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Light extraction from fundamental 
modes in modulated waveguides 
for homogeneous side-emission
Zhiwen Pan & Lothar Wondraczek

Dedicated control of axial light emission from light-guides enables a new generation of functional light 
sources for volumetric illumination. A primary challenge is to ensure homogeneous emission intensity 
across the full length of the device. Here, we introduce an approach towards homogeneously side-
emitting waveguides which do not rely on imposing local scattering centers such as bubbles, micro-/
nanoparticles, and rough or abrupt interfaces, but on modulated core radius. Previous quantitative 
studies of the relationship between structural parameters and radiation losses provide initial conditions 
for tailoring side-emission through core-diameter modulations, however, with strongly limited 
amplitude of modulation. We now employ and verify numerical simulation to overcome this limitation 
towards meter-long homogeneously side-emitting waveguides in which the amplitude of core-diameter 
modulation is of the same order of magnitude as the core diameter itself. Similar emission properties 
can be obtained through modulation of the core refractive index instead of the core diameter, or 
through a combination of both approaches. Using the present model, we deduce exemplary conditions 
for homogeneous side-emission in which the power flow within the waveguides decays linearly, what 
may present another interesting feature for applications beyond illumination.

In optical waveguides, radiation loss through side-emission is normally undesired. On the other hand, besides 
active side-emission1, also passively side-emitting waveguides2 present an interesting approach for volumetric and 
functional lighting, for example, in biomedical treatment3,4 or to illuminate photochemical reactors5, provided 
that homogeneous lateral emission can be achieved.

Currently, one-dimensional (fiber) or two-dimensional (plate) illumination sources are applied in, e.g., indoor 
decoration6, agriculture5,7, water disinfection8 and photodynamic therapy3,4,9. Most of these applications, how-
ever, do not rely on homogeneous side emission alongside the full length of the waveguide, but on emission at 
the end or at individual spots across the waveguide. To achieve a homogeneous intensity distribution alongside 
a waveguide device of one or more meters in length, an axially invariant surface scattering function is required 
intuitively. But this produces an exponentially decaying power flow inside the waveguide, thus, exponentially 
decaying side-emission. Homogeneous relative radiation loss alongside the waveguide would be accompanied by 
linearly decaying power flow inside of the device. Therefore, either the properties of the waveguide material or the 
scattering function must be varied, leading to transversally non-uniform optical fibers.

Dielectric waveguides with slight imperfections are used to induce scattering of light out of the guidance 
regime. These imperfections include nanoparticulate precipitates, rough or abrupt surfaces or local refractive 
index variations. Dedicated tailoring of such scattering centers is possible only within strict technological limi-
tations. Furthermore, problematic to real-world application, micro-bubbles, scratches or inclusions may signifi-
cantly reduce the mechanical performance of the final device10, what prevents many of the potential applications.

Another approach to introduce radiation losses from a waveguide is, therefore, axial modulation of the core 
radius, for example, in sinusoidal form (shown schematically in Fig. 1). The quantitative relationship between the 
modulation parameters (amplitude and period) and radiation loss has been studied by Marcuse11 and Snyder12, 
using the coupled-mode theory (CMT). The equations derived from CMT can only be solved for small modu-
lations by employing the perturbation method, for example, for roughness-induced radiation losses from the 
fundamental mode in slab-waveguides and step-index fibers (it is noteworthy that any finite modulation function 
can be expanded into sinusoidal form by finite Fourier sine transformation. Thus, studying the case of sinusoi-
dal modulation does not compromise on generality). However, for the perturbation solution to be valid, the 
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amplitude of the modulations is required to be much smaller than the core radius, e.g., 50 nm for a core-radius of 
5 µm. At such magnitude, modulations fall within the scale of surface roughness, and are difficult to tailor with 
high precision.

We now present a numerical study of larger sinusoidal modulations in core radius, with the modulation 
amplitude exceeding 5% of the average core radius. We employ the finite difference beam propagation method13 
(FDBPM) to simulate beam propagation along symmetric slab-waveguides with sinusoidal core diameter 
modulations, and subsequently evaluate the radiation loss indirectly. The Hankel transform beam propagation 
method14 (HTBPM) is used to simplify the simulation of the propagation of a beam along a step-index fiber from 
3D to 2D. We then take Marcuse’s perturbation solution (Eq. (79) in ref15. for slab waveguide and Eq. (4.4–13) in 
ref.11 for step index fiber) as analytical reference to validate our models. Using the validated models, we evaluate 
the radiation losses from fundamental modes due to large modulations on core radius of the waveguides. In addi-
tion, we evaluate also sinusoidal modulations on core refractive index. This provides an alternative parameter to 
tailor the radiation loss. Fabrication of the latter such modulations is possible up to 5 × 10−3 in magnitude22, in 
analogy to writing fiber Bragg gratings (FBG) using beam interference with a mask16 or point-by-point writing17.

