with the 
highest C index among different gene combinations. The final machine learning survival 
predictive system was established based on these prognostic genes in optimal prognostic 
model by using different machine learning algorithms.

Construction of prognostic model

Multivariate Cox regression identified twenty independent prognostic mRNAs for OS 
(Table2; Fig. 4). The formula of prognostic model was as following: Prognostic score = 
(− 0.542 * BCL2L12) + (0.479 * FKBP10) + (− 0.347 * XKRX) + (0.597 * WFS1) + (− 0.768 
* TESC) + (− 0.739 * CCR7) + (− 0.624 * SPACA3) + (0.628 * LY6G6C) + (0.530 * L1CAM
) + (0.709 * OSM) + (− 0.460 * EXTL1) + (0.602 * LY6D) + (0.583 * FCRL5) + (− 0.527 * M
YEOV) + (0.618 * FOXD1) + (− 0.389 * REG3G) + (0.433 * HAPLN1) + (− 0.472 * MAOB) 
+ (−  0.439 * TNFSF11) + (− 0.425 * AMIGO3). A prognostic nomogram was showed in 
Fig. 5. Therefore RFS model, MTLR model, and Cox model were all based on the previ-
ous 20 independent prognostic genes.

Additional file  5: Fig. S3 showed there were significant differences between survival 
curves of two subgroups for twenty immune mRNAs. Additional file 5: Fig. S4 and Fig. 

Fig. 1  Chord chart of immune genes
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S5 were predictive value distribution chart and survival status scatter chart performed 
by ggplot2 package, indicating that CRC patients with high prognostic scores tend to 
have a shorter survival time.

Performance of cox model in model cohort

Survival curve chart (Fig. 6A) indicated that there were significant differences between 
two groups for prognostic model. Concordance indexes were 0.852, 0.778, and 0.818 for 
1-year, 3-year, and 5-year survival (Fig. 6B). Calibration curves (Additional file 5: Fig. S6) 
showed good agreements between predicted mortality and actual mortality.

Performance of cox model in validation cohort

Survival curves (Fig. 7A) demonstrated the mortality of high risk group was significantly 
poorer than that of low-risk group. Concordance indexes were 0.894, 0.866, and 0.769 
for 1-year, 3-year, and 5-year survival (Fig. 7B). Additional file 5: Fig. S7 showed calibra-
tion curves of validation cohort.

Correlation analyses

Correlation analyses (Fig.  8) showed prognostic score was positively correlated with 
pathological stage, the American Joint Committee on Cancer (AJCC) PM, AJCC PT, and 
AJCC PT. Additional file  5: Fig. S8 presented correlation significance between clinical 
variables and immune genes.

Fig. 2  Immune genes regulatory network chart. Note: The red triangle represents the transcription factor and 
the green circle represents the immune gene



Page 8 of 24Zhang et al. BMC Bioinformatics          (2022) 23:124 

Independence assessment

Prognostic model, AJCC PM, and age were independent risk factors for OS in model 
cohort (Table 3). In validation cohort, prognostic model, AJCC PM, AJCC PT, and age 
were ascertained to be independent risk factors for OS.

Subgroup analyses

Subgroup analyses were performed to explore the discriminate ability of prognostic 
model in different pathological stages. The results showed that the prognostic model has 
reliable discriminative ability in all pathological stages for model group and validation 
group (Fig. 9).

Random survival forest model

Random survival forest (RFS) model was build for predicting OS based on previous 
immune genes. Random survival forest error rate chart (Additional file 5: Fig. S9) indi-
cated that the model error rate dynamic changes according to different tree numbers. 
The predictive performance of RFS model was summarized in Additional file 5: Fig. S10.

Survival curves (Additional file 5: Fig. S11A) demonstrated the mortality of high risk 
group was significantly higher than that of low-risk group. Concordance indexes were 

Fig. 3  Variable importance assessment chart in random survival forest
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Table 2  Information of prognostic immune genes

