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Abstract: It was previously shown that the connexin gene family had relatively similar subfamily
structures in several vertebrate groups. Still, many details were left unclear. There are essentially no
data between tunicates, which have connexins that cannot be divided into the classic subfamilies, and
teleosts, where the subfamilies are easily recognized. There are also relatively few data for the groups
that diverged between the teleosts and mammals. As many of the previously analyzed genomes have
been improved, and many more genomes are available, we reanalyzed the connexin gene family and
included species from all major vertebrate groups. The major results can be summarized as follows:
(i) The same connexin subfamily structures are found in all Gnathostomata (jawed vertebrates), with
some variations due to genome duplications, gene duplications and gene losses. (ii) In contrast to
previous findings, birds do not have a lower number of connexins than other tetrapods. (iii) The
cyclostomes (lampreys and hagfishes) possess genes in the alpha, beta, gamma and delta subfamilies,
but only some of the genes show a phylogenetic affinity to specific genes in jawed vertebrates.
Thus, two major evolutionary transformations have occurred in this gene family, from tunicates to
cyclostomes and from cyclostomes to jawed vertebrates.

Keywords: cartilaginous fishes; connexins; evolution; gap junctions; lamprey; phylogeny; vertebrates

1. Introduction

Connexins are transmembrane proteins that aggregate into hexameric structures called
connexons, and connexons from adjacent cells further line up with each other to form a
channel that can connect the cytoplasms in the two neighboring cells (reviewed by Har-
ris [1]). The channels further aggregate into smaller or larger plaques, called gap junctions,
named after the small gap between the neighboring cell membranes, which contrasts with
the tight apposition of the membranes in the tight junctions. These channels are regulated
by many mechanisms, including numerous cell-signaling systems [2], which may affect
the connexins at every stage in their life cycle, from gene expression via the gating of
the channels (opening and closing behaviors) to their degradation [1]. The physiological
importance of connexins is indicated by the links with several genetic diseases [3] but,
also, by being implicated in major human diseases like cancer and heart and coronary
diseases [4–6].

In humans, the connexin family consists of 21 potentially functional members, includ-
ing the little studied GJE1 (connexin23) [7], and some additional pseudogenes [8,9]. The
Human and Mouse Gene Nomenclature Committees have decided that the genes should
be named according to their subfamilies [10,11]: gap junction protein gene subfamily alpha
(GJA), beta (GJB), gamma (GJC), delta (GJD) and epsilon (GJE), followed by a number
indicating (more or less) their chronology of detection. The proteins are generally named
“connexin”, followed by a number constituting the protein’s predicted molecular weight
in kDa, which is independent of the subfamily. Formally, only humans and rodents have
received a Greek nomenclature, but as stated by the Zebrafish Nomenclature Conventions:
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“ . . . genes should be named after the mammalian ortholog whenever possible” [11]. Here,
we understand orthologs as genes originating from a single ancestral gene in the last
common ancestor of the compared genomes [12,13], i.e., it is the same gene in different
species. The remaining genes in the gene family are called paralogs [12,13]. For conve-
nience, here, we refer to the genes (and their corresponding mRNAs) as “connexin” genes,
but when referring to specific genes, we will use their abbreviated formal names (or sug-
gested amended names, where these are formally more correct). We also note that a novel
connexin nomenclature was recently proposed for eutherian mammals [14], with CXN
followed by a letter in alphabetical order (CXNA to CXNU). However, other vertebrates
than placental mammals were not considered in this suggestion [14].

In the early years of connexin research, it was difficult to find a consistent interspecies
pattern of family relationships for all the connexin genes, and it was suggested that several
connexins were species-specific and group-specific [15]. However, a study of connexin
genes across mammals indicated that some of the presumed species–specific connexins
could in fact be found in many species [8]. Subsequent studies were extended into birds
(chicken), amphibians (Xenopus tropicalis) and teleost fishes [16–18], and it became clear
that, although several gene losses or gene duplications occurred during evolution, the
basic structure of the connexin family was well-established in teleosts [17]. Between the
divergence of teleosts 250–350 million years ago [19–21] until the appearance of placental
mammals around 100 million years ago [22], several gene losses and gene duplications
occurred in the connexin family. Furthermore, the previous results suggested that birds
had a smaller connexin family than other vertebrates, with only 16 members [17], which
seemed to follow the pattern of supposed gene loss in birds [23–25].

Although the previous analyses indicated a relatively clear gene family history among
the vertebrates from teleosts to mammals, there were some gaps, as there were no available
genomes from certain vertebrate groups (like several reptile groups, lobe-finned fishes
and non-teleost ray-finned fishes), or the number of genomes was limited to one animal
per group (like birds and amphibians) [16,17]. Even more importantly, the early evolution
of the connexin family is unclear. The tunicates are the most primitive organisms where
connexins genes have been found [17,26,27], but the tunicate connexins did not display
any evident subfamily structure similar to that found in vertebrates, and they did not have
any strong phylogenetic affinity to any of the vertebrate genes [17]. The only information
available between the unorganized connexin family in tunicates and the highly structured
connexin family with a full-blown subfamily structure in teleosts (the “standard” bony
fishes) is a single glimpse of a connexin from a cartilaginous fish: O’Brien et al. [28] cloned
Cx35 from little skate (Raja erinacea; now Leucoraja erinacea), a connexin that had high
resemblance to the subsequently identified mammalian Cx36 (GJD2) [29]. Otherwise, there
seems to be a lack of studies in cartilaginous fishes to this day, and we do not know whether
this group of fishes has a well-expanded and structured connexin family or not.

During the last decade, many genomes from different vertebrate groups have become
available. Despite that many of the assemblies have been subject to a high level of au-
tomatic annotation of genes, i.e., the predicted genes are present in the major databases,
most of the predicted genes have not been manually curated or analyzed. The many new
genome assemblies make it possible to get a clearer picture of both the early evolution of
this gene family and the changes that subsequently occurred. Here, we extend the previous
analyses [17,18]. First, we increased the number of representatives in amphibians and birds.
Second, and much more importantly, we added several vertebrate groups that have not
been analyzed before, including several Reptilia groups (Crocodylia [30,31]; Testudines
(turtles) [32]; Squamata (lizards and snakes) [33]); the lobe-finned fish Latimeria [34]; the
non-teleost ray-finned fish groups Holostei (with spotted gar as the representative [35])
and Chondrostei (consisting of the paraphyletic groups Acipenseriformes with sterlet
sturgeon [36] and Polypteriformes with reedfish as representatives, respectively); Chon-
drichthyes (with whale shark [37], little skate [38,39] and elephant shark [40] as the main
representatives) and, finally, Cyclostomata (with three species of lamprey [41–43] and one
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species of hagfish as the representatives). These analyses of the connexin gene family
constitute the widest collection of vertebrate groups performed to date.

2. Results

The simplified chart of the involved species is shown in Figure 1. The mammalian
genomes are considered as the starting points of the annotation and naming of genes and,
by extension, also the gene family structures and substructures. We therefore used the mam-
malian connexin genes and family structures as the comparative basis for this investigation.
For the nonmammalian connexin groups, we mainly followed our recently suggested
nomenclature [9], which is consistent with the established mammalian nomenclature, and
any deviation will be specified.