Model Construction and Assumptions
In our approach, we initially limit our discussion to weakly-guiding single mode fiber, similar to Marcuse’s per-
turbation solutions11,15. This enables to neglect the effects of polarization, and also to employ scalar homogeneous 
Helmholtz equations for the description of beam propagation. Then, the Helmholtz equations lead to paraxial 
wave equations by introducing the slowly varying envelope approximation in FDBPM. However, such treatment 
is not necessary for the HTBPM, in which an average reference refractive index is used instead of the effective 
refractive index of the propagation mode. Both numerical models and the analytical reference are restricted 
to real propagation constants, meaning that evanescence or leaky modes are not included in our discussion. 
Furthermore, the core medium has no absorption and both core and cladding medium are free from Rayleigh 
scattering, therefore, our result underestimates experimental expectations. As assumed in Marcuse’s reference 
solutions, both the forward and backward radiation losses11 from a forward-propagating mode are considered, 
while the radiation losses from a backward-propagating mode are weak and therefore neglected. The present 
numerical reference is consequently built on a one-way beam propagation algorithm. Both models evaluate wave-
guides supporting only fundamental modes (TE1 even mode for a 2D slab waveguide and LP01 mode for step 
index fiber). Besides the simplicity in calculation, the absence of other higher order guiding modes prevents 
complicated energy exchange. It therefore becomes easier to tailor the radiation losses. Furthermore, it seems safe 
to assume in this case that no energy transfer occurs from a radiation mode back into the fundamental mode (line 
11-12 in page 114 in ref.11). Table 1 summarizes all assumptions which were used in the following.

It should be noted that the radiation loss discussed in this paper accounts only for the light escaping from the 
core, which is equivalent to the presumption in the reference solutions that the cladding is infinitely large. Such 
an assumption is still valid when we consider the following practical situations shown in Fig. 2. If the waveguide is 
working in a medium with distinct refractive index (e.g., in air or water), a scattering layer (e.g., polymer coating, 
slightly phase separated/crystallized glass) with a somewhat higher refractive index can be attached to the exterior 

Figure 1.  Schematic of a side emitting fiber with sinusoidal modulation of the core diameter, obtained from 
a separate finite element simulation on the starting section with Gaussian incident beam profile (approximate 
LP01 mode). The radiation loss from the core is illustrated through the normalized axial power flow in the fiber. 
The rings surrounding the cladding layer show the magnitude of axial Poynting vector arriving on the coating-
cladding interface.

Assumptions
Marcuse’ perturbation 
solution of CMT FDBPM HTBPM

Slowly varying envelope used used not used

Weak coupling used not used not used

Weakly guiding used used used

Real propagation constants used used used

Only forward propagation used used used

Only fundamental mode used used used

No abruption discontinuity in refractive index in z 
direction: ∂n2/∂z ≈ 0 not used used not used

Table 1.  Assumptions of numerical models and the perturbation solution of CMT.
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of the cladding (Fig. 2(a)). The radius of the cladding is chosen so that it is big enough for the fundamental mode 
to vanish on the boundary. The radiation arriving in the interior boundary of the coating scatters forward to the 
outside. The backscattered radiation can be safely ignored if we keep the mechanism of scattering within the Mie 
regime; i.e., the dimension in effective radius of the scattering centers is between half to about 300 times of the 
incident wavelengths. The scattering layer is only required to provide a constant scattering ability. Figure 2(b) 
demonstrates another working situation in which the refractive index of the working medium, n2, is just slightly 
lower than the core refractive index n1. In this case, neither a cladding nor an auxiliary scattering layer would 
be necessary in theory. Even though the radiation fields coming out of the periodic core interfere in the far field 
region, there is no obvious interference (fringes) in the near field, that is, in the vicinity of the scattering layer, to 
be confirmed in the following sections. The set-up shown in Fig. 2(b) corresponds to applications such as light 
sources for aquaponics and agriculture or water disinfection, in which the surrounding lossy medium absorbs 
the radiation in the near field so that no far field interference occurs. Under these considerations, the interference 
effect can be ignored in our discussion.