HR, hazard ratio; CI, confidence interval

Immune gene Univariate analysis P value Multivariate analysis P value

HR 95% CI Coefficient HR 95% CI

BCL2L12 (high/low) 0.576 0.430–0.773 0.001 − 0.542 0.581 0.424–0.798 0.001

FKBP10 (high/low) 1.723 1.281–2.318 0.001 0.479 1.615 1.169–2.231 0.004

XKRX (high/low) 0.638 0.477–0.853 0.002 − 0.347 0.707 0.520–0.961 0.027

WFS1 (high/low) 1.500 1.122–2.006 0.006 0.597 1.817 1.320–2.503 0.000

TESC (high/low) 0.694 0.519–0.927 0.013 − 0.768 0.464 0.328–0.657 0.000

CCR7 (high/low) 0.691 0.517–0.924 0.013 − 0.739 0.478 0.348–0.656 0.000

SPACA3 (high/low) 0.696 0.521–0.929 0.014 − 0.624 0.536 0.390–0.736 0.000

LY6G6C (high/low) 1.597 1.194–2.138 0.002 0.628 1.873 1.374–2.553 0.000

L1CAM (high/low) 1.585 1.183–2.122 0.002 0.530 1.699 1.248–2.314 0.001

OSM (high/low) 1.478 1.104–1.980 0.009 0.709 2.031 1.457–2.832 0.000

EXTL1 (high/low) 0.739 0.554–0.986 0.040 − 0.460 0.631 0.458–0.870 0.005

LY6D (high/low) 1.501 1.122–2.008 0.006 0.602 1.826 1.329–2.508 0.000

FCRL5 (high/low) 1.382 1.034–1.847 0.029 0.583 1.791 1.316–2.438 0.000

MYEOV (high/low) 0.709 0.531–0.948 0.020 − 0.527 0.590 0.433–0.805 0.001

FOXD1 (high/low) 1.343 1.006–1.791 0.045 0.618 1.856 1.350–2.552 0.000

REG3G (high/low) 0.730 0.546–0.975 0.033 − 0.389 0.678 0.491–0.936 0.018

HAPLN1 (high/low) 1.385 1.037–1.851 0.028 0.433 1.542 1.133–2.099 0.006

MAOB (high/low) 0.700 0.524–0.936 0.016 − 0.472 0.624 0.458–0.850 0.003

TNFSF11 (high/low) 0.716 0.536–0.956 0.024 − 0.439 0.645 0.475–0.875 0.005

AMIGO3 (high/low) 0.694 0.519–0.928 0.014 − 0.425 0.654 0.476–0.899 0.009

Fig. 4  Immune gene survival forest chart
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0.890, 0.869, and 0.899 for 1-year, 3-year, and 5-year survival (Additional file  5: Fig. 
S11B). Additional file 5: Fig. S12 showed calibration curves of RFS model.

Multi‑task logistic regression model

We further constructed Multi-task logistic regression (MTLR) model to predict OS for 
CRC patients. Survival curves (Additional file  5: Fig. S13A) demonstrated the mortal-
ity of high risk group was significantly higher than that of low-risk group. Concordance 
indexes were 0.841, 0.780, and 0.826 for 1-year, 3-year, and 5-year survival (Additional 
file 5: Fig. S13B). Additional file 5: Fig. S15 showed calibration curves of MTLR model.

Comparisons of three prognostic models

Figure 10 demonstrated the dynamic changes of areas under the receiver operating char-
acteristic curves for three prognostic models, suggesting that RFS model was superior 
to MTLR model and Cox model (The solid line represents the AUROC value, and the 
dash line represents the 95% confidence interval of the AUROC value in Fig. 10). Time 
dependent ROC curve analyses suggested that concordance index of RFS model was 
superior to that of MTLR model and Cox model for 1-year, 3-year, and 5-year survival 
(Fig.  11). The further comparisons demonstrated that the concordance index of RFS 

Fig. 5  Prognostic nomogram chart
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model was superior to that of Cox model except for 12 months, whereas concordance 
index of RFS model was superior to that of MTLR model for all time points (Table 4). 

Fig. 6  Clinical performance in model cohort: a Survival curves for high risk group and low risk group; b 
Time-dependent receiver operation characteristic curves
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The Brier score of RFS model, MTLR model, and Cox model were 0.144, 0.208, and 
0.150, indicating diagnostic accuracy of RFS model was superior to that of MTLR model 
and Cox mode.

Fig. 7  Clinical performance in validation cohort: a Survival curves for high risk group and low risk group; b 
Time-dependent receiver operation characteristic curves
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Machine learning survival predictive system

Machine learning survival predictive system was constructed for individual mortality risk 
prediction for CRC patients (Fig. 12), which was available at: https://​zhang​zhiqi​ao8.​shiny​
apps.​io/​Artif​icial_​Intel​ligen​ce_​Survi​val_​Predi​ction_​for_​CRC_​B1005_1/.