Figure 1. Simplified overview of the relationships between the involved species. The abbreviations given in parentheses
(rightmost) refer to the species abbreviations used in the present work. The groups outlined in green and blue font belong to
the paraphyletic groups Chondrostei and Reptilia, respectively. Note that, formally, Aves also belongs to the Reptilia group.
The tree itself is loosely based on https://en.wikipedia.org/wiki/Chordate, https://en.wikipedia.org/wiki/Vertebrate and
https://en.wikipedia.org/wiki/Tetrapod, from which many of the animal illustrations are taken. The main species from
which we tried to collect all their connexins sequences are indicated without square brackets, while the supplementary
sequences were collected from the species in square brackets.

All sequences with accession numbers (where appropriate) or scaffold accession
numbers and positions (where appropriate) are found in Supplementary Figures S1–S43.
The conserved domains, which are used in the phylogenetic analyses, are marked on

https://en.wikipedia.org/wiki/Chordate
https://en.wikipedia.org/wiki/Vertebrate
https://en.wikipedia.org/wiki/Tetrapod
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the sequences, and (where appropriate) further comments are also given. As a general
remark, we would like to point out that, in some species, there are certain connexin-like
genes that are not included in the present phylogenetic analyses, and some of them might
constitute another subfamily (for example, Ensembl zebrafish ENSDARG00000086255;
Rachel Lukowicz and Adam Miller, personal communication).

A typical compressed phylogenetic tree for the connexin gene family in vertebrates
(excluding the cyclostomes) is shown in Figure 2. The expanded branches are found in
Supplementary Figures S44–S68. The GJE1 orthogroup was excluded from this tree, as its
quite deviating sequence caused long-branch attraction [44,45] and ripped the GJC3 group
apart and, further, caused other positional rearrangements in the tree. A tree with the GJE1
group can be seen in Supplementary Figure S69, and the expanded GJE1 branch is seen in
Supplementary Figure S70.

Several tree-building methods and substitution matrices were used, using both amino
acid sequences and nucleotide sequences (with only positions 1 and 2 in the codons). The
results are summarized in Supplementary Table S1. The phylogenetic analyses strongly
indicated that the vertebrate groups that have not been previously investigated (crocodiles,
turtles, lizards, Latimeria, the two Chondrostei groups, Holostei and cartilaginous fishes),
or previously only been represented by a single species (birds and amphibians), did follow
the patterns previously established [8,9,17,18] for the connexin subfamilies. A vertebrate
group or a single species within a vertebrate group could lack a gene found in closely
related species or groups, or, vice versa, gene duplications could have occurred within a
specific species or vertebrate group.

The different methods and models generally gave quite similar results. Some or-
thogroups were always united: GJA1, gja2, GJA3, GJA5, GJA8, GJA9, gja14, GJB1, GJB3,
GJB7, gjb9, gjb11, GJC2, GJD3, GJD4, GJD5, gjd6 and GJE1 (upper case letters indicate the
inclusion of mammalian sequences in the orthogroup). Most of these orthogroups had
representatives from (nearly) all vertebrate groups, but some of them had more restricted
representation from only some of the vertebrate groups, and gjb11 only contained sequences
from cartilaginous fishes.

For a few orthogroups, some of the models made specific vertebrate groups (like
teleosts) split off from the remaining orthogroup (GJA4, GJA10, gja11, GJB4, GJB5, gjb8,
gjb10, GJC1, GJC3 and gjc4), but overall, we are still convinced that the sequences do belong
to the same orthogroup, because (i) other the models did not split these orthogroups and
(ii) synteny considerations support orthology (data not shown). Therefore, the orthology
makes biological sense.

In some models, especially combined with a gamma value of 0.7–0.9 (as indicated
by the model selection using all vertebrate sequences), a few of the orthogroups became
highly fragmented. This especially concerned GJD1, but setting a gamma value of 1 (or
higher) caused the sequences from the different vertebrate groups to collect into more
united orthogroups. Additionally, there were single sequences that sometimes split off from
their normal orthogroup and were located as singletons. However, the lack of consistent
behavior (i.e., the sequence did not always split off; sometimes, other sequences split
off, and the split-off sequence is not always located in the same way) makes us consider
these sequences as members of the orthogroup that they are usually located within (or
adjacent to).

Below, we will only point out some of the most interesting features, starting with
genome duplications and ohnologies.



Int. J. Mol. Sci. 2021, 22, 1584 5 of 21

Figure 2. Compressed phylogenetic tree for connexins, except GJE1, in jawed vertebrates. The
orthologous gene groups are indicated by their Greek nomenclature, using upper case letters if
mammalian sequences are included in the orthogroup and lower-case letters if mammalian sequences
are not included in the group. Sequences belonging to the gje1/GJE1 group are not included in this tree
(see text). The letters at each branch signify the vertebrate groups as follows: A, Placental mammals,
B, Marsupials, C, Monotremata (platypus), D, Aves (birds), E, Crocodylia, F, Testudines (turtles),
G, Squamata (lizards and snakes), H, Amphibia, I, Lobe-finned fish (Latimeria), J, Chondrostei—
Polypteriformes (reedfish), K, Chondrostei—Acipenseriformes (sturgeons), L, Holostei (spotted gar),
M, Teleostei and N, Chondrichthyes (cartilaginous fishes). A space is left in the sequence of the
letters to make it more evident that one or more groups are lacking that particular gene. The tree was
constructed on the basis of the amino acid sequence (205 positions and 559 sequences) of the conserved
domains by the Neighbor-Joining method using the Jones–Taylor–Thornton (JTT) substitution matrix
and with the rate variations among the sites corresponding to a gamma value = 1.1. Bootstrap
statistics are shown at the branching points (500 iterations). Bootstrap values below 30 are not shown.
The compressed branches are shown in expanded form in Supplementary Figures S44–S68.
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2.1. On Genome Duplications and Ohnology

The early teleosts went through genome duplication around 250 to 350 million years
ago [19–21]. Signals from that genome duplication are found as duplicated genes on
different chromosomes, called ohnologs [46,47]. Several teleost connexins show ohnol-
ogy [9,17]. The exact number of detected teleost ohnologous pairs varies with the species
but are often in the area of 10–14 pairs [9]. The average teleost ohnolog identities (as mea-
sured by the full-length nucleotide sequences) were around 82% in eels (range 71.4–90.7%)
(Supplementary Table S2), 76% in herring (range 69.1–82.8%) (Supplementary Table S3)
and 72% in zebrafish (range 67.3–82.0%) (Supplementary Table S4).

According to several recent papers [36,48], sturgeons have gone through an in-
dependent genome duplication, and in certain species of sturgeons, there could even
have been several genome duplications [49]. Consistent with that notion, we found
duplicated sequences for nearly all sterlet sturgeon connexins, with 23 ohnolog pairs
(Supplementary Table S5) (note that there are more than two genes in some “pairs”, but
we do not know whether this is a genetic reality or caused by erroneous genome assembly).
The average ohnolog identity in the sterlet was nearly 97% at the nucleotide level (range
88.4–99.2%; Supplementary Table S5). This strongly supported fully independent genome
duplications in teleosts and in sturgeons, but the estimates of the timing of the sturgeon
genome duplication vary widely, from 21 [48] to 180 [36] million years ago. Due to the
independent genome duplications, we use upper case “A/B” for the sturgeon ohnologs
and lower case “a/b” for the teleost ohnologs. For simplicity, we only used the sterlet
sturgeon ohnolog “A” in the phylogenetic analyses (with a single exception for gje1, where
the A ohnolog might be a pseudogene), but all sequences and their genomic locations are
found in Supplementary Figure S28 and Supplementary Table S5. Please see Discussion for
further details about naming the “a” and “b” ohnologs.