Modelling homogeneous side emission.  Since the power flow in waveguides consists of guiding and 
radiating contributions, constant transversal radiation loss (homogeneous side-emission) translates into a linear 
decay of the guided power P0 over the length L. Then, the propagating power P(z) along position z has the form

=
−P z P L z
L

( ) (1)0

Constructing a waveguide consisting of M groups of periodic structures at intervals [zm, zm+1], m = 0, 1, 2… M, 
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where zm, zm+1, P(zm) and P(zm+1) are known parameters. Figure 3(a) shows an example of a set of scattering losses 
to approximate a linear decay function using 10 sections of exponential decay by varying from 4.6 dB/m to about 
30.1 dB/m according to Eq. (3). It is shown that using ten sections would be sufficient (with R2 = 0.999971 for 
the linear fit over position 0 to 0.9 m in Fig. 3(a)) to approximate linear decay (whereby the last section is always 
ignored because the exponential decay never reaches zero, while the linear decay does). The result can be easily 
extended to any other length L if the same amount of sections (e.g. 10 sections) are desired, although Eq. (3) 
seems to depend on L. If we set zm to cL, where c is the fraction of length (0 < c < 1), the L in Eq. (3) cancels each 
other and the variation of αm depends only on M (the number of sections).

As pointed out by Marcuse5 and Snyder6, any imperfection in core radius or refractive indices initiates energy 
exchange between any of the guided and radiation modes. If the relationship between attenuation constant α and 
modulation parameters is quantitatively known, our main objective is reached. Here, we take step index fibers as 
example (for slab waveguides, one may start from Eq. (79) in ref.15). The radiation loss which occurs in a single 
mode fiber due to a sinusoidal modulation of the core radius has been studied by Marcuse. The perturbation 
solution of the attenuation coefficient is given as Eq. (4.4–13) in ref.11:
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Figure 2.  Schematic of possible working situations, corresponding to waveguides with infinitely large 
cladding as illumination sources. Environmental illumination is achieved via radiation losses due to sinusoidal 
modulation of the core radius. (a) Application in air or a medium with significantly lower refractive index than 
the core. (b) Application in a working medium whose refractive index is a bit lower than that of the core. In the 
latter case, the medium itself acts as an effective cladding, forming a step-index waveguide.
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where α is the attenuation constant for the field amplitude (therefore, 2α for power attenuation), b is the ampli-
tude of the sinusoidal modulation, and βφ is the propagation constant of the radiation mode at angle φ to the fiber 
axis. The ρ parameter is defined in Eq. (2.4–14) in Ref.11. K denotes coupling coefficients from the LP01 mode to 
forward (p = 1) and backward (p = 0) radiation modes, and μ is the azimuthal symmetry of the radiation mode. 
The subscript x → x indicates coupling from x to x polarized radiation modes while x → y means coupling from 
x to y polarized radiation modes. It is found that only the first term in the sum of mode square of K (represent-
ing coupling between identical polarization without azimuthal variation) is significant. The other three terms 
are neglectable. Eq. (4) is a perturbation solution at the limit of small amplitude of modulations as compared 
to the average core radius. The attenuation constants are evaluated at axial position far from a single period of 
modulation. Figure 3(b) shows one exemplar relation between normalized attenuation constants (valid for small 
modulation limit) and radiation angles Θ, which are correlated to periods of modulation Λ via Eq. (4.4–11) in 
ref.11. The reproduced curve in Fig. 3(b) is oscillating and symmetric, which differs from practical observation 
of random perturbation in the core radius as shown in Fig. 2(a) of Mazumder et al.18. The reason for this is that 
in CMT, the fundamental mode couples only to one single radiation mode with specific radiation angle due to 
the fact that only one spatial frequency exists after the Fourier transformation of the profile with fixed Λ (Eq. 
(4.4–13) in ref.11.). In practice, for a core radius profile with random perturbation, the Fourier transform of the 
core radius profile contains a range of spatial frequencies. This results in coupling to a broad range of radiation 
angles. Notwithstanding Rayleigh scattering, Fig. 3(b) shows the scattering loss at different specific radiation 
angles due to different structures with single spatial frequency. Figure 2(a) in ref.18, on the other hand, shows 
angle-dependent scattering losses due to a specific core radius profile with broad spatial frequencies after Fourier 
transform and, therefore, exhibits a broadened peak for the scattering losses. In practice, the modulation function 
will result from superposition of the desired sine modulation and a random modulation due to surface rough-
ness. Therefore, practical measurement may hardly observe the oscillating results as the broadening effect will 
smoothen the curve as in Mazumder’s work.