Machine learning survival predictive system provided individualized mortality risk pre-
dictive curve based on three machine learning algorithms: RFS model (Fig. 12A), MTLR 
model (Fig. 12B), and Cox model (Fig. 12C). Additionally, MTLR algorithm further pro-
vided median survival time in Fig. 12B. Cox survival regression algorithm provided pre-
dicted mortality percentage and 95% confidence interval for selected time points in 
Fig. 12D.

Fig. 8  Correlation coefficient heatmap between immune genes and clinical variables

https://zhangzhiqiao8.shinyapps.io/Artificial_Intelligence_Survival_Prediction_for_CRC_B1005_1/
https://zhangzhiqiao8.shinyapps.io/Artificial_Intelligence_Survival_Prediction_for_CRC_B1005_1/
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Table 3  Results of cox regression analyses

The median of Prognostic model scores was used as the cut-off value to stratify gastric cancer patients into high risk group 
and low risk group

AJCC, the American Joint Committee on Cancer; HR, hazard ratio; CI, confidence interval

Variable Univariate analysis P value Multivariate analysis P value

HR 95% CI Coefficient HR 95% CI

Model cohort (n = 556)

 Gender (male/female) 1.323 0.987–1.774 0.061 0.276 1.318 0.976–1.779 0.071

 Age (high/low) 1.023 1.011–1.036  < 0.001 0.031 1.032 1.019–1.045  < 0.001

 Stage (3–4/1–2) 1.824 1.364–2.439  < 0.001 0.457 1.580 0.877–2.846 0.128

 AJCC PM (1–2/0) 4.851 3.389–6.945  < 0.001 1.353 3.870 2.567–5.832  < 0.001

 AJCC PN (1–4/0) 1.456 1.091–1.943 0.011 − 0.244 0.784 0.454–1.352 0.381

 AJCC PT (3–4/1–2) 2.036 1.042–3.979 0.037 0.457 1.579 0.805–3.100 0.184

 Prognostic model (high/low) 4.921 3.472–6.974  < 0.001 1.467 4.337 3.046–6.174  < 0.001

Validation cohort (n = 428)

 Gender (male/female) 1.125 0.755–1.678 0.562 − 0.133 0.875 0.583–1.313 0.520

 Age (high/low) 1.018 1.002–1.035 0.031 0.034 1.035 1.018–1.052  < 0.001

 Stage (3–4/1–2) 2.780 1.842–4.197  < 0.001 0.542 1.719 0.531–5.565 0.366

 AJCC PM (1–2/0) 3.073 2.057–4.593  < 0.001 0.773 2.166 1.403–3.343  < 0.001

 AJCC PN (1–4/0) 2.688 1.785–4.047  < 0.001 0.448 1.565 0.511–4.799 0.433

 AJCC PT (3–4/1–2) 3.299 1.442–7.550 0.005 0.949 2.582 1.082–6.163 0.033

 Prognostic model (high/low) 6.787 4.212–10.940  < 0.001 2.092 8.101 4.945–13.270  < 0.001

Fig. 9  Subgroup survival analysis curve chart
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Gene survival analysis screen system

Gene Survival Analysis Screen System was constructed for exploratory research of 
immune genes (Additional file 5: Fig. S15), which was available at: https://​zhang​zhiqi​
ao8.​shiny​apps.​io/​Gene_​Survi​val_​Subgr​oup_​Analy​sis_​18_​CRC_​B1005/.

Shapley additive instruction

Shapley additive instruction (SHAP) is a method that can be used to interpret the 
output of machine learning models. In order to show the importance of included 
prognostic genes in the prognostic model and its effect on prognosis, we drew the 
SHAP values of 20 included prognostic genes for each patient. The SHAP value dis-
tribution chart of different genes showed the direction and degree of the influence of 
each prognostic gene on the output of the model (Fig. 13). Each point in the Fig. 13 
represents an individual patient. Red represents a high SHAP value, and blue repre-
sents a lower SHAP value.