2.2. Chondrichthyes, Actinopterygii (Chondrostei, Holostei and Teleostei) and Sarcopterygii

The ray-finned fishes, Actinopterygii, consist of four subgroups: (i) Teleostei, which
by far constitutes the most species-rich group within bony fishes and that went through a
genome duplication before the species radiation [19,20]. (ii) Holostei, which diverged just
before the teleost genome duplication. There are also two earlier diverging paraphyletic
subgroups of Chondrostei, consisting of (iii) Polypteriformes and (iv) Acipenseriformes
(see Figure 1 for overview).

Based on previous analyses including only mammalian and teleost sequences, we
recently suggested that the teleost-specific genes best known as cx32.2, cx32.3, cx34.5, cx32.7,
cx28.1, cx28.9, etc. (using zebrafish as the example), which all are closely related and
located in the vicinity of each other on the same chromosome, should be classified as gja11
(cx34.5 and cx32.7), gja12 (cx28.1 and cx28.9) and gja13 (cx32.2 and cx32.3) [9]. In the present
work, we point out that gja11 is also found in non-teleost fishes (including cartilaginous
fishes and in the lobe-finned fish Latimeria; the only exception being the polypteriformian
reedfish). Gja11 is thus common to nearly all groups of cartilaginous and bony fishes.
On the other hand, gja12 and gja13 were only found in teleosts. With the close positional
link between gja11, gja12 and gja13 on a single teleost chromosome and their sequence
similarities, it is very likely that gja12 and gja13 were generated by two gene duplications
(and, in some species, like zebrafish, more than two gene duplications) from gja11 after the
teleost genome duplication. As the gja11/gja12/gja13 names already are in use for new
zebrafish entries in GenBank (since November 2020), here, we will stick to these names,
although we are presently inclined to suggest that gja12 and gja13 should be fused into
gja12 and, hence, be named gja12.1/.2/.3/.4, etc. In zebrafish, with its additional gene
duplication(s), the suggested names would be gja12.1.1, gja12.1.2, gja12.2.1, gja12.2.2, etc.
Since gja13, for the time being, is occupied, a new gja5-related connexin that has (as yet)
only been found in Holostei, Acipenseriformes and Latimeria will be called gja14.

Chondrichthyes have a new gene in the beta subfamily, which we suggest naming
gjb11. This gene is located phylogenetically at the very base of the beta subfamily, and we



Int. J. Mol. Sci. 2021, 22, 1584 7 of 21

do not know whether this gene has evolved into one or more of the previously recognized
gjb genes that are found in Actinopterygii or higher vertebrates. Considering that chon-
drichthyans had genes in both main arms of the gjb part of the phylogenetic tree (i.e., GJB1
and gjb8/GJB2/GJB6 in the one arm and GJB7 and GJB3/gjb9/gjb10/GJB4/GJB5 in the
other arm), we think it is most likely that gjb11 either was lost before the actinopterygian
divergence or that the gene was generated in the line leading to chondrichthyans.

Chondrichthyes had three sets of gjb3-related genes closely positioned on the same
chromosome (Supplementary Table S6), where two of the sets were phylogenetically always
located together with gjb3, while the third set was variably located together with gjb3 or
towards gjb10. Note that gjb3, gjb9 and gjb10 are chromosomally linked in all investigated
teleosts (chromosome 17 in zebrafish) and, also, in other vertebrate groups. These genes
are further discussed in Section 2.6, in addition to gjb8/GJB2/GJB6.

Otherwise, in addition to gja12 and gja13 mentioned above, the following connexin
genes were specific for Actinopterygii (ray-finned fishes):

- gjb9 (variably called gjb4like, cx28.6 or cx30.9): a gene generally located below the
GJB3, GJB4 and GJB5 orthogroups in the phylogenetic trees, but note the comment that we
have on gjb9 in Section 2.6 below.

- gjd6 (often called gjd2like or cx36.7): a gene diverging from the branch leading to
GJD1 and GJD2. Note that there appeared to be a gjd6 ortholog in the cyclostomes (see
Section 2.5 for more results from cyclostomes).

2.3. Nonmammalian Tetrapods: Amphibia and the Greater Group of Reptilia

The nonmammalian tetrapods (except crocodiles) and fishes possessed gja2, a GJA3-
related gene. In the alpha subfamily, it was reconfirmed [17] that gja4 went through a gene
duplication in the amphibian lineage and generated the classic (Xenopus) cx38 and cx41,
which, thereby, could be called gja4.1 and gja4.2. In all investigated Amphibia with genome
assemblies having scaffolds of reasonable lengths, the two genes were located 10–100 kbp
apart (for example, in Rana temporaria, Pyxicephalus adspersus and Bufo gargarizans).

Among the tetrapods, only the amphibian gjb2/6-related sequences were located
together with the fish gjb8 sequences. All the other tetrapods had gjb2- and gjb6-related
sequences that were located together with the mammalian GJB2 and GJB6 sequences or
very close to them. These genes are further discussed in Section 2.6.

In our previous analyses, the chicken genome was found to possess only 16 connex-
ins [16,17]. Birds are often considered to have “streamlined” their genomes and, therefore,
showed a considerable fraction of the gene losses compared with the other vertebrate
groups [23–25]. The low number of connexins in the chicken genome was seemingly
consistent with this notion. However, the chicken genome has now become more complete,
and several other birds had their genomes sequenced, so the notion of a low number of
genes may have to be revised [50]. As predicted [16], we show here that the number of
connexins in birds is at the same level as for other tetrapods. The major difference within
the four subgroups of Reptilia is the lack of gja2 in Crocodylia. Reptilia (including birds)
was the only vertebrate group to completely lack gjd5.

2.4. Mammalia

It is well-known that some mammals lack certain connexin sequences and that certain
connexins have gone through gene duplications in certain mammalian lineages [8]. The
major unexpected observation in this work was the apparent lack of GJD2 in the platypus,
while it seemingly had two GJD1 sequences placed on different chromosomes (5 and 13).
As of today, the platypus is the only monotreme with a sequenced genome. It is therefore
uncertain whether the peculiarities seen in the platypus are features of the Monotremata
group or specific to the platypus. They could also be due to assembly errors or incomplete
genome coverage.
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2.5. Cyclostomata: Lampreys and Hagfish

The present evidence suggests that hagfish and lampreys are monophyletic, i.e., they
evolved from a single ancestor that diverged from the other (to be) vertebrates around
500 million years ago [51,52]. Some 70–100 million years later, the lampreys and hagfishes
diverged from each other [51]. We will describe the results for lampreys and hagfish
separately, as we consider the lamprey data more solid, having genome assemblies from
three lamprey species available, while there is only one hagfish genome assembly available.