The radius modulation can be expressed as

π= + Λr z a b z( ) sin(2 / ), (5)

where r(z) is the core radius at axial position z, b and Λ are the amplitude and period of the sinusoidal mod-
ulation, respectively. The thus reproduced curve in Fig. 3(b) is exactly corresponding to Fig. 4.4.2 on page 159 
of ref.11, where the ratio of b:a is kept at ~1%. For more pronounced modulation amplitude, this means that the 
single-mode condition can hardly be maintained. For example, a relevant practical scenario for side-emission 
would be to have a and b in the micrometers range, e.g., b = 1 μm, a = 10 μm, resulting in b:a = 10%. In this case, 
Eq. (4) breaks down. To extend the approach to large modulation amplitude, we now utilize beam propagation 
methods to solve the problem numerically. It will be shown that Eq. (4) is acceptable for amplitudes of modula-
tion which do not exceed 5% of the average core radius. Otherwise (for example, at 10%), the reference solutions 
overestimate radiation losses especially at periods of modulation where maximum losses are predicted.

Verification of the BPM models.  Figure 4 displays scattering losses evaluated by BPM models and by 
Marcuse’ perturbation solution. All methods evaluate radiation losses from the fundamental mode due to sinu-
soidal modulation of the core radius in slab waveguides (TE1 incident mode) and optical fibers (LP01 incident 
mode). The amplitudes of modulations are 1.0 µm, 0.5 µm and 0.1 µm over an average core radius of 10 µm. This 
corresponds to 10%, 5% and 1% modulations, respectively. Figure 4(a,b) show the best agreement between BPM 
simulations and the analytical results, with only minor deviations at the positions local maxima and minima. 
The deviation at maximum positions arises from the weak coupling assumption in the derivation of Marcuse’s 
perturbation method (Eq. 3.4–1 in ref.11), which assumes that the energy coupled to the radiation mode is so 

Figure 3.  (a) Exemplar sequence of attenuation coefficients for a one-meter-long side-emitting fiber with 
transversally homogeneous emission intensity. The sequence comprises of 10 sections with varying periods 
of sinusoidal modulations. (b) Normalized loss coefficient as evaluated using the perturbation solution from 
CMT, Eq. (4), with core refractive index n1 = 1.460, cladding refractive index n2 = 1.458, incident wavelength 
λ = 1 µm, core amplitude b = 0.0474 µm and core radius a = 5 µm.
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weak that the incident field does not change its shape and amplitude. This assumption is not valid when the 
coupling becomes stronger, resulting in an overestimation of radiation losses (the energy of the incident beam 
is still considered constant even though it decreases significantly). A similar deviation of local maxima is also 
seen in Fig. 4(c,d) where the amplitude b is twice in magnitude as compared to Fig. 4(a,b). According to Eq. (4), 
the radiation loss is proportional to the square of b, therefore, stronger overestimations arise in the perturbation 
solution shown in Fig. 4(c,d).

The deviations at minimum positions are similar in magnitude. They occur from numerical errors. 
Figure 4(e,f) show the radiation losses at 1% modulation of the core diameter. In this case, taking the analytical 
result as reference, the two BPM models exhibit different behavior in their numerical errors: random fluctuations 
and a bias for FDBPM and HTBPM, respectively. The source of errors lies in discretization, the paraxial approxi-
mation, and the reflection from the boundaries even though transparent boundary condition and absorption lay-
ers have been employed. Further tackling these problems seems unnecessary because the analytical perturbation 
solution holds at the limit of small modulations.

Practically, FDBPM differs significantly from HTBPM (2D FDBPM and 3D HTBPM). However, both meth-
ods show similar trends in Fig. 4(a–d), confirming that the numerical results are reliable and the overestimation 
from the analytical perturbation solution of the mode-coupling theory is not occasional.