Discussion
The current study identified twenty immune genes as prognostic markers for over-
all survival of colorectal cancer. Through protein–protein interaction regulatory 
network, the current research described potential regulatory relationships among 
immune genes and transcription factors. Through three machine learning algorithms, 
the current research established an individual mortality risk predictive system for 
CRC patients. Based on individual mortality risk curves predicted by three machine 

Fig. 10  Predictive performance of three prognostic models. Note: The solid line represents the AUROC value, 
and the dash line represents the 95% confidence interval of the AUROC value

https://zhangzhiqiao8.shinyapps.io/Gene_Survival_Subgroup_Analysis_18_CRC_B1005/
https://zhangzhiqiao8.shinyapps.io/Gene_Survival_Subgroup_Analysis_18_CRC_B1005/
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Fig. 11  Comparison of areas under receiver operating characteristic curves: 1-year (a), 3-year (b) and 5-year 
(c)
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learning algorithms, our machine learning survival predictive system could accurately 
predict the individual mortality risk of CRC patients.

The previous prognostic models provided predicted mortality percentages for dif-
ferent subgroups, but not the individual mortality risk curve for a special patient [23, 
24]. Based on different machine learning algorithms, the current study provided three 
individual mortality risk predictive curves. The results of three individual mortality 
risk predictive curves were similar to a certain extent, providing a reliable individual 
mortality risk predictive method for CRC patients. Meanwhile, the current study fur-
ther provided median survival time, predicted mortality percentage, and 95% confi-
dence interval, which were superior to previous prognostic models.

As a non-parametric algorithm for Time-to-event data, random survival forest was 
regarded as a better method for prognostic prediction and variable selection [50, 51]. 
Random survival forest could solve the multicollinearity problem and was suitable for 
high dimensional survival data [52]. Because of high flexibility and non-parametric 
characteristics, random survival forest has been used for biomedical high dimen-
sional survival data [53, 54]. The predictive accuracy of RSF model was superior to 
that of Cox model in cardiac arrhythmias patients [52]. Similar to the previous study 
[52], concordance indexes and Brier score suggested that the predictive accuracy of 
RFS model was superior to that of Cox model in current study. To date, there were 
few researches on MTLR model for prognostic studied.

Biological processes of immune genes were determined through TISIDB database. 
Major biological processes of tumor necrosis factor (ligand) superfamily, member 11 
(TNFSF11) were leukocyte differentiation, acute inflammatory response, and regula-
tion of leukocyte activation. Major biological processes of regenerating islet-derived 3 
gamma (REG3G) were activation of innate immune response, toll-like receptor signaling 
pathway, and acute inflammatory response. Major biological processes of lymphocyte 
antigen 6 complex, locus D (LY6D) were leukocyte differentiation, lymphocyte differen-
tiation, and response to stilbenoid. Major biological processes of sperm acrosome asso-
ciated 3 (SPACA3) were response to virus, phagocytosis, and regulation of leukocyte 
activation. Major biological processes of chemokine (C–C motif ) receptor 7 (CCR7) 
were dendritic cell chemotaxis, dendritic cell antigen processing and presentation, and 
establishment of T cell polarity. Major biological processes of BCL2-like 12 (BCL2L12) 
were aging, negative regulation of peptidase activity, and negative regulation of prote-
olysis. Major biological processes of FK506 binding protein 10 (FKBP10) were protein 

Table 4  Comparison of areas under receiver operating characteristic curves

AUROC, areas under receiver operating characteristic curves; RFS, random survival forest; MTLR, multi-task logistic 
regression

Time point AUROC Paired comparison

RFS MTLR Cox RFS versus MTLR RFS versus Cox MTLR versus Cox

12 0.890 0.841 0.852 0.027 0.055 0.236

24 0.864 0.786 0.791 0.001 0.001 0.847

36 0.869 0.780 0.778 0.001 0.001 0.983

48 0.896 0.821 0.818 0.001 0.001 0.942

60 0.899 0.826 0.818 0.001 0.001 0.370
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peptidyl-prolyl isomerization, protein folding, and peptidyl-proline modification. Major 
biological processes of tescalcin (TESC) were negative regulation of protein kinase activ-
ity, leukocyte differentiation, and protein targeting to membrane. Major biological pro-
cesses of L1 cell adhesion molecule (L1CAM) were axonogenesis, positive regulation 
of cell growth, and regulation of cell size. Major biological processes of oncostatin M 
(OSM) were acute inflammatory response, positive regulation of defense response, and 
positive regulation of response to external stimulus.