Lampreys did possess multiple connexin genes in the alpha, beta, gamma and delta
subfamilies, but the gene family was evidently different from the higher vertebrates
(Figure 3). In some cases, the lamprey sequences were phylogenetically located close to one
of the orthologous groups from the other vertebrates. When the amino acid identities were
calculated (using only the conserved domains in MUSCLE [53] or Clustal Omega [54] align-
ments), there were clearly higher identities to the co-locating chondrichthyan sequences
than to the neighboring chondrichthyan sequences. In these cases, we suggest that the lam-
prey sequences are named according to the closest/most identical connexin orthogroup(s).
In other cases, the phylogenetic relationship seemed less obvious, indicated both by their
positions in the tree and by identity calculations. In these cases, we tentatively suggest
naming the sequences by the unspecific term “gen” (which could either mean “general” or
“gene”) followed by a number (example: gja-gen1). Additionally, we will use the “.1”/”.2”
nomenclature for genes that are phylogenetically in the same clade and can be shown to be
located closely on the same scaffold or chromosome in at least one of the lamprey species
and, thus, probably have been generated by gene duplication. We will, in the present
section, use the “a”/”b” nomenclature for genes that are phylogenetically in the same clade
but are located on different chromosomes or different (but still long) scaffolds, despite
not having any evidence that these genes were in fact generated by genome duplication.
In principle, such genes could have been generated by retrotransposition or by tandem
duplication followed by chromosomal rearrangements.

Thus, in the alpha subfamily, lampreys possessed four sets of connexin genes: gja3
(although the precise location in the trees was not always as a first-degree neighbor of the
GJA3 orthogroup), gja8, gja9/10 and gja-gen1.1/gen1.2/gen1.3. The three former sets of genes
contained one sequence from each of the three lamprey species, while the fourth, gja-gen1,
had three sequences from the same chromosome in sea lamprey and one sequence from
Pacific lamprey.

The lamprey beta subfamily possessed two sets of connexin genes. The first was
gjb-gen1, which consisted of three genes in sea lamprey (all on the same chromosome) and
two genes in Pacific lamprey and one in Arctic lamprey. Phylogenetically, these sequences
are located below GJB3/4/5, GJB7, gjb9 and gjb10. The second beta set was located phylo-
genetically between GJB1 and gjb8; we suggest calling this set gjb1/8. Gjb1/8 consisted of
three genes in sea lamprey (two on the same chromosome and the third unplaced) and two
genes from each of the Pacific and Arctic lamprey (on a single chromosome/scaffold in
both species).

In the delta subfamily, four lamprey gene sets were found, all of them with one
representative from each of the three lamprey species. One set contained two genes from
each species and was located between GJD1 and GJD2 and with approximately equal amino
acid identities to both chondrichthyan gjd1 and gjd2 (around 92% to 93% identities for the
conserved sequences used in the phylogenetic analyses). As the two lamprey genes were
on different chromosomes/scaffolds, we called them gjd1/2a and gjd1/2b. The second set
was located just below GJD1 and GJD2, but the identities belonging to GJD1 and GJD2 were
evidently lower (around 83–85%). This set of genes was on a different chromosome than
those of gjd1/2a and gjd1/2b, and we called it gjd-gen1.
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Figure 3. Compressed phylogenetic tree for connexins, except GJE1, in cyclostomes and gnathostomes.
The annotation for the vertebrates is as described in the legend of Figure 2. The cyclostome sequences
are indicated with their preliminary gene name (defined as described in the text) followed by the
abbreviation describing the cyclostome species: Pm, Petromyzon marinus, sea lamprey; Et, Entosphenus
tridentatus, Pacific lamprey; LcAL, Lethentheron camtschaticum, Arctic lamprey and Eb, Eptatretus
burgeri, inshore hagfish. The cyclostome branches are indicated in red. The tree was constructed on
the basis of the amino acid sequence (205 positions and 635 sequences) of the conserved domains
by the Neighbor-Joining method using the JTT substitution matrix and with the rate variations
among sites corresponding to a gamma value = 1.1 (same as in Figure 2) and with bootstrap statistics
(500 iterations). Bootstrap values below 30 are not shown. Some of the orthogroups were united to
save space and for giving a better overview. A Neighbor-Joining tree including GJE1, using the same
JTT substitution matrix but with a gamma parameter = 0.8, is shown in Supplementary Figure S71.
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The third delta subfamily set was located in the GJD3 branch of the tree, with two
genes from each of the lamprey species. GJD3 is one of the most variable connexin genes,
and this colocation could have been caused by long-branch attraction. However, this set
of lamprey genes was more identical to GJD3 than to any of the other genes in the delta
subfamily. Additionally, when all other GJD3 sequences were removed, leaving only the
lamprey sequences, they essentially positioned themselves in the same way in the tree.
Thus, long-branch attraction was excluded. Chromosomally, the two lamprey gjd3 genes
were located close to each other in the sea lamprey and Pacific lamprey chromosomes
(Arctic lamprey had too-short scaffolds to tell) and were, thus, likely generated by a gene
duplication. Consequently, we suggest calling them gjd3.1 and gjd3.2. The fourth set of
lamprey genes in the delta subfamily was located in the gjd6 branch and was therefore
called gjd6.

The lamprey genes located in the gamma subfamily were not evidently more similar
to any particular chondrichthyan gamma subfamily members. We suggest that the genes
that are phylogenetically located between GJC1 and GJC2 should be called gjc-gen1, while
we suggest calling the remaining genes that aggregate in a loose cluster gjc-gen2–gjc-gen5.
Those genes where the chromosomal position could be settled in a lamprey species were
indeed located on different chromosomes. Many of the gjc-gen2–gjc-gen5 genes were
unplaced in the chromosomal assemblies, and as some of them showed duplicates on
different scaffolds, we will not disregard the possibility of misassembly—in particular, in
sea lampreys (Petromyzon marinus).

Hagfish connexin genes were grouped closely together with lamprey genes, and they
were distributed into all the four main subfamilies: alpha, beta, gamma and delta. However,
some of the lamprey gene groups were left without hagfish partner genes, but we think
that a partial explanation is a less complete genome assembly in hagfish. We found several
sequences that contained a single conserved domain, or parts of a single conserved domain,
but without finding the other conserved domain. These sequences were not included in the
phylogenetic analyses, but they suggest that hagfish have a higher number of connexins
than those that are included in the present phylogenetic analyses.

We were not able to find any sequences in the three lamprey species or in hagfish that
showed evident similarities with gje1.

As the detailed substructure of the gene family in the Cyclostomata differed from
the other vertebrate groups, it was of interest to take a preliminary look into the genomic
organization (Supplementary Table S7). The Cyclostomata genome assemblies were rather
fragmented, with many of the sequences on quite short scaffolds. Thus, only a few genes
could be compared across the species, even within the Cyclostomata. The only genes that
could be followed across the three lamprey species and hagfish were gja3 and two gjb1/8
genes. These genes were located at chromosome 49 in sea lamprey (Petromyzon marinus),
chromosome 39 in Pacific lamprey (Entosphenus tridentatus; gja3 was found on the unplaced
scaffold JAAXLI020001559), scaffold KE993718 in Arctic lamprey (Lethenteron camtschaticum)
and scaffold FYBX02010228 in inshore hagfish (Eptatretus burgeri). We believe that the gjb1/8
sequence could be the origin of both gjb1 and gjb8, and the latter further give rise to gjb2 and
gjb6. Looking at the genome location of these genes, gja3 and gjb8 are found closely linked
in all fishes, and when gjb2 and gjb6 later evolved, they maintained the close chromosomal
link with gja3 during evolutionary history (in human, these three genes are found on
chromosome 13), while gjb1 is located on another chromosome (on the X chromosome
in mammals).