Results and Discussion
Figure 5 shows the normalized field distribution and normalized power propagation of a beam with the fun-
damental mode incident in a slab waveguide and a step index fiber, respectively. According to Fig. 5(a,b), the 

Figure 4.  Evaluation of attenuation constants for radiation losses from the fundamental mode due to 
modulations on core radius with different modulation parameters, i.e., period Λ and amplitude b. The black 
solid line represents the analytical result using Eq. (4). Dotted lines in (a) (c) and (e) were obtained by FDBPM 
for symmetric slab waveguides with amplitude of modulation at 0.5 µm, 1.0 µm and 0.1 µm, respectively. Dotted 
lines in (b) (d) and (f) derive from HTBPM for step index fibers with amplitude of modulation at 0.5 µm, 1.0 µm 
and 0.1 µm, respectively. All calculations used refractive index n1 = 1.460, cladding refractive index n2 = 1.459, 
incident wavelength λ = 1.55 μm, core modulation amplitude b = 1 µm and core radius a = 10 µm. Further, 
dr = 0.001 µm, dz = 0.1 µm for FDBPM and dz = Λ/1000 for HTBPM.
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radiation loss occurs mainly at positions where the radius is narrowing in both slab waveguide and optical fiber. 
We chose a study window from −35 µm to 35 µm in radius for the integration of power flow to account for the 
confined power flow in the waveguide. Any fields outside the left and right boundaries in Fig. 5(a,b) are consid-
ered as radiation losses. By fitting the power flow within the study window, we estimate the attenuation constants 
using an exponential decay function with a single attenuation constant as shown in Fig. 5(c,d). The exponential 
decay function with attenuation constant predicted by the perturbation solution is plotted for comparison. For 
a period of Λ = 75 µm and a modulation amplitude of 1 µm, the perturbation solution overestimates the analyt-
ical result (Fig. 4(d)). The difference in power flow between Fig. 5(c,d) arises from the slowly varying envelope 
assumption in FDBPM, which is not employed in HTBPM for optical fiber, therefore, fast oscillations appear in 
Fig. 5(d).

Exemplar conditions for homogeneously side-emitting fiber.  In the design shown in Fig. 3(a), ten 
discrete values of attenuation constants ranging from 1 to 7 m−1 (4.6 to 30.1 dB/m) are required to generate 
approximately linear decay in guided power and, correspondingly, laterally homogeneous side-emission. Since 
one attenuation constant may correspond to several possible spatial periods of modulations, it is, in principal, 
possible to choose any period together with a certain amplitude of modulation. However, notwithstanding tech-
nical issues in the manufacture of waveguides, if periods of modulation are chosen over a wide range, also the 
radiation angles deviate over a wider range, what compromises emission homogeneity. We therefore prefer to 
select periods of modulation in an as-narrow-as-possible range. As shown in Fig. 3(b), when it is far from 90°, 
there are eight peaks occurring between 0° to 40°, averaging in a spacing of 2.5° among each half peaks. This 
indicates that if we choose different periods (in Fig. 4) of modulation distributed within half a peak, the biggest 
deviation in radiation angle (radiation angle in Fig. 3(b) is equivalent to period in Fig. 4) is just 2.5°. Here, we take 
a step index fiber with an amplitude of modulation of b = 1 µm as an example. It provides a scattering loss of up 
to 39.1 dB/m, covering the required range for a one-meter-long homogeneously side-emitting fiber. As shown in 

Figure 5.  Normalized field distribution of a beam propagating in modulated core radius waveguides. (a) 
Symmetric slab waveguide with TE1 even incident mode from the bottom. (b) Step index fiber with LP01 
incident mode from the bottom. (c) Corresponding axial power flow within the calculation window in (a) for 
a slab waveguide, simulated using slowly varying envelope approximation. (d) Corresponding axial power flow 
within the calculation window in (b) for a step index fiber simulated without using slowly varying envelope 
approximation. Calculations were done for core refractive index n1 = 1.460, cladding refractive index n2 = 1.459, 
incident wavelength λ = 1.55 µm, core modulation amplitude b = 1 µm and core radius a = 10 µm, dr = 0.01 µm, 
dz = 0.1 µm, Λ = 75 µm, L = 3 mm.
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Fig. 4(d), there are two possible half peaks within which the modulation period can be chosen: [110 µm, 150 µm] 
and [170 µm, 240 µm]. The former one covers a range of 40 µm while the latter one covers a range of 70 µm. From 
the viewpoint of sensitivity, the former one produces a higher spatial resolution (due to smaller dimension), but 
would also require higher precision (due to smaller range) in the fabrication of periodic structures. In the example 
shown in Table 2, we therefore use the latter window of modulations.

Index versus radius modulation.  In the previous sections, we demonstrated the ability of tailoring radi-
ation loss by introducing core radius modulations at constant core refractive index. In an analogous approach, 
similar emission behavior can be generated by sinusoidal modulation of the core refractive index at constant core 
radius. This is of particular relevance when the modulations are not created through modifications of the fiber 
drawing process, but, e.g., through laser-assisted writing.