Fig. 12  Home page of artificial intelligence survival prediction. A Predictive personal survival curve by 
random survival forest. B Predictive personal survival curve by multi-task logistic. C Predictive personal 
survival curve by Cox survival regression. D Mortality rate and 95% confidence interval by Cox survival 
regression



Page 19 of 24Zhang et al. BMC Bioinformatics          (2022) 23:124 	

The prognosis of BCL2L12 negative colon cancer patients was significantly poorer 
than that of BCL2L12 positive colon cancer patients [55]. High CCR7 positive cell 
density was significantly related to prognosis in colorectal cancer [56]. Colorectal can-
cer patients with high expression of L1CAM have higher risk of early metastasis [57]. 
FKBP10 might play an important role in the development of gastric cancer through cell 
adhesion molecules and extracellular matrix receptors [58]. High expression of HAPLN1 
could upregulate the tumorigenicity of mesothelioma [59]. OSM was negative correlated 
with poor survival in breast cancer patients [60]. LY6D immunoreactivity was related 
to the invasiveness of ER positive breast cancer patients [61]. MYEOV stimulated the 
migration of colorectal cancer cells and promoted the proliferation and invasion of colo-
rectal cancer [62]. FOXD1 promoted the progression of colorectal cancer through ERK 
1/2 pathway [63].

Previous study suggested that immune microenvironment was closely related to tumo-
rigenesis [14, 64]. F nucleus might inhibit anti-tumor immune response by reducing the 
density of CD4+ T cells in colorectal cancer [65]. PD-L1 promoted the development of 
colon cancer by reducing the antitumor immunity of CD8+ T cells [66]. FOXM1 inhib-
ited the maturation of dendritic cells in colorectal cancer [67]. There was a correlation 
between the activity of natural killer cells and the development of tumor [68]. There was 
a negative correlation between eosinophil count values and risk of colorectal cancer [69]. 
Macrophage migration inhibitory factor could regulate the development of colorectal 
cancer [70]. High mast cell density indicates good prognosis for colon cancer [71]. High 
expression of monocyte was related to the poor prognosis of CRC patients [72]. Neutro-
phil to lymphocyte ratio was related with prognosis of colorectal cancer patients [73].

The current research established an individual mortality risk predictive system for 
CRC patients with the following advantages: First, based on three machine learning 
algorithms, the current research provided three individual mortality risk predictive 
curves, which was valuable for individualized treatment decision before surgery. These 
three prognostic models provided strong support for each other’s reliability. Second, 

Fig. 13  Shapley additive instruction distribution chart of included genes
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the current Machine learning survival predictive system provided median survival time, 
predicted mortality percentage, and 95% confidence interval, which were important for 
improving individualized treatment decision.

Shortcomings: First, the mortality rates in model group and validation group were 
22.9% and 33.6%, respectively. High censoring rates of study datasets might weaken 
the convincing power of accuracy evaluation of prognostic models to a certain extent. 
Second, as a prognostic model, the sample size of the current research was relatively 
small, which was not enough to provide a convincing conclusion for clinical application. 
Third, large sample size and high quality follow-up management are very important for 
tumor long-term prognostic study. However, independent external verification cohorts 
often require a large sample size, long-term follow-up management and a large amount 
of research funding. It is very difficult for small research teams to set up a private inde-
pendent external validation cohort. Therefore we selected external verification cohort 
(from GEO database) as external validation cohort. Fourth, several important variables, 
including information of radiotherapy, chemotherapy, and biotherapy, were not included 
in the current analysis. Fifth, GSE39582 dataset lacks some important basic information 
such as lymphovascular invasion, vascular invasion, residual tumor, and perineural inva-
sion, affecting the general judgment of the model to a certain extent. Prospective, multi-
center, and large sample size clinical studies are helpful to verify the clinical application 
value of the current prognostic model. Sixth, The tumor samples (n = 480) and normal 
samples (n = 41) are highly imbalanced in TCGA cohort for differentially expressed 
analyses. The sample imbalance may affect the results of differential expression analysis 
to some extent, thus affecting the differentially expressed genes. Considering the prob-
lem of sample imbalance, the differentially expressed genes in the current study need to 
be confirmed by larger sample size and more balanced data set.

Conclusion
In conclusion, the current study identified twenty prognostic immune genes for CRC 
patients and constructed an immune-related regulatory network. Based on three 
machine learning algorithms, the current research provided three individual mor-
tality predictive curves. The Machine learning survival predictive system was avail-
able at: https://​zhang​zhiqi​ao8.​shiny​apps.​io/​Artif​icial_​Intel​ligen​ce_​Survi​val_​Predi​ction_​
for_​CRC_​B1005_1/, which was valuable for individualized treatment decision before 
surgery.
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