As the lamprey and hagfish connexin genes did distribute into the alpha, beta, gamma
and delta subfamilies, but only some of the lamprey genes showed affinities to the different
orthologous sets of connexins (i.e., the lamprey genes only partly followed the finer sub-
family structure details), we wondered if the lamprey and hagfish sequences could tend to
aggregate together with the previously detected tunicate connexins [17]. However, adding
the tunicate connexins to the vertebrate connexins (including the cyclostome sequences)
did not prominently change the location of the lamprey and hagfish sequences in the
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phylogenetic tree or the relationship between the lamprey and hagfish sequences, and the
tunicate sequences had a strong tendency to aggregate outside the vertebrate sequences.
Thus, we did not find any obvious association between the tunicate connexins on the one
side and the lamprey and hagfish connexins on the other side.

However, there is an intriguing biological phenomenon that could bring some un-
certainty to determining the real number of connexin genes, and, for that matter, also
the number of genes in other gene families, in the cyclostomes. The cyclostomes have a
considerable degree of chromosome elimination [55,56], but we have not yet investigated
whether this affects any connexin genes.

2.6. Comments on the Relationships between Gjb8 and GJB2/GJB6, and Gjb10 and GJB4/GJB5

Commonly, the teleosts genes in the gjb8 orthogroup have received names like gjb2,
gjb2like or gjb6like. We think it is likely that gjb8 is the ancestor of GJB2 and GJB6 [17]. By
the availability of many new genomes filling the gaps between teleosts and mammals,
this suggestion is strengthened. The arguments for this suggestion are as follows: (i) In
teleosts with two (or more) gjb8 genes, the genes are located on distinct chromosomes.
(ii) Depending on the species in non-teleost ray-finned fishes, there is one gene (spotted
gar), one ohnologous pair (sterlet; Supplementary Table S5) or two genes (reedfish) on the
same chromosome (chromosome 4 (scaffold NC_041397.1), positions 239894584–239893787
for gjb8.1 and 239402441–239403241 for gjb8.2 in opposite directions). (iii) In cartilaginous
fishes and in amphibians, there is only one gjb8 gene. (iv) There are three genes in the same
direction on a single scaffold (JH12755) in Latimeria. (v) Mammalian GJB2 and GJB6 are
chromosomally closely linked (in humans: chromosome 13, positions 20188901–20189581
for GJB2 and positions 20222695–20223480 for GJB6, both in the reverse direction). We
also found these genes closely linked in chicken Gallus gallus (chromosome 1, positions
180296063–180296740 for gjb2 and positions 180276266–180277057 for gjb6) and on the same
scaffold in the turtle Pelodiscus sinensis (NW_005871027.1, positions 544225–543548 for gjb2
and positions 595742–594951 for gjb6, both in the same direction) and the lizard Lacerta agilis
(chromosome 4, positions 21768411–21767731 for gjb2 and positions 21798438–21797647 for
gjb6, both in the reverse direction).

In short, the most likely possibility is that a single gjb8 gene duplicated after the
divergence of Amphibia but shortly before the divergence of Reptilia, which gave rise to
the closely linked GJB2 and GJB6 in Reptilia and Mammalia. The short coexistence of the
GJB2 and GJB6 genes before the split between Reptilia and Mammalia explains that both
these genes tend to split into mammalian and reptilian phylogenetic clades.

We believe the situation is somewhat similar, but less clear-cut, for the relationship
between gjb10, GJB4/GJB5 and GJB3. GJB3, GJB4 and GJB5 are closely linked on human
chromosome 1 (position 34757331–34758152 for GJB5, position 34761255–34762055 for GJB4
and position 34784763–34785575 for GJB3, all in a forward direction). The closely linked
conditions for the corresponding genes are similar for most of the species that are consid-
ered here. First, let us start pre-Chondrichthyes. All vertebrates have representatives in the
GJB3 orthogroup. At an early stage, just before the divergence of the cartilaginous fishes,
we suggest that GJB3 duplicated twice, generating gjb9 and gjb10. The cartilaginous fishes
diverged so early that the two newly generated genes did not acquire the characteristics
of gjb9 and gjb10 before the divergence. In our phylogenetic analyses, one of these genes,
chondrichthyan gjb10, tended to split off from GJB3 and, depending on the model and
gamma value, sometimes grouped together with gjb10 from Latimeria (in Figure 2, this
gene is located in the GJB4 orthogroup, also seen in Supplementary Figure S55). Note that
the consequence of this proposal is that the chondrichthyan gjb9 corresponds to the gene
in Supplementary Figure S55 called gjb3.2. In ray-finned fishes, gjb10 evolved more and
formed an orthogroup that phylogenetically always stuck together. Thus, all fishes possess
GJB3 and gjb10.

Now, let us approach these genes from the tetrapod side. There is little doubt that
reptiles possess gjb4 and gjb5, as mammalian and reptilian sequences generally stuck
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together for both orthogroups (although we have not found any bird gjb4 sequences).
Amphibia have two sets of genes that both phylogenetically group together with GJB5.
Which of these two genes was located closer to the main GJB5 group varied according to
whether nucleotides or amino acids were used in the tree building. We therefore looked
at their positioning in the genome assemblies. In Xenopus tropicalis, the genes are on
chromosome 2 in the forward direction: XM_018091588 (called gjb4 in GenBank) in position
85000098–85000901, XM_004911610 (called gjb5 in GenBank) in position 85009978–85010784
and NM_001112900 (gjb3) in position 85060961–85061713. In Nanorana parkeri, the genes
are on scaffold NW_017306584 in the reverse direction: XM_018558022 (called gjb5like
in GenBank) in position 893574–892810, XM_018558030 (also called gjb5like in GenBank)
in position 874434–873634 and XM_01855031 (gjb3) in position 805315–804509. Thus,
with regards to the positioning in the genome assemblies, Xenopus XM_018091588 and
Nanorana XM_018558022 correspond to gjb5, and Xenopus XM_004911610 and Nanorana
XM_018558030 correspond to gjb4.

We believe that the most likely evolutionary events for gjb10 is that a gene duplication
occurred just before the divergence of Amphibia, and the two resulting genes did not have
the time to evolve the full characteristics of GJB4 vs. GJB5 at the time of splitting. The
alternative possibility is that independent gene duplications occurred in the amphibian
lineage and in Amniota, but from the principle of parsimony, we think this is less likely.

3. Discussion

The present phylogenetic analyses of the connexin genes include a wider range of
vertebrate groups than in previous works [8,9,14,16–18]. This work confirms earlier ob-
servations of the connexins being divided into alpha, beta, gamma, delta and epsilon
subfamilies in mammals, birds and teleosts and extends this to crocodiles, turtles, lizards,
the lobe-finned fish Latimeria, ray-finned fishes in general and cartilaginous fishes. There-
fore, the previous observations and conclusions are extended to the wider vertebrate society.
Different aspects of these observations are discussed below.