Using the above-introduced BPM models, the radiation losses from fundamental modes which arise from 
such modulations of the core refractive index in slab waveguides and step index fibers are shown in Fig. 6. The 
requirement for a one-meter-long homogeneously side-emitting waveguide can be met by introducing an ampli-
tude of modulation in refractive index of Δn = 5 × 10−4 (Fig. 6(c,d)). Detailed design parameters for such a fiber 
are provided in Table 2. The radiation losses due to a modulation amplitude of Δn = 1 × 10−4 are too low for a 
one-meter-long side-emitting waveguide. The curve shown in Fig. 6(a) is similar to 6(c) while the Fig. 6(b) is 
similar to (d). This similarity implies that a master curve as in Fig. 3(b) exists by dividing a same function of b, e.g. 
b2. When the radiation losses are extremely low (Fig. 6(e,f)), numerical errors occur which prevent the further 
applicability of the model.

For the modulation of core radius, the radiation loss is proportional to the square of b (Eq. (4)) in the limit of 
validity of the perturbation solution. Figure 7(a) shows the radiation losses using the present numerical models 
with large modulation amplitudes in core radius, i.e., from 0.5 µm to 2.25 µm over an average radius of 10 µm. If 
we try to fit the radiation losses for different b in a power function, bγ, we find that γ is not a constant over varying 
periods, and that it deviates from 2, as shown in the red curve in Fig. 7(a). If γ < 2, there is a lower growth rate 
with increasing amplitude of modulation then predicted by the perturbation solutions. The lowest positions are 
corresponding to the maximum radiation losses, indicating the highest total overestimation. This was already dis-
cussed in the previous sections. The main reason for the deviation from 2 arises from the fact that the modulation 
amplitudes are large. If we follow the same process for the modulation in core refractive index, we get the results 
as shown in Fig. 7(b). The γ in this case is approximately 2 over most of the considered range of periods, except 
for the minimum positions, where numerical errors occur. This result implies that the amplitude of modulation 
in core refractive index is still within the limit of validity of analytical solutions. For the slab waveguides, similar 
observations were made (not shown).

As seen from Fig. 7, the modulation in core refractive index is more sensitive than the modulation of the 
core radius. The maximum radiation loss reaches  166 dB/m with an amplitude of modulation in refractive index 
of Δn = 20 × 10−4. Even when using small periods at about 50 µm, homogeneous side-emission can readily be 
achieved with an amplitude of Δn = 20 × 10−4. The advantage is that tailoring the core refractive index in a sinu-
soidal fashion is already well developed in the fabrication of fiber Bragg gratings using interferometric laser 
writing16. The period of the modulation in refractive index can be varied through the phase mask or the distance 
between fiber and mask. Then, the remaining technical requirement is to provide a low loss photosensitive mate-
rial that is able to generate refractive index changes in the magnitude of 5 × 10−4, and its combination with a 
non- photosensitive cladding19–22.

Conclusions
We presented the design of homogeneous side-emitting waveguides by introducing axial modulations in core 
radius or core refractive index. According to simulation data, these waveguides provide up to 33 dB/m for radius 

Fiber sections (cm)

Period of sinusoidal modulation in 
core radius (µm)

Period of sinusoidal modulation in 
core refractive index (µm) Attenuation 

constant (dB/m)Slab waveguide Step index fiber Slab waveguide Step index fiber

0–10 115.3 239.0 207.1 167.2 4.6

10–20 133.4 236.7 209.2 168.3 5.1

20–30 121.5 234.0 211.7 169.6 5.8

30–40 102.9 231.0 214.7 171.1 6.7

40–50 143.2 227.2 218.8 173.5 7.9

50–60 175.5 222.2 224.5 176.9 9.7

60–70 156.7 215.3 233.2 182.3 12.5

70–80 155.0 204.3 249.1 191.0 17.6

80–90 198.2 177.6 309.4 215.2 30.1

90–100 — — — —

Table 2.  Exemplar design parameters of a one-meter-long homogeneously side-emitting waveguide. Average 
core radius: 10 µm. Slab core height: 20 µm. Core refractive index: 1.4600. Cladding refractive index: 1.4590. 
Amplitude of modulation in fiber core radius: 1 µm. Amplitude of modulation in slab core thickness: 2.50 µm. 
Amplitude of modulation in core refractive index: 5 × 10−4.
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Figure 6.  Simulated attenuation constants for radiation losses from fundamental modes due to axial 
modulation of the core refractive index. (a) (c) and (e) are simulated by FDBPM for symmetric slab waveguides 
with amplitude of modulation at Δn = 10 × 10−4, Δn = 5 × 10−4 and Δn = 1 × 10−4, respectively. (b) (d) and (f) 
are simulated by HTBPM for step index fibers with amplitude of modulation at Δn = 10 × 10−4, Δn = 5 × 10−4 
and Δn = 1 × 10−4, respectively. All calculations are done for refractive index n1 = 1.460, cladding refractive 
index n2 = 1.459, incident wavelength λ = 1.55 μm, core modulation amplitude b = 1 µm and core radius 
a = 10 µm. dr = 0.001 µm, dz = 0.1 µm for FDBPM and dz = Λ/1000 for HTBPM.

Figure 7.  Simulated attenuation constants for radiation losses from fundamental mode due to different 
modulations on core radius (a) and on refractive index axially (b). The red curves in both cases represent 
simulated γ values, which are 2 in Marcuse’s perturbation solution for different periods of modulations. If it is 
smaller than 2 the attenuation constants develop due to increasing amplitude of modulation slower than the 
perturbation solution predicts and vice versa. The parameters used in the simulations are core refractive index 
n1 = 1.460, cladding refractive index n2 = 1.459, incident wavelength λ = 1.55 µm, core modulation amplitude 
b = 1 µm and core radius a = 10 µm. dr = 0.001 µm, dz = 0.1 µm for FDBPM and dz = Λ/1000 for HTBPM.
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modulation and 166 dB/m for refractive index modulation in our calculation, compared to up to 10 dB/m in 
commercially available devices2,6. Available algorithms for calculating the quantitative relationship between radi-
ation losses and modulation parameters were extended to large amplitudes of modulation via verified FDBPM 
for symmetric slab waveguides and HTBPM for step index fibers. We find good agreement between numerical 
models and the analytical perturbation solution from CMT when the amplitude of modulation in core radius is 
about 5% (relative to the core radius). Above 5% the radiation losses grow with increasing amplitude of modula-
tion at different rates (predicted by the analytical perturbation solution), depending on the period of modulation. 
For modulation in core refractive index, we find that it is sufficient to use 0.03% modulation (relative to the 
core refractive index) to achieve a one-meter-long homogeneous side-emitting waveguide. Finally, we deduce 
exemplar conditions for homogeneously side-emitting one-meter-long slab waveguides and step index fibers 
using modulation in core radius as well as modulation in core refractive index. The presented model also applies 
without the assumptions of single-mode guidance, zero absorption, zero Rayleigh scattering and no backward 
propagation. Initial use of such assumptions only simplifies the case result validation.

Appendix
Finite Difference Beam Propagation Method.  Beams propagation in the present case occurs mainly in 
axial direction. Such directional and not fast-spreading beams allow for a plane wave (paraxial wave) approxima-
tion and therefore can be modelled with an envelope function multiplied by a plane wave function:

in k zE exp( ), (6)t t 0 0Ψ= −

where Et is the electrical transversal field vector, Ψt is the transversal envelope vector, k0 = 2π/λ is the wavenum-
ber (λ is wavelength of the beam), n0 is the reference refractive index and z is the axial position. With the weakly 
guiding approximation, substituting Eq. (6) into a homogeneous scalar Helmholtz wave equation leads to the 
paraxial wave equation

in k
z

k n n2 ( ) 0,
(7)0 0 0

2 2
0
2ϕ ϕ ϕΔ −

∂
∂

+ − =

where ϕ is a scalar envelope function representing either Ψx or Ψy in Ψt and n is the local refractive index. Eq. (7) 
is the starting equation for both FDBPM and HTBPM. If ∆ϕ is expanded in cartesian coordinates for 
two-dimensional waveguides (∂ ∂ =y/ 0) as assumed in FDBPM, Eq. (7) becomes

x z
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2
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If n0 is suitably chosen, e.g., the effective refractive index of the propagating mode, the envelope ϕ can be consid-
ered as the slowly varying amplitude function of the propagating mode while the fast oscillations are described 
by the exp(−in0k0z) term. We now express the slowly varying envelope approximation in the second derivative,



ϕ ϕ∂
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∂z

n k
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2
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Eq. (9) signifies that the second derivative of the envelope is neglectable with respect to z and, therefore, Eq. (8)  
can be further simplified to
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The FDBPM discretizes the envelope function ϕn
m at positions (n∆x, m∆z) with n = 1, 2, …, N, m = 1, 2, …, M. 