3.1. On Genome/Gene Duplication and Naming

Our previous analyses [9,17] clearly indicated the presence of ohnologs of different
connexin genes in teleosts. For sterlet sturgeon, we could, in the present work, define
23 ohnologous pairs, and for only three sequences, we found no signs of an ohnolog.
Furthermore, the ohnologs in sterlet sturgeon had a high degree of sequence identity, with
19 ohnologous pairs >95% identical and four ohnologous pairs <95% identical at the nu-
cleotide level (full length), clearly higher than those of the present teleosts that ranged from
72% to 82%, fully consistent with a more recent genome duplication in Acipenseriformes.

How to decide which ohnologs should be named “a” or “b”? One could theoretically
wish to name the original gene “a” (or “.1” for a tandem gene duplication), provided that
the original gene can be identified. However, that is often not the case [57], and this also
seems to apply for the connexins. There are several possible approaches for deciding the
naming, some more systematic than others. A few zebrafish ohnologs were named “a”
or “b” in GenBank entries when we initiated this work [9], and in our suggestions, we
took these into consideration (new entries or entries updated after September 2020 are not
included). We also took several teleost species into consideration (see Table 2 in [9]) to
minimize the effects of potential chromosomal reorganizations that may have occurred
in certain subgroups of teleosts, giving the results shown in Supplementary Tables S2–S4.
However, the consequence is that, in some species, “a” and “b” ohnologs will reside on the
same chromosome. Using other criteria could change the “a”/”b” naming for several of
the ohnologous pairs in the different species.

Independent gene and genome duplications have some bearings on orthology and
the names given to the different genes. One main principle is that orthologous genes
should have the same name in different species. However, gene naming rapidly becomes
complicated considering independent gene duplications and gene losses, independent
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genome duplications (as in sturgeons and teleosts), reduplications of genomes (as in
salmonids [58]) and species hybridization (as in Xenopus laevis [59]). Assume that a gene
randomly called gene1 goes through a gene duplication in the lineage leading to zebrafish
and an independent later gene duplication in the lineage leading to pufferfish. In both
species, this duplicated set of genes should then be called gene1.1 and gene1.2, according to
the Zebrafish Nomenclature Conventions [11]. As the genes are the results of independent
gene duplications, they should not have identical names in the two species.

Similar problems arise with independent genome duplications, like the ones that did
occur in the early teleosts and the much later one that occurred in Acipenseriformes. The
ohnologous pairs in each of the species are to be called gene1a and gene1b, but gene1b in
zebrafish and in sturgeon are not orthologs, assuming that gene1a can be defined as the
original gene (which might not be possible). The simplest, but unsatisfactory possibility that
violates the intentions of gene naming conventions [10,11,60] is the acceptance that certain
types of non-orthologous genes may have the same name. This is already extensively
practiced today [9].

3.2. The Number of Connexin Genes in Gnathostomata

Our previous work [17] suggested that birds, represented by chicken (Gallus gal-
lus), have 16 connexin sequences, which is a lower number than in mammals with
19–22 functional genes and Amphibia represented by Xenopus tropicalis with 23 genes.
Seemingly, the lower number of connexins is in line with the view that birds have stream-
lined their genome and lost 300 to 700 genes [23–25]. However, analyzing the transcriptome
from five bird species [50], more than 80% of the presumed missing genes were recovered
as transcripts, suggesting that many avian genes are located in areas that are difficult to
sequence or assemble in a proper way. We show here that birds are in fact on par with the
other tetrapods regarding the number of connexin genes, although the exact number of
connexin genes may not be the same for each species within each vertebrate group. We
found a total of 22 connexin genes in birds vs. 22 in placental mammals (23 with the GJA1
gene duplication that generates functional GJA6 in rodents and some other mammals), 21 in
marsupials (22 if a marsupial-specific gene duplication of GJC3 is included), 20 in platypus,
21 in crocodiles, 23 in turtles, 22 in lizards, 23 in Amphibia (24 if the amphibian-specific gene
duplication of gja4 is included), 25 in the lobe-finned fish Latimeria, 26 in both the polypter-
iformian Chondrostei and in Holostei and 23 in Chondrichthyes. The acipenseriformian
Chondrostei (sturgeons) and teleosts have, so far, the highest numbers of connexins genes
due to genome duplications (occurring independently), with 39–46 genes in teleosts and 49
in sterlet sturgeon. A brief overview is shown in Supplementary Table S8. Although not in-
vestigated, high numbers are also expected in Xenopus laevis, which is a 17-million-year-old
hybrid between two closely related frogs [59] and in salmonid fishes [58] that went through
an additional genome duplication around 80 million years ago, occurring on the top of the
teleost genome duplication around 350 million years ago [19].

3.3. The Connexin Gene Family Substructure

It was previously shown that teleosts contained a fully developed connexin gene
family, with essentially the same subfamily structures as found in mammals [9,17]. It is
therefore not surprising that other ray-finned fishes that diverged before the teleost genome
duplication in fact also show the same subfamily structure, with only a few differences,
mainly due to gene duplications and gene losses. It was also easy to distinguish the
independent genome duplications that occurred in the early teleosts on one side and the
later genome duplication that occurred in the sturgeon lineage at a later point of time (see,
also, the discussion on ohnology above). Here, we show that cartilaginous fishes also have
a fully developed subfamily structure, and there are only a few gene duplications and gene
losses that distinguish cartilaginous fishes from the ray-finned fishes. Most orthogroups
where sequences from ray-finned fishes are found also contain cartilaginous fish sequences
(as before, if the gene name is in upper case letters, the gene group contain mammalian
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representatives): Gja2, GJA3, GJA4, GJA5, GJA8, GJA9, GJA10 and gja11; GJB1, GJB3, GJB7,
gjb8 and gjb10 (see Results); GJC1, GJC2 and gjc4; GJD1, GJD2, GJD3, GJD4 and GJD5 and,
finally, GJE1. In a single gene group, only representatives from the cartilaginous fishes are
found, namely gjb11. On the other hand, there are three gene groups where only sequences
from ray-finned fishes are found: gja12, gja13 and gjb9 (see Section 2.6). If we add the
lobe-finned fish Latimeria to the ray-finned fishes, we can also add two more gene groups:
gja11 and gja14. Gjd6 is unique in the sense that it was found in ray-finned fishes and in
cyclostomes but not (yet) in chondrichthyans. We conclude that all Gnathostomata, from
Chondrichthyes and upwards, have the same connexin gene family substructure, although
the details may differ due to group-specific gene duplications and gene losses.

3.4. Cyclostomata vs. Gnathostomata Connexin Gene Families

Historically, Cephalochordata (i.e., amphioxus) have often been considered as having
diverged later than the tunicates, but this does not reflect reality [61]; tunicates are the
more closely related to the vertebrates. No connexins are found in amphioxus, while
tunicates have connexins [17,26]. A previous work showed that tunicate connexins (i) had
low sequence identities, (ii) could not be clearly associated with any known vertebrate
connexin sequence group and (iii) did not appear to have any recognizable subfamily
structure [17]. That work left a gap between the tunicates and the teleosts. It is now possible
to fill the gap due to the recent availability of genomes from non-teleosts Actinopterygii,
Chondrichthyes and Cyclostomata. The present work clearly shows that the vertebrate
groups from mammals to chondrichthyans do show the classic gene family substructures.
Thus, there are two obvious jumps in the evolution of the subfamily structures: first, from
tunicates to Cyclostomata, and then, from Cyclostomata to Chondrichthyes, where the
subfamily structure is established.