Following the Crank-Nicolson scheme13, Eq. (10) can be discretized into

x x
in k

z
k n n k n n

(1 )
2

( )
2
( )

2 ( )

(1 ) [( ) ] [( ) ] 0 (11)

n
m

n
m

n
m

n
m

n
m

n
m

n
m

n
m

n
m

n
m

n
m

n
m

1 1
2

1
1 1

1
1

2
0 0 1

0
2 2

0
2

0
2 1 2

0
2 1

α
ϕ ϕ ϕ

α
ϕ ϕ ϕ

ϕ ϕ

α ϕ α ϕ

−
− +

Δ
+

− +

Δ
−

Δ
−

+ − − + − =

− + −
+ +

+
+

+

+ +

Eq. (11) consists of N linear equations and N + 2 unknown variables, i.e., N n
mϕ  and the boundaries m

0ϕ , n
m

1ϕ + . 
To solve Eq. (11), two more boundary conditions are therefore required. For these, we take the transparent 
boundary condition13 in the 2D FDBPM. N equations and two boundary conditions all together form a tridiago-
nal system which can be solved iteratively using the Thomas method (Appendix B in ref.13). If the initial envelope 
function n

1ϕ  is known as incident, the envelope function n
mϕ  at positions m∆z can be evaluated by solving Eq. (11) 

iteratively. The incident field is TE1 even mode using core thickness 2r0 = 20 µm, wavelength 1.55 µm, core refrac-
tive index 1.460 and cladding refractive index 1.459.

Hankel Transform Beam Propagation Method.  For step index fibers, it is suitable to expand Eq. (7) in 
cylindrical coordinates:

r r r r z
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where r is the radius, and φ is the azimuthal angel. Since we are interested only in the fundamental mode of step 
index fibers, the mode field is radially symmetric, / 0φ∂ ∂ = , meaning that any derivative with respect to the azi-
muthal angel vanishes. Eq. (12) reduces to

ϕ ϕ ϕ ϕ ϕ∂
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+
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+
∂
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−
∂
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+ − =
r r r z
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2

2

2

2 0 0 0
2 2

0
2

As we know one of the solution of cylindrical Helmholtz equation is the Bessel function of the first kind (the coef-
ficient of the Bessel function of the second kind must be zero in order to keep the field finite at zero position), the 
order of Bessel function is determined by the angle-dependent part of ϕ during separation of variables:

ϕ
ν

Θ
∂ Θ
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= −
1

(14)

2

2
2

where ν is the order of the Bessel function of the first kind. Since we assumed that the propagation field is radially 
symmetric, ν = 0 and therefore the solution of Eq. (13) can be expanded into a zero-order Bessel function
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where Zn is the minimum radial position at which n zeros of the Bessel function can be found, and R is size of the 
calculation window in r axis. The expansion coefficient an is given by
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To obtain Eq. (16), the orthogonal property of zero-order Bessel function is used
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where δ is the Kronecker delta. According to the BPM technique, field propagation as described in Eq. (13) 
consists of two successive steps: first advances ∆z in a homogeneous medium with refractive index n0, followed 
by another step with a phase shift according to the refractive index variation. The first step can be realized in the 
expansion coefficient an by

+ Δ =
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while the second step can be realized using

r z z r z i zk n( , ) ( , )exp( ) (19)0ϕ ϕ+ Δ = − Δ

If the incident field r( , 0)ϕ  is known, it is first expanded according to Eq. (16) and then advances a step with Eq. (18) 
in the an domain. It is then possible to reconstruct the field using Eq. (15) with the coefficients obtained from  
Eq. (18), and finally the field is modulated by a phase term using Eq. (19). Repeating these steps, the fields at other 
positions can be obtained successively.

The transformation we used is mathematically the Hankel transformation, therefore this method is termed 
as HTBPM. The HTBPM has great advantage in computational expense, firstly, it reduces the 3D propagation in 
step index fiber to 2D propagation. If 3D FDBPM is used by introducing the ADI method23, the computational 
cost increases by several orders of magnitude. Secondly, only half of the radius domain is calculated. Besides, 
HTBPM does not use the slowly varying envelope assumption in its derivation as compared to FDBPM. For the 
boundary condition in HTBPM, we assume an absorbing boundary, in which a layer of 30 mm thickness contains 
a gradually increasing imaginary part of refractive index. The incident field is the LP01 mode of a structure with 
core radius of r0 = 10 µm, λ = 1.55 µm, core refractive index 1.460 and cladding refractive index 1.459.

Data Availability Statement.  The datasets generated during and/or analyzed during the current study are 
available from the corresponding author on reasonable request.
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