The early vertebrate went through two genome duplications [62–65], and the timing
of the genome duplications is of course relevant for the two jumps in the connexin family
structure. The genome duplications occurred after the split between tunicates and ver-
tebrates, but there is somewhat conflicting evidence as to whether genome duplications
occurred or were completed before the Cyclostomata–Gnathostomata split [66,67] or af-
ter [68], although the present evidence seems to weigh in at the earlier point of time [69].
Thus, there were ample possibilities of divergence for the connexin genes between the
tunicate–vertebrate split and the Cyclostomata–Gnathostomata split, creating the primitive
connexin family structure we find in Cyclostomata with members within the alpha, beta,
gamma and delta subfamilies. Some of the cyclostome connexins have acquired an affinity
to specific ortholog group(s), concerning both (i) their phylogenetic position in the tree and
(ii) their higher sequence similarity with the most closely positioned gnathostome connexin.
This concerns gja3, gja8, gja9/10, gjb1/8, gjd1/2, gjd3 and gjd6. However, for a number of
cyclostome genes, it could not be determined which gnathostome connexin gene subfamily
they were most closely related to. For example, there are two clusters of cyclostome genes
in the gamma subfamily: a smaller cluster that we called gjc-gen1, which tends to be
located closer to gjc1 and gjc2 and a larger cluster that we called gjc-gen2–gjc-gen5, which
tends to be located closer to gjc4. While chondrichthyan gjc1, gjc2 and gjc4 have 70–80%
sequence identities (for amino acid sequences in the conserved domains) within a specific
species, the corresponding sequence identities for lamprey gjc-gen1–gjc-gen5 are within
60–70%. For comparison, the sequence identity between the conserved domains of human
GJC1 and GJC2 is around 76%. Although not definitive, this comparison suggests that
the characteristics for the three gnathostome gamma family members, gjc1, gjc2 and gjc4,
started to evolve after the cyclostome–gnathostome split.

Based on the differences in the connexin family between the cyclostomes and gnathos-
tomes, it would be tempting to suggest that the second early vertebrate genome duplication
(partly) occurred after the cyclostome–gnathostome split [68], although newer and more
heavy evidence weighs against this possibility [52]. Thus, the most likely option is that
several gene duplications occurred in the gnathostomal lineage before the divergence of the
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chondrichthyans. The resulting early vertebrate genome should then have a tendency for
closely related connexins to be closely linked on a chromosome, as this is the most common
result of a gene duplication. This was investigated in three chondrichthyan chromosomal
assemblies (with more complete assemblies than those of elephant shark, little skate and
whale shark) (Supplementary Table S6). There are some examples of chromosomally linked
genes that are closely related, like gja1 and gja11, and gjb3 and gjb10. However, in other
cases, more distantly related genes are tightly linked, like gjb1 and gja2, gjb8 and gja3 and
gja4 and gjb3.2. In these cases, we note that there is one beta gene and one alpha gene,
and especially, gjb1 and gjb8, and gja2 and gja3 are closely related. Thus, if we exclude the
possibility of genome duplication after the cyclostome–gnathostome split, some regional
duplications followed by several chromosomal rearrangements must have occurred before
the divergence of the chondrichthyans. We note that this may be consistent with an alterna-
tive hypothesis of a single genome duplication before the cyclostome–gnathostome split
together with several segmental duplications occurring partly before and partly after the
cyclostome–gnathostome split [70].

4. Materials and Methods
4.1. Databanks and Collection of Sequences

The species included and their evolutionary relationships are indicated in Figure 1. In
many cases, we included two or more species in each vertebrate group, as this would more
reliably support the presence or absence of connexin sequences, especially if the sequences
were somewhat deviating. Occasionally, we also searched in other species in the same
vertebrate group—in particular, in the following situations:

i. if an expected sequence was not found in a species,
ii. if only a partial sequence was found, we tried to find the corresponding sequence

in a closely related species and
iii. if a single sequence from a certain species phylogenetically was located in an

unexpected way.

If no similar sequence was found in other species belonging to the same vertebrate
group, the sequence was excluded from the analyses. Examples of sequences excluded
for this reason are XM_008107785 (gjb6like) from green anole (Anolis carolinensis) and
XM_007898730 (gjb5like) from elephant shark (Callorhinchus milii).

Additionally, some sequences were excluded if considerable parts of both conserved
domains were lacking or we could only find one conserved domain.

Databanks—in particular, Ensembl and GenBank—were searched for connexin se-
quences. The previously identified connexins [8,9,17] used in the present work were
re-checked for any potential updates or major revisions of their sequences. If there were
only a few positions with single nucleotide differences between the databases or between
our historical sequences and those in the present databases, we, in general, did not modify
our sequences, even if we adopted the relevant accession number. Pseudogenes were
excluded in these analyses. Newly predicted connexins found in the databanks were
excluded if:

i. They were very similar to the sequences already collected, with only a few nu-
cleotide differences. The reasons for not including all sequences are (A) the se-
quences may come from different individuals of the same species, thus having
small individual genetic variations, and do not reflect unique genes, (B) there could
be errors in the genome assemblies, predicting gene duplications where there are,
in reality, no gene duplications and (C) a gene duplication may have occurred
in a single species, but in the present work, we are focusing on the larger pic-
ture. Examples of such excluded sequences are the zebra finch (Taeniopygia guttata)
XM_002198742, XM_002186636 and XM_012571095 and the Chinese softshell turtle
(Pelodiscus sinensis) XM_006125970.

ii. We were not able to define the proper conserved domains, including the cysteine
codon signatures. Several predicted sequences did not contain the proper cysteine
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codon patterns in one or both of the conserved domains or the translation into
a protein showed that the expected transmembrane domains deviated too much
from the expected nonpolar sequences. An example of such excluded sequences is
chicken (Gallus gallus) XM_015299660.

Genome assemblies (indicated in the Supplementary Figures and/or Tables) were
searched using the conserved areas of previously identified connexins as bait. The hits
were collected and systematized, and their complete sequences were built, if possible. All
sequences are reported in the Supplementary Materials, including the accession numbers
if the known or predicted sequences were present in the databases. In addition to the
vertebrate species in Figure 1, the amphioxus genome was also researched, but we did not
find any connexin genes.

4.2. Alignment of Conserved Domains

The conserved domains were determined and aligned as described previously [17,71]
with 15 nucleotide extensions, as stated in [9]. This is also indicated with yellow and grey
in the sequences given in the Supplementary Materials, and the conserved codons for the
extracellular cysteines are indicated in green.

4.3. Nomenclature Harmonization by Orthology Consistency

The trees were constructed using the conserved domains [9,17,71] and MEGA7 soft-
ware [72]. Before the major statistical analyses, we harmonized all names and investigated
the consistency of the sequence localization (in essence, inferred orthology) in the tree. The
names were harmonized by a tree-building process as follows. The trees were constructed
by the Neighbor-Joining method using amino acids sequences, the Jones–Taylor–Thornton
(JTT) substitution matrix, the gamma parameter was set to 1 and with pairwise deletion for
the missing data treatment. No statistical test for phylogeny was used in this part of the
work. The trees were built from three different starting points, adding group-by-group of
the species (except Cyclostomata). For each step, phylogenetic trees were built. This was to
ascertain that specific sequences were generally kept within the same group (i.e., showing
consistent orthologies), whether there were a few or many sequences that aggregated
into a specific orthologous group. The three building processes were: (i) Beginning with
mammals, sequences were gradually added “downwards”, but non-teleost bony fishes and
cartilaginous fishes (Chondrichthyes) were added before teleosts. This process was used
for the initial name harmonization. Using these harmonized names, it was easy to see in
the subsequent two building processes whether the sequences had consistent localizations
in the trees. (ii) Beginning with teleosts, the other actinopterygian non-teleosts were first
added, then the Chondrichthyes, followed by “upwards” building. (iii) Beginning with
Chondrichthyes, the trees were gradually built “upwards”, except that teleosts were added
as the last group.

The phylogenetic grouping generally showed a high degree of consistency during the
whole process in all three cases, although certain sequences could change their detailed
affiliations between neighboring gene groups as more sequences were added.

The harmonizing of gene names simplified the comparisons of the sequences during
the text. All sequences were named according to previously established connexin sequences
using the “Greek” nomenclature as determined by the Human and Mouse Nomenclature
Committees [10,60] and indirectly by the Zebrafish Nomenclature Conventions [11]. We
amended many sequence names to become more consistent, so all the sequences in an
orthologous group have the same name. The names used were constructed as follows:

i. If the sequence corresponded to a predicted or confirmed sequence in GenBank:
(species abbreviation)-(potentially amended “Greek” name)-(accession number)-
(database entry name if different from the amended “Greek” name). The species
abbreviations are given in Figure 1. Example: for a species with the Latin name
“Latin name” (abbreviated Ln), a predicted gene found in GenBank with the ac-
cession number “XM_number” may have the name gjd2like, and we find in our
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phylogenetic analyses that this sequence is a gjd5 sequence. In the phylogenetic
trees, the sequence will be called Ln-gjd5-XM_number-gjd2like, while, in the text,
the same sequence will be called Ln-gjd5.

ii. If the sequence corresponded to a sequence predicted in Ensembl (but not in Gen-
Bank): (species abbreviation)-(potentially amended “Greek” name)-(abbreviated En-
sembl gene number)-(database entry name if different from the amended
“Greek” name).

iii. If the sequence was not predicted in any database, but a transcript with the name
could be found in the GenBank Transcriptome Shotgun Assembly (TSA) database:
(species abbreviation)-(amended “Greek” name)-(scaffold accession number:start
position direction)-(TSA name).

iv. If the sequence was not predicted in any database, nor found in the TSA database,
but could be found in the genome assemblies: (species abbreviation)-(correct
“Greek” name)-(scaffold accession number:start position direction).

These names are also found in the Supplementary Materials. For better consistency
of the detailed nomenclature, we used upper case letters for the specific mammalian
sequences (including mouse, despite the recommendations given by the Mouse and Rat
Nomenclature Committees) [60], and for all other species and groups, we used lower case
letters. We also used upper case letters when referring to orthologous gene groups that
contained mammalian sequences, while lower case letters were used for orthologous gene
groups that did not contain any mammalian sequences.

4.4. Model Selection and Phylogenetic Analyses

Two sets of model selections were performed, to see if certain substitution matrices
and certain levels of the gamma parameter were more relevant for the major statistical
analyses. First, it is well-known that some of the orthologous groups of connexins are more
conserved (for example, gja1 and gjc1) and others are less conserved (for example, gjd3 and
gjd4) [8,17]. Therefore, we performed a model selection for amino acids for several of the
orthogroups across the vertebrates (except lamprey and hagfish). There was generally little
difference between the more advanced amino acid substitution matrices, like JTT, Dayhoff
and WAG for each of the connexin groups, but the gamma parameter varied considerably,
from less than 0.3 to more than 1.6, between the different orthogroups. Second, an overall
model selection was performed both on the nucleotide level and amino acid level, and we
used these models during the building for most of the phylogenetic trees. The details of
the parameters are found in Supplementary Table S1. However, we do note that, when
the gamma parameter was below 1, some of the orthogroups tended to split up in various
ways that did not seem to have any biological meaning. Therefore, in Figures 2 and 3, we
used a gamma value = 1.1, keeping most orthogroups united. For a comparison of the
different gamma values, Supplementary Table S1 contains data for three trees using amino
acid sequences, the Neighbor-Joining method with a JTT substitution matrix and with three
gamma values (0.8, 1.0 and 1.1).

5. Conclusions

• Cyclostomes do have a subfamily structure with alpha, beta, gamma and delta genes,
but only a few of the genes show a phylogenetic affinity to genes that are found in
the higher vertebrates. Thus, at the cyclostome–gnathostome split, an early version of
the subfamily structure was established. The subfamily structure in cyclostomes is
evidently more advanced than in tunicates [17].

• The connexin subfamily structures (alpha, beta, gamma, delta and epsilon) were
established in cartilaginous fishes, and these subfamilies can be followed throughout
the vertebrates. Most of the connexin genes in cartilaginous fishes can be classified
into orthogroups together with genes from teleosts and other ray-finned fishes.

• It is not obviously evident how the gene family evolved from the “immature” version
now found in cyclostomes to the “mature” version found in cartilaginous fishes. As it is
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assumed a whole genome duplication did not occur after the cyclostome–gnathostome
split, the most likely possibility is a combination of gene duplications (that normally
generates closely spaced duplicates) and regional duplications followed by rearrange-
ments (that are more likely to generate similar genes on different chromosomes).

• There is no major change in the gene family in the transition from fishes to tetrapods.
• Birds have approximately the same number of connexin genes as other vertebrates

(when genes generated from genome duplications or species hybridization are
not considered).

• Due to the gene duplications and gene losses in certain vertebrate groups, the exact
complement of the genes varies between the vertebrate groups. For example, gjd5 was
lost in the Reptilia early after the divergence, as none of the four vertebrate groups
Squamata, Testudines, Crocodylia or Aves possess this gene, but it is found in all fish
groups and in other tetrapods, including placental mammals and marsupials.

• There are few connexin genes that are specific to a single taxonomic group of verte-
brates. Gjb11 is specific to cartilaginous fishes. Gja12 and gja13 in teleosts are most
likely generated by gene duplications from gja11, which, on the other hand, is found
in most ray-finned fishes and cartilaginous fishes. For being more consistent with
the nomenclature conventions, gja12 and gja13 should be fused into a single gene
name, gja12, and hence, the genes should be detailed as gja12.1, gja12.2, gja12.1.1,
gja12.1.2, etc. As a further consequence, the gene group that we call here gja14 (found
in non-teleost ray-finned fishes and Latimeria) could then be called gja13.

• We suggest that GJB2 and GJB6 were generated by gene duplication from gjb8 shortly
before the divergence of the Reptilia. Similarly, GJB4 and GJB5 were generated by
gene duplication from gjb10 shortly before the divergence of the Amphibia.

Supplementary Materials: Supplementary materials can be found at https://www.mdpi.com/1422
-0067/22/4/1584/s1.